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This is the Numba documentation. Unless you are already acquainted with Numba, we suggest you start with the User
manual.

FOR ALL USERS 1
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CHAPTER
ONE

USER MANUAL

1.1 A ~5 minute guide to Numba

Numba is a just-in-time compiler for Python that works best on code that uses NumPy arrays and functions, and loops.
The most common way to use Numba is through its collection of decorators that can be applied to your functions to
instruct Numba to compile them. When a call is made to a Numba-decorated function it is compiled to machine code
“just-in-time” for execution and all or part of your code can subsequently run at native machine code speed!

Out of the box Numba works with the following:
* OS: Windows (64 bit), OSX, Linux (64 bit). Unofficial support on *BSD.
* Architecture: x86, x86_64, ppc64le, armv8l (aarch64), M1/Arm64.
* GPUs: Nvidia CUDA.
¢ CPython
* NumPy 1.22 - 1.25

1.1.1 How do | get it?

Numba is available as a conda package for the Anaconda Python distribution:

$ conda install numba

Numba also has wheels available:

$ pip install numba

Numba can also be compiled from source, although we do not recommend it for first-time Numba users.

Numba is often used as a core package so its dependencies are kept to an absolute minimum, however, extra packages
can be installed as follows to provide additional functionality:

e scipy - enables support for compiling numpy . 1inalg functions.
* colorama - enables support for color highlighting in backtraces/error messages.
e pyyaml - enables configuration of Numba via a YAML config file.

e intel-cmplr-1lib-rt - allows the use of the Intel SVML (high performance short vector math library, x86_64
only). Installation instructions are in the performance tips.



https://conda.io/docs/
https://www.anaconda.com/
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1.1.2 Will Numba work for my code?

This depends on what your code looks like, if your code is numerically orientated (does a lot of math), uses NumPy a
lot and/or has a lot of loops, then Numba is often a good choice. In these examples we’ll apply the most fundamental
of Numba’s JIT decorators, @jit, to try and speed up some functions to demonstrate what works well and what does
not.

Numba works well on code that looks like this:

from numba import jit
import numpy as np

X = np.arange(100) .reshape(10, 10)
@jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit

def go_fast(a): # Function is compiled to machine code when called the first time
trace = 0.0

for i in range(a.shape[0]): # Numba likes loops
trace += np.tanh(a[i, i]) # Numba likes NumPy functions
return a + trace # Numba likes NumPy broadcasting

print(go_fast(x))

It won’t work very well, if at all, on code that looks like this:

from numba import jit
import pandas as pd

x={'a": [1, 2, 31, 'b": [20, 30, 401}

@jit

def use_pandas(a): # Function will not benefit from Numba jit
df = pd.DataFrame.from_dict(a) # Numba doesn't know about pd.DataFrame
df += 1 # Numba doesn't understand what this is
return df.cov() # or this!

print (use_pandas(x))

Note that Pandas is not understood by Numba and as a result Numba would simply run this code via the interpreter but
with the added cost of the Numba internal overheads!

1.1.3 What is nopython mode?

The Numba @jit decorator fundamentally operates in two compilation modes, nopython mode and object mode.
In the go_fast example above, nopython=True is set in the @jit decorator; this is instructing Numba to operate in
nopython mode. The behaviour of the nopython compilation mode is to essentially compile the decorated function
so that it will run entirely without the involvement of the Python interpreter. This is the recommended and best-practice
way to use the Numba jit decorator as it leads to the best performance.

Should the compilation in nopython mode fail, Numba can compile using object mode. This is a fall back mode for
the @jit decorator if nopython=True is not set (as seen in the use_pandas example above). In this mode Numba
will identify loops that it can compile and compile those into functions that run in machine code, and it will run the
rest of the code in the interpreter. For best performance avoid using this mode!

4 Chapter 1. User Manual
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1.1.4 How to measure the performance of Numba?

First, recall that Numba has to compile your function for the argument types given before it executes the machine code
version of your function. This takes time. However, once the compilation has taken place Numba caches the machine
code version of your function for the particular types of arguments presented. If it is called again with the same types,
it can reuse the cached version instead of having to compile again.

A really common mistake when measuring performance is to not account for the above behaviour and to time code
once with a simple timer that includes the time taken to compile your function in the execution time.

For example:

from numba import jit
import numpy as np
import time

X = np.arange(100) .reshape(10, 10)

@jit(nopython=True)
def go_fast(a): # Function is compiled and runs in machine code
trace = 0.0
for i in range(a.shape[0]):
trace += np.tanh(a[i, i])
return a + trace

# DO NOT REPORT THIS... COMPILATION TIME IS INCLUDED IN THE EXECUTION TIME!
start = time.perf_counter()

go_fast(x)
end = time.perf_counter()
print("Elapsed (with compilation) = s".format((end - start)))

# NOW THE FUNCTION IS COMPILED, RE-TIME IT EXECUTING FROM CACHE
start = time.perf_counter()

go_fast(x)
end = time.perf_counter()
print("Elapsed (after compilation) = s".format((end - start)))

This, for example prints:

Elapsed (with compilation) = 0.33030009269714355s
Elapsed (after compilation) = 6.67572021484375e-06s

A good way to measure the impact Numba JIT has on your code is to time execution using the timeit module functions;
these measure multiple iterations of execution and, as a result, can be made to accommodate for the compilation time
in the first execution.

As a side note, if compilation time is an issue, Numba JIT supports on-disk caching of compiled functions and also has
an Ahead-Of-Time compilation mode.

1.1. A ~5 minute guide to Numba 5
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1.1.5 How fast is it?

Assuming Numba can operate in nopython mode, or at least compile some loops, it will target compilation to your
specific CPU. Speed up varies depending on application but can be one to two orders of magnitude. Numba has a
performance guide that covers common options for gaining extra performance.

1.1.6 How does Numba work?

Numba reads the Python bytecode for a decorated function and combines this with information about the types of the
input arguments to the function. It analyzes and optimizes your code, and finally uses the LLVM compiler library to
generate a machine code version of your function, tailored to your CPU capabilities. This compiled version is then
used every time your function is called.

1.1.7 Other things of interest:

Numba has quite a few decorators, we’ve seen @jit, but there’s also:
* @njit - this is an alias for @jit(nopython=True) as it is so commonly used!
e @vectorize - produces NumPy ufunc s (with all the ufunc methods supported). Docs are here.
* @guvectorize - produces NumPy generalized ufunc s. Docs are here.
* @stencil - declare a function as a kernel for a stencil like operation. Docs are here.
* @jitclass - for jit aware classes. Docs are here.
¢ @cfunc - declare a function for use as a native call back (to be called from C/C++ etc). Docs are here.

* @overload - register your own implementation of a function for use in nopython mode, e.g. @verload(scipy.
special. j®). Docs are here.

Extra options available in some decorators:

e parallel = True - enable the automatic parallelization of the function.

e fastmath = True - enable fast-math behaviour for the function.
ctypes/cffi/cython interoperability:

e cffi - The calling of CFFI functions is supported in nopython mode.

* ctypes - The calling of crypes wrapped functions is supported in nopython mode.

» Cython exported functions are callable.

GPU targets:

Numba can target Nvidia CUDA GPUs. You can write a kernel in pure Python and have Numba handle the computation
and data movement (or do this explicitly). Click for Numba documentation on CUDA.

6 Chapter 1. User Manual
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1.2 Overview

Numba is a compiler for Python array and numerical functions that gives you the power to speed up your applications
with high performance functions written directly in Python.

Numba generates optimized machine code from pure Python code using the LLVM compiler infrastructure. With a few
simple annotations, array-oriented and math-heavy Python code can be just-in-time optimized to performance similar
as C, C++ and Fortran, without having to switch languages or Python interpreters.

Numba’s main features are:
* on-the-fly code generation (at import time or runtime, at the user’s preference)
* native code generation for the CPU (default) and GPU hardware
* integration with the Python scientific software stack (thanks to Numpy)

Here is how a Numba-optimized function, taking a Numpy array as argument, might look like:

@numba. jit
def sum2d(arr):
M, N = arr.shape
result = 0.0
for i in range(M):
for j in range(N):
result += arr[i,j]
return result

1.3 Installation

1.3.1 Compatibility

For software compatability, please see the section on version support information for details.
Our supported platforms are:

e Linux x86_64

* Linux ppcle64 (POWERS, POWERY)

¢ Windows 10 and later (64-bit)

e OS X 10.9 and later (64-bit and unofficial support on M1/Arm64)

*BSD (unofficial support only)
NVIDIA GPUs of compute capability 5.0 and later

— Compute capabilities 3.5 and 3.7 are supported, but deprecated.
ARMVS8 (64-bit little-endian, such as the NVIDIA Jetson)

Automatic parallelization with @jit is only available on 64-bit platforms.

1.2. Overview 7
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1.3.2 Installing using conda on x86/x86_64/POWER Platforms

The easiest way to install Numba and get updates is by using conda, a cross-platform package manager and software
distribution maintained by Anaconda, Inc. You can either use Anaconda to get the full stack in one download, or
Miniconda which will install the minimum packages required for a conda environment.

Once you have conda installed, just type:

$ conda install numba

or:

$ conda update numba

Note that Numba, like Anaconda, only supports PPC in 64-bit little-endian mode.

To enable CUDA GPU support for Numba, install the latest graphics drivers from NVIDIA for your platform. (Note
that the open source Nouveau drivers shipped by default with many Linux distributions do not support CUDA.) Then
install the cudatoolkit package:

$ conda install cudatoolkit

You do not need to install the CUDA SDK from NVIDIA.

1.3.3 Installing using pip on x86/x86_64 Platforms

Binary wheels for Windows, Mac, and Linux are also available from PyPI. You can install Numba using pip:

$ pip install numba

This will download all of the needed dependencies as well. You do not need to have LLVM installed to use Numba (in
fact, Numba will ignore all LLVM versions installed on the system) as the required components are bundled into the
Ilvmlite wheel.

To use CUDA with Numba installed by pip, you need to install the CUDA SDK from NVIDIA. Please refer to Setting
CUDA Installation Path for details. Numba can also detect CUDA libraries installed system-wide on Linux.

1.3.4 Installing on Linux ARMv8 (AArch64) Platforms

We build and test conda packages on the NVIDIA Jetson TX2, but they are likely to work for other AArch64 platforms.
(Note that while the CPUs in the Raspberry Pi 3, 4, and Zero 2 W are 64-bit, Raspberry Pi OS may be running in 32-bit
mode depending on the OS image in use).

Conda-forge support for AArch64 is still quite experimental and packages are limited, but it does work enough for
Numba to build and pass tests. To set up the environment:

¢ Install miniforge. This will create a minimal conda environment.

* Then you can install Numba from the numba channel:

$ conda install -c numba numba

On CUDA-enabled systems, like the Jetson, the CUDA toolkit should be automatically detected in the environment.

8 Chapter 1. User Manual
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1.3.5 Installing from source

Installing Numba from source is fairly straightforward (similar to other Python packages), but installing llvmlite can be
quite challenging due to the need for a special LLVM build. If you are building from source for the purposes of Numba
development, see Build environment for details on how to create a Numba development environment with conda.

If you are building Numba from source for other reasons, first follow the llvmlite installation guide. Once that is
completed, you can download the latest Numba source code from Github:

$ git clone https://github.com/numba/numba.git

Source archives of the latest release can also be found on PyPI. In addition to 11vmlite, you will also need:

* A C compiler compatible with your Python installation. If you are using Anaconda, you can use the following
conda packages:

Linux x86_64: gcc_linux-64 and gxx_linux-64

Linux POWER: gcc_linux-ppc64le and gxx_linux-ppc64le

Linux ARM: no conda packages, use the system compiler

Mac OSX: clang_osx-64 and clangxx_osx-64 or the system compiler at /usr/bin/clang (Mojave
onwards)

Mac OSX (M1): clang_osx-arm64 and clangxx_osx-arm64

Windows: a version of Visual Studio appropriate for the Python version in use
e NumPy

Then you can build and install Numba from the top level of the source tree:

$ python setup.py install

If you wish to run the test suite, see the instructions in the developer documentation.

Build time environment variables and configuration of optional components

Below are environment variables that are applicable to altering how Numba would otherwise build by default along
with information on configuration options.

NUMBA_DISABLE_OPENMP (default: not set)

To disable compilation of the OpenMP threading backend set this environment variable to a non-empty string
when building. If not set (default):

¢ For Linux and Windows it is necessary to provide OpenMP C headers and runtime libraries compatible
with the compiler tool chain mentioned above, and for these to be accessible to the compiler via standard
flags.

» For OSX the conda package 11vm-openmp provides suitable C headers and libraries. If the compilation
requirements are not met the OpenMP threading backend will not be compiled.

NUMBA_DISABLE_TBB (default: not set)

To disable the compilation of the TBB threading backend set this environment variable to a non-empty string
when building. If not set (default) the TBB C headers and libraries must be available at compile time. If build-
ing with conda build this requirement can be met by installing the tbb-devel package. If not building with
conda build the requirement can be met via a system installation of TBB or through the use of the TBBROOT en-
vironment variable to provide the location of the TBB installation. For more information about setting TBBROOT
see the Intel documentation.

1.3. Installation 9
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1.3.6 Dependency List

Numba has numerous required and optional dependencies which additionally may vary with target operating system
and hardware. The following lists them all (as of July 2020).

* Required build time:

setuptools
numpy
llvmlite

Compiler toolchain mentioned above

* Required run time:

numpy

1lvmlite

 Optional build time:

See Build time environment variables and configuration of optional components for more details about additional
options for the configuration and specification of these optional components.

11vm-openmp (OSX) - provides headers for compiling OpenMP support into Numba’s threading backend

tbb-devel - provides TBB headers/libraries for compiling TBB support into Numba’s threading backend
(version >= 2021.6 required).

importlib_metadata (for Python versions < 3.9)

* Optional runtime are:

scipy - provides cython bindings used in Numba’s np.linalg.* support

tbb - provides the TBB runtime libraries used by Numba’s TBB threading backend (version >= 2021
required).

jinja2 - for “pretty” type annotation output (HTML) via the numba CLI
cffi - permits use of CFFI bindings in Numba compiled functions
11vm-openmp - (OSX) provides OpenMP library support for Numba’s OpenMP threading backend.

intel-openmp - (OSX) provides an alternative OpenMP library for use with Numba’s OpenMP threading
backend.

ipython - if in use, caching will use IPython’s cache directories/caching still works

pyyaml - permits the use of a .numba_config.yaml file for storing per project configuration options
colorama - makes error message highlighting work

intel-cmplr-1lib-rt - allows Numba to use Intel SVML for extra performance

pygments - for “pretty” type annotation

gdb as an executable on the $PATH - if you would like to use the gdb support

setuptools - permits the use of pycc for Ahead-of-Time (AOT) compilation

Compiler toolchain mentioned above, if you would like to use pycc for Ahead-of-Time (AOT) compilation
r2pipe - required for assembly CFG inspection.

radare?2 as an executable on the $PATH - required for assembly CFG inspection. See here for information
on obtaining and installing.

10
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graphviz - for some CFG inspection functionality.

typeguard - used by runtests.py for runtime type-checking.

cuda-python - The NVIDIA CUDA Python bindings. See CUDA Bindings. Numba requires Version 11.6
or greater.

cubinlinker and ptxcompiler to support CUDA Minor Version Compatiblity.

¢ To build the documentation:

sphinx

pygments

sphinx_rtd_theme

numpydoc

make as an executable on the $PATH

1.3.7 Version support information

This is the canonical reference for information concerning which versions of Numba’s dependencies were tested and
known to work against a given version of Numba. Other versions of the dependencies (especially NumPy) may work
reasonably well but were not tested. The use of x in a version number indicates all patch levels supported. The use of
? as a version is due to missing information.
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Numba Re- Python NumPy llvmlite LLVM TBB
lease
date

0.58.0 UNRE- 3.8.x <= version < | 1.21 <=ver- | 0.41.x 14.x 2021.6 <= ver-
LEASED | 3.12 sion < 1.26 sion

0.57.1 2023- 3.8.x <= version < | 1.21 <=ver- | 0.40.x 14.x 2021.6 <= ver-
06-21 3.12 sion < 1.25 sion

0.57.0 2023- 3.8.x <= version < | 1.21 <=ver- | 0.40.x 14.x 2021.6 <= ver-
05-01 3.12 sion < 1.25 sion

0.56.4 2022- 3.7x <= version < | 1.18 <=ver- | 0.39.x 11.x 2021.x
11-03 3.11 sion < 1.24

0.56.3 2022- 3.7x <= version < | 1.18 <=ver- | 0.39.x 11.x 2021.x
10-13 3.11 sion < 1.24

0.56.2 2022- 3.7x <= version < | 1.18 <=ver- | 0.39.x 11.x 2021.x
09-01 3.11 sion < 1.24

0.56.1 NO RE-
LEASE

0.56.0 2022- 3.7x <= version < | 1.18 <=ver- | 0.39.x 11.x 2021.x
07-25 3.11 sion < 1.23

0.55.2 2022- 3.7x <= version < | 1.18 <=ver- | 0.38.x 11.x 2021.x
05-25 3.11 sion < 1.23

0.55.{0,1} | 2022- 3.7x <= version < | 1.18 <=ver- | 0.38.x 11.x 2021.x
01-13 3.11 sion < 1.22

0.54.x 2021- 3.6.x <= version < | 1.17 <=ver- | 0.37.x 11.x 2021.x
08-19 3.10 sion < 1.21

0.53.x 2021- 3.6.x <= version < | 1.15 <=ver- | 0.36.x 11.x 2019.5 <= ver-
03-11 3.10 sion < 1.21 sion < 2021.4

0.52.x 2020- 3.6.x <=version<3.9 | 1.15 <=ver- | 0.35.x 10.x 2019.5 <= ver-
11-30 sion < 1.20 9.x for | sion < 2020.3

aarch64)

0.51.x 2020- 3.6.x <=version< 3.9 | 1.15 <=ver- | 0.34.x 10.x 2019.5 <= ver-

08-12 sion < 1.19 9.x for | sion < 2020.0
aarch64)

0.50.x 2020- 3.6.x <=version< 3.9 | 1.15 <=ver- | 0.33.x 9.x 2019.5 <= ver-
06-10 sion < 1.19 sion < 2020.0

0.49.x 2020- 3.6.x <=version< 3.9 | 1.15 <=ver- | 0.31.x <= ver- | 9.x 2019.5 <= ver-
04-16 sion < 1.18 sion < 0.33.x sion < 2020.0

0.48.x 2020- 3.6.x<=version< 3.9 | 1.15 <=ver- | 0.31.x 8.x (7.x for | 2018.0.5 <=
01-27 sion < 1.18 ppcb4le) version < ?

0.47.x 2020- 3.5x <= version < | 1.15<=ver- | 0.30.x 8.x (7.x for | 2018.0.5 <=
01-02 3.9; version ==2.7.x | sion < 1.18 ppcb4le) version < ?
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1.3.8 Checking your installation

You should be able to import Numba from the Python prompt:

$ python

Python 3.10.2 | packaged by conda-forge | (main, Jan 14 2022, 08:02:09) [GCC 9.4.0] on.
—linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import numba
>>> numba.__version__
'9.55.1"'

You can also try executing the numba --sysinfo (or numba -s for short) command to report information about your
system capabilities. See Command line interface for further information.

$ numba -s
System info:

__Time Stamp__
Report started (local time)

__Hardware Information__
Machine

CPU Name

CPU Count

CPU Features

: 2022-01-18 10:35:08.981319

: x86_64
: skylake-avx512

12

64bit adx aes avx avx2 avx512bw avx512cd avx512dq avx512f avx512vl bmi bmi2
clflushopt clwb cmov cx16 cx8 fl6c fma fsgsbase fxsr invpcid lzcnt mmx
movbe pclmul pku popcnt prfchw rdrnd rdseed rtm sahf sse sse2 sse3 sse4.l

sse4.2 ssse3 xsave xsavec xsaveopt xsaves

__0S Information__
Platform Name
—glibc2.31
Platform Release
0S Name

0S Version

2022

__Python Information__
Python Compiler

Python Implementation
Python Version

Python Locale

__LLVM information__
LLVM Version

__CUDA Information__
Found 1 CUDA devices
id ® b'Quadro RTX 8000'

Compute Capability:
PCI Device ID:
PCI Bus ID:

: Linux-5.4.0-94-generic-x86_64-with-

5.4.0-94-generic

: Linux
: #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC.

: GCC 9.4.0

: CPython

1 3.10.2

: en_GB.UTF-8

11.1.0

[SUPPORTED]

(continues on next page)
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(continued from previous page)

UUID: GPU-e6489c45-5b68-3b03-bab7-0e7c8e809643
Watchdog: Enabled
FP32/FP64 Performance Ratio: 32

(output truncated due to length)

1.4 Compiling Python code with @jit

Numba provides several utilities for code generation, but its central feature is the numba. jit () decorator. Using
this decorator, you can mark a function for optimization by Numba’s JIT compiler. Various invocation modes trigger
differing compilation options and behaviours.

1.4.1 Basic usage
Lazy compilation

The recommended way to use the @jit decorator is to let Numba decide when and how to optimize:

from numba import jit

@jit

def f(x, y):
# A somewhat trivial example
return x + y

In this mode, compilation will be deferred until the first function execution. Numba will infer the argument types
at call time, and generate optimized code based on this information. Numba will also be able to compile separate
specializations depending on the input types. For example, calling the £() function above with integer or complex
numbers will generate different code paths:

>>> £(1, 2)
3

>>> £(15, 2)
(2+13)

Eager compilation

You can also tell Numba the function signature you are expecting. The function £() would now look like:

from numba import jit, int32

@jit(int32(int32, int32))

def f(x, y):
# A somewhat trivial example
return x + y

int32(int32, int32) is the function’s signature. In this case, the corresponding specialization will be compiled by
the @jit decorator, and no other specialization will be allowed. This is useful if you want fine-grained control over
types chosen by the compiler (for example, to use single-precision floats).
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If you omit the return type, e.g. by writing (int32, int32) instead of int32(int32, int32), Numba will try to
infer it for you. Function signatures can also be strings, and you can pass several of them as a list; see the numba. jit ()
documentation for more details.

Of course, the compiled function gives the expected results:

>>> £(1,2)
3

and if we specified int32 as return type, the higher-order bits get discarded:

>>> £(2%%31, 2**31 + 1)
1

1.4.2 Calling and inlining other functions

Numba-compiled functions can call other compiled functions. The function calls may even be inlined in the native
code, depending on optimizer heuristics. For example:

@jit
def square(x):
return x ** 2

@jit
def hypot(x, y):
return math.sqrt(square(x) + square(y))

The @jit decorator must be added to any such library function, otherwise Numba may generate much slower code.

1.4.3 Signature specifications

Explicit @jit signatures can use a number of types. Here are some common ones:
* void is the return type of functions returning nothing (which actually return None when called from Python)
* intp and uintp are pointer-sized integers (signed and unsigned, respectively)
e intc and uintc are equivalent to C int and unsigned int integer types

e int8, uint8, intl6, uintl6, int32, uint32, int64, uint64 are fixed-width integers of the corresponding
bit width (signed and unsigned)

* float32 and float64 are single- and double-precision floating-point numbers, respectively
» complex64 and complex128 are single- and double-precision complex numbers, respectively

e array types can be specified by indexing any numeric type, e.g. float32[:] for a one-dimensional single-
precision array or int8[:, :] for a two-dimensional array of 8-bit integers.

1.4. Compiling Python code with @jit 15
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1.4.4 Compilation options

A number of keyword-only arguments can be passed to the @jit decorator.

nopython

Numba has two compilation modes: nopython mode and object mode. The former produces much faster code, but has
limitations that can force Numba to fall back to the latter. To prevent Numba from falling back, and instead raise an
error, pass nopython=True.

@jit(nopython=True)
def f(x, y):
return x +y

See also:

Troubleshooting and tips
nogil
Whenever Numba optimizes Python code to native code that only works on native types and variables (rather than

Python objects), it is not necessary anymore to hold Python’s global interpreter lock (GIL). Numba will release the
GIL when entering such a compiled function if you passed nogil=True.

@jit(nogil=True)
def f(x, y):
return x + y

Code running with the GIL released runs concurrently with other threads executing Python or Numba code (either
the same compiled function, or another one), allowing you to take advantage of multi-core systems. This will not be
possible if the function is compiled in object mode.

When using nogil=True, you’ll have to be wary of the usual pitfalls of multi-threaded programming (consistency,
synchronization, race conditions, etc.).

cache

To avoid compilation times each time you invoke a Python program, you can instruct Numba to write the result of
function compilation into a file-based cache. This is done by passing cache=True:

@jit(cache=True)
def f(x, y):
return x + y

Note: Caching of compiled functions has several known limitations:

* The caching of compiled functions is not performed on a function-by-function basis. The cached function is
the the main jit function, and all secondary functions (those called by the main function) are incorporated in the
cache of the main function.

* Cache invalidation fails to recognize changes in functions defined in a different file. This means that when a
main jit function calls functions that were imported from a different module, a change in those other modules
will not be detected and the cache will not be updated. This carries the risk that “old” function code might be
used in the calculations.
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* Global variables are treated as constants. The cache will remember the value of the global variable at compilation
time. On cache load, the cached function will not rebind to the new value of the global variable.

parallel

Enables automatic parallelization (and related optimizations) for those operations in the function known to have parallel
semantics. For a list of supported operations, see Automatic parallelization with @jit. This feature is enabled by passing
parallel=True and must be used in conjunction with nopython=True:

@jit(nopython=True, parallel=True)
def f(x, y):
return x +y

See also:

Automatic parallelization with @jit

1.5 Flexible specializations with @generated_jit

While the jit () decorator is useful for many situations, sometimes you want to write a function that has different
implementations depending on its input types. The generated_jit () decorator allows the user to control the selection
of a specialization at compile-time, while fully retaining runtime execution speed of a JIT function.

1.5.1 Example
Suppose you want to write a function which returns whether a given value is a “missing” value according to certain
conventions. For the sake of the example, let’s adopt the following definition:

« for floating-point arguments, a missing value is a NaN

* for Numpy datetime64 and timedelta64 arguments, a missing value is a NaT

* other types don’t have the concept of a missing value.

That compile-time logic is easily implemented using the generated_jit () decorator:

import numpy as np
from numba import generated_jit, types

@generated_jit(nopython=True)
def is_missing(x):

o

Return True if the value is missing, False otherwise.
if isinstance(x, types.Float):
return lambda x: np.isnan(x)
elif isinstance(x, (types.NPDatetime, types.NPTimedelta)):
# The corresponding Not-a-Time value
missing = x('NaT")
return lambda x: x == missing

(continues on next page)
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(continued from previous page)

else:
return lambda x: False

There are several things to note here:
¢ The decorated function is called with the Numba types of the arguments, not their values.

* The decorated function doesn’t actually compute a result, it returns a callable implementing the actual definition
of the function for the given types.

* Itis possible to pre-compute some data at compile-time (the missing variable above) to have them reused inside
the compiled implementation.

* The function definitions use the same names for arguments as in the decorated function, this is required to ensure
passing arguments by name works as expected.

1.5.2 Compilation options

The generated_jit () decorator supports the same keyword-only arguments as the jit () decorator, for example the
nopython and cache options.

1.6 Creating NumPy universal functions

There are two types of universal functions:
» Those which operate on scalars, these are “universal functions” or ufuncs (see @vectorize below).

* Those which operate on higher dimensional arrays and scalars, these are “generalized universal functions” or
gufuncs (@guvectorize below).

1.6.1 The @vectorize decorator

Numba’s vectorize allows Python functions taking scalar input arguments to be used as NumPy ufuncs. Creating a
traditional NumPy ufunc is not the most straightforward process and involves writing some C code. Numba makes this
easy. Using the vectorize() decorator, Numba can compile a pure Python function into a ufunc that operates over
NumPy arrays as fast as traditional ufuncs written in C.

Using vectorize (), you write your function as operating over input scalars, rather than arrays. Numba will generate
the surrounding loop (or kernel) allowing efficient iteration over the actual inputs.

The vectorize () decorator has two modes of operation:

 Eager, or decoration-time, compilation: If you pass one or more type signatures to the decorator, you will be build-
ing a NumPy universal function (ufunc). The rest of this subsection describes building ufuncs using decoration-
time compilation.

 Lazy, or call-time, compilation: When not given any signatures, the decorator will give you a Numba dynamic
universal function (DUFunc) that dynamically compiles a new kernel when called with a previously unsupported
input type. A later subsection, “Dynamic universal functions”, describes this mode in more depth.

As described above, if you pass a list of signatures to the vectorize () decorator, your function will be compiled into
a NumPy ufunc. In the basic case, only one signature will be passed:
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Listing 1: from test_vectorize_one_signature of numba/tests/
doc_examples/test_examples.py

from numba import vectorize, float64

@vectorize([float64(float64, float64)])
def f(x, y):
return x +y

If you pass several signatures, beware that you have to pass most specific signatures before least specific ones (e.g.,
single-precision floats before double-precision floats), otherwise type-based dispatching will not work as expected:

Listing 2: from test_vectorize_multiple_signatures of numba/
tests/doc_examples/test_examples.py

from numba import vectorize, int32, int64, float32, float64
import numpy as np

@vectorize([int32(int32, int32),
int64(int64, int64),
float32(float32, float32),
float64(float64, float64)])

def f(x, y):

return x + y

The function will work as expected over the specified array types:

Listing 3: from test_vectorize_multiple_signatures of numba/
tests/doc_examples/test_examples.py

a = np.arange(6)
result = f(a, a)
# result == array([ 0, 2, 4, 6, 8, 10])

Listing 4: from test_vectorize_multiple_signatures of numba/
tests/doc_examples/test_examples.py

a = np.linspace(0, 1, 6)
result = f(a, a)
# Now, result == array([0. , 0.4, 0.8, 1.2, 1.6, 2. ])

but it will fail working on other types:

>>> a = np.linspace(®, 1+1j, 6)
>>> f(a, a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ufunc 'ufunc' not supported for the input types, and the inputs could not be.
-.safely coerced to any supported types according to the casting rule ''safe''

You might ask yourself, “why would I go through this instead of compiling a simple iteration loop using the @jit
decorator?”. The answer is that NumPy ufuncs automatically get other features such as reduction, accumulation or
broadcasting. Using the example above:
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Listing 5: from test_vectorize_multiple_signatures of numba/
tests/doc_examples/test_examples.py

a = np.arange(12).reshape(3, 4)
# a == array([[ 0, 1, 2, 3],
# [4, 5, 6, 7],
# [ 8, 9, 10, 1111

resultl = f.reduce(a, axis=0)
# resultl == array([12, 15, 18, 21])

result2 = f.reduce(a, axis=1)
# result2 == array([ 6, 22, 38])

result3 = f.accumulate(a)

# result3 == array([[ 0, 1, 2, 3],
# [ 4, 6, 8, 10],
# [12, 15, 18, 21]]1)

result4 = f.accumulate(a, axis=1)
# result3 == array([[ 0, 1, 3, 6],

# [ 4, 9, 15, 22],
# [8, 17, 27, 3811)
See also:

Standard features of ufuncs (NumPy documentation).

Note: Only the broadcasting features of ufuncs are supported in compiled code.

The vectorize() decorator supports multiple ufunc targets:

Tar- | Description
get
cpu | Single-threaded CPU
par- | Multi-core CPU

al-
lel
cuda| CUDA GPU

Note: This creates an ufunc-like object. See documentation for CUDA ufunc for detail.

A general guideline is to choose different targets for different data sizes and algorithms. The “cpu” target works well for
small data sizes (approx. less than 1KB) and low compute intensity algorithms. It has the least amount of overhead. The
“parallel” target works well for medium data sizes (approx. less than IMB). Threading adds a small delay. The “cuda”
target works well for big data sizes (approx. greater than 1MB) and high compute intensity algorithms. Transferring
memory to and from the GPU adds significant overhead.
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1.6.2 The @guvectorize decorator

While vectorize () allows you to write ufuncs that work on one element at a time, the guvectorize () decorator
takes the concept one step further and allows you to write ufuncs that will work on an arbitrary number of elements
of input arrays, and take and return arrays of differing dimensions. The typical example is a running median or a
convolution filter.

Contrary to vectorize () functions, guvectorize () functions don’t return their result value: they take it as an array
argument, which must be filled in by the function. This is because the array is actually allocated by NumPy’s dispatch
mechanism, which calls into the Numba-generated code.

Similar to vectorize() decorator, guvectorize() also has two modes of operation: Eager, or decoration-time
compilation and lazy, or call-time compilation.

Here is a very simple example:

Listing 6: from test_guvectorize of numba/tests/
doc_examples/test_examples.py

from numba import guvectorize, int64
import numpy as np

@guvectorize([(int64[:], int64, int64[:1)], '(n),O->(m)")
def g(x, y, res):
for i in range(x.shape[0]):
res[i] = x[i] + vy

The underlying Python function simply adds a given scalar (y) to all elements of a 1-dimension array. What’s more
interesting is the declaration. There are two things there:

* the declaration of input and output layouts, in symbolic form: (n), (O ->(n) tells NumPy that the function takes
a n-element one-dimension array, a scalar (symbolically denoted by the empty tuple ()) and returns a n-element
one-dimension array;

* the list of supported concrete signatures as per @vectorize; here, as in the above example, we demonstrate
int64 arrays.

Note: 1D array type can also receive scalar arguments (those with shape ()). In the above example, the second
argument also could be declared as int64[:]. In that case, the value must be read by y[0].

We can now check what the compiled ufunc does, over a simple example:

Listing 7: from test_guvectorize of numba/tests/
doc_examples/test_examples.py

a = np.arange(5)
result = g(a, 2)
# result == array([2, 3, 4, 5, 6])

The nice thing is that NumPy will automatically dispatch over more complicated inputs, depending on their shapes:

Listing  8: from test_guvectorize of numba/tests/
doc_examples/test_examples.py

a = np.arange(6) .reshape(2, 3)
# a == array([[0, 1, 2],

(continues on next page)
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# [3, 4, 511

resultl = g(a, 10)
# resultl == array([[10, 11, 12],
# [13, 14, 15]]1)

result2 = g(a, np.array([10, 20]))
g(a, np.array([10, 20]))

# result2 == array([[10, 11, 12],
# [23, 24, 25]]1)

Note: Both vectorize() and guvectorize () support passing nopython=True as in the @jit decorator. Use it to
ensure the generated code does not fallback to object mode.

Scalar return values

Now suppose we want to return a scalar value from guvectorize (). To do this, we need to:
* in the signatures, declare the scalar return with [:] like a 1-dimensional array (eg. int64[:]),
* in the layout, declare it as (),
* in the implementation, write to the first element (e.g. res[0] = acc).
The following example function computes the sum of the 1-dimensional array (x) plus the scalar (y) and returns it as

a scalar:

Listing 9: from test_guvectorize_scalar_return of numba/
tests/doc_examples/test_examples.py

from numba import guvectorize, int64
import numpy as np

@guvectorize([(int64[:], int64, int64[:1)], '(M),O0->0O")
def g(x, y, res):
acc = 0
for i in range(x.shape[0]):
acc += x[i] + vy
res[0] = acc

Now if we apply the wrapped function over the array, we get a scalar value as the output:
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Listing 10: from test_guvectorize_scalar_return of numba/
tests/doc_examples/test_examples.py

a = np.arange(5)
result = g(a, 2)
# At this point, result == 20.

Overwriting input values

In most cases, writing to inputs may also appear to work - however, this behaviour cannot be relied on. Consider the
following example function:

Listing 11: from test_guvectorize_overwrite of numba/tests/
doc_examples/test_examples.py

from numba import guvectorize, float64
import numpy as np

@guvectorize([(float64[:], float64[:1)], 'O->0O")
def init_values(invals, outvals):

invals[0®] = 6.5

outvals[0] = 4.2

Calling the init_values function with an array of float64 type results in visible changes to the input:

Listing 12: from test_guvectorize_overwrite of numba/tests/
doc_examples/test_examples.py

invals = np.zeros(shape=(3, 3), dtype=np.float64)
# invals == array([[6.5, 6.5, 6.5],
# [6.5, 6.5, 6.5],
# [6.5, 6.5, 6.5]])

outvals = init_values(invals)

# outvals == array([[4.2, 4.2, 4.2],
# [4.2, 4.2, 4.2],
# [4.2, 4.2, 4.2]])

This works because NumPy can pass the input data directly into the init_values function as the data dtype matches that
of the declared argument. However, it may also create and pass in a temporary array, in which case changes to the input
are lost. For example, this can occur when casting is required. To demonstrate, we can use an array of float32 with the
init_values function:

Listing 13: from test_guvectorize_overwrite of numba/tests/
doc_examples/test_examples.py

invals = np.zeros(shape=(3, 3), dtype=np.float32)
# invals == array([[0., 0., 0.7,

# [0., 0., 0.7,

# [0., 0., 0.]], dtype=float32)
outvals = init_values(invals)

# outvals == array([[4.2, 4.2, 4.2],

# [4.2, 4.2, 4.2],

(continues on next page)
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# [4.2, 4.2, 4.2]]1)
print(invals)

# invals == array([[0., 0., 0.7,

# [0., 0., 0.7,

# [0., 0., 0.]], dtype=float32)

In this case, there is no change to the invals array because the temporary casted array was mutated instead.

To solve this problem, one needs to tell the GUFunc engine that the invals argument is writable. This can be achieved
by passing writable_args=('invals"',) (specifying by name), or writable_args=(0,) (specifying by position)
to @guvectorize. Now, the code above works as expected:

Listing 14: from test_guvectorize_overwrite of numba/tests/
doc_examples/test_examples.py

@Qguvectorize(
[(float64[:], float64[:1)1],
'O->0",
writable_args=('invals',)
)
def init_values(invals, outvals):
invals[0®] = 6.5
outvals[0] = 4.2

invals = np.zeros(shape=(3, 3), dtype=np.float32)
# invals == array([[0., 0., 0.7,

# [0., 0., 0.7,

# [0., 0., 0.]], dtype=float32)
outvals = init_values(invals)

# outvals == array([[4.2, 4.2, 4.2],

# [4.2, 4.2, 4.2],

# [4.2, 4.2, 4.2]])
print(invals)

# invals == array([[6.5, 6.5, 6.5],

# [6.5, 6.5, 6.5],

# [6.5, 6.5, 6.5]], dtype=float32)

1.6.3 Dynamic universal functions

As described above, if you do not pass any signatures to the vectorize () decorator, your Python function will be
used to build a dynamic universal function, or DUFunc. For example:

Listing 15: from test_vectorize_dynamic of numba/tests/
doc_examples/test_examples.py

from numba import vectorize

@vectorize
def f(x, y):
return x * vy

The resulting £() is a DUFunc instance that starts with no supported input types. As you make calls to £(), Numba
generates new kernels whenever you pass a previously unsupported input type. Given the example above, the following
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set of interpreter interactions illustrate how dynamic compilation works:

>>> f
<numba._DUFunc 'f'>
>>> f.ufunc

<ufunc '"f'>

>>> f.ufunc.types

(]

The example above shows that DUFunc instances are not ufuncs. Rather than subclass ufunc’s, DUFunc instances work
by keeping a ufunc member, and then delegating ufunc property reads and method calls to this member (also known
as type aggregation). When we look at the initial types supported by the ufunc, we can verify there are none.

Let’s try to make a call to £():

Listing 16: from test_vectorize_dynamic of numba/tests/
doc_examples/test_examples.py

result = £(3,4)
# result == 12

print(£f.types)
# ['11->1']

If this was a normal NumPy ufunc, we would have seen an exception complaining that the ufunc couldn’t handle the
input types. When we call £() with integer arguments, not only do we receive an answer, but we can verify that Numba
created a loop supporting C long integers.

We can add additional loops by calling £() with different inputs:

Listing 17: from test_vectorize_dynamic of numba/tests/
doc_examples/test_examples.py

result = £(1.,2.)
# result == 2.0

print(f.types)
# ['11->1', 'dd->d']

We can now verify that Numba added a second loop for dealing with floating-point inputs, "dd->d".

If we mix input types to £(), we can verify that NumPy ufunc casting rules are still in effect:

Listing 18: from test_vectorize_dynamic of numba/tests/
doc_examples/test_examples.py

result = £(1,2.)
# result == 2.0

print (f.types)
# ['11->1', 'dd->d']

This example demonstrates that calling £() with mixed types caused NumPy to select the floating-point loop, and cast
the integer argument to a floating-point value. Thus, Numba did not create a special "d1->d" kernel.

This DUFunc behavior leads us to a point similar to the warning given above in “The @vectorize decorator” subsec-
tion, but instead of signature declaration order in the decorator, call order matters. If we had passed in floating-point
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arguments first, any calls with integer arguments would be cast to double-precision floating-point values. For example:

Listing 19: from test_vectorize_dynamic of numba/tests/
doc_examples/test_examples.py

@vectorize
def g(a, b):
return a / b

print(g(2.,3.))
# 0.66666666666666663

print(g(2,3))
# 0.66666666666666663

print(g.types)
# ['dd->d']

If you require precise support for various type signatures, you should specify them in the vectorize () decorator, and
not rely on dynamic compilation.

1.6.4 Dynamic generalized universal functions

Similar to a dynamic universal function, if you do not specify any types to the guvectorize () decorator, your Python
function will be used to build a dynamic generalized universal function, or GUFunc. For example:

Listing 20: from test_guvectorize_dynamic of numba/tests/
doc_examples/test_examples.py

from numba import guvectorize
import numpy as np

@guvectorize('(n),O->(m)")
def g(x, y, res):
for i in range(x.shape[0]):
res[i] = x[i] + ¥y

We can verify the resulting function g() is a GUFunc instance that starts with no supported input types. For instance:

>>> g
<numba._GUFunc 'g'>
>>> g.ufunc

<ufunc 'g'>

>>> g.ufunc.types
L]

Similar to a DUFunc, as one make calls to g(), numba generates new kernels for previously unsupported input types.
The following set of interpreter interactions will illustrate how dynamic compilation works for a GUFunc:

Listing 21: from test_guvectorize_dynamic of numba/tests/
doc_examples/test_examples.py

x = np.arange(5, dtype=np.int64)
y = 10

(continues on next page)
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res = np.zeros_like(x)

g(x, y, res)

# res == array([10, 11, 12, 13, 14])
print(g.types)

# ['11->1']

If this was a normal guvectorize() function, we would have seen an exception complaining that the ufunc could not
handle the given input types. When we call g() with the input arguments, numba creates a new loop for the input types.

We can add additional loops by calling g() with new arguments:

Listing 22: from test_guvectorize_dynamic of numba/tests/
doc_examples/test_examples.py

X = np.arange(5, dtype=np.double)

y =2.2
res = np.zeros_like(x)
g(x, y, res)

# res == array([2.2, 3.2, 4.2, 5.2, 6.2])

We can now verify that Numba added a second loop for dealing with floating-point inputs, "dd->d".

Listing 23: from test_guvectorize_dynamic of numba/tests/
doc_examples/test_examples.py

print(g.types) # shorthand for g.ufunc.types
# ['11->1', 'dd->d']

One can also verify that NumPy ufunc casting rules are working as expected:

Listing 24: from test_guvectorize_dynamic of numba/tests/
doc_examples/test_examples.py

X = np.arange(5, dtype=np.int64)
y = 2.2

res = np.zeros_like(x)

g(x, y, res)

print(res)

# res == array([2, 3, 4, 5, 6])

If you need precise support for various type signatures, you should not rely on dynamic compilation and instead, specify
the types them as first argument in the guvectorize () decorator.

1.7 Compiling Python classes with @jitclass

Note: This is a early version of jitclass support. Not all compiling features are exposed or implemented, yet.

Numba supports code generation for classes via the numba. experimental. jitclass () decorator. A class can be
marked for optimization using this decorator along with a specification of the types of each field. We call the resulting
class object a jitclass. All methods of a jitclass are compiled into nopython functions. The data of a jitclass instance is
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allocated on the heap as a C-compatible structure so that any compiled functions can have direct access to the underlying
data, bypassing the interpreter.

1.7.1 Basic usage

Here’s an example of a jitclass:

import numpy as np
from numba import int32, float32 # import the types
from numba.experimental import jitclass

spec = [
('value', int32), # a simple scalar field
('array', float32[:]), # an array field

]

@jitclass(spec)

class Bag(object):
def __init__(self, value):
self.value = value
self.array = np.zeros(value, dtype=np.float32)

@property
def size(self):
return self.array.size

def increment(self, val):
for i in range(self.size):
self.array[i] += val
return self.array

@staticmethod
def add(x, y):
return x + y

n = 21
mybag = Bag(n)

In the above example, a spec is provided as a list of 2-tuples. The tuples contain the name of the field and the Numba
type of the field. Alternatively, user can use a dictionary (an OrderedDict preferably for stable field ordering), which
maps field names to types.

The definition of the class requires at least a __init__ method for initializing each defined fields. Uninitialized fields
contains garbage data. Methods and properties (getters and setters only) can be defined. They will be automatically
compiled.
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1.7.2 Inferred class member types from type annotations with as_numba_type

Fields of a jitclass can also be inferred from Python type annotations.

from typing import List
from numba.experimental import jitclass
from numba.typed import List as NumbaList

@jitclass
class Counter:
value: int

def __init__(self):
self.value = 0

def get(self) -> int:
ret = self.value
self.value += 1
return ret

@jitclass

class ListLoopIterator:
counter: Counter
items: List[float]

def __init__(self, items: List[float]):
self.items = items
self.counter = Counter()

def get(self) -> float:
idx = self.counter.get() % len(self.items)
return self.items[idx]

items = Numbalist([3.14, 2.718, 0.123, -4.1)
loop_itr = ListLoopIterator(items)

Any type annotations on the class will be used to extend the spec if that field is not already present. The Numba type
corresponding to the given Python type is inferred using as_numba_type. For example, if we have the class

@jitclass([("w", int32), ("y", float64[:1)1)

class Foo:
w: int
x: float

y: np.ndarray
z: SomeOtherType

def __init__(self, w: int, x: float, y: np.ndarray, z: SomeOtherType):

then the full spec used for Foo will be:
e "w": 1int32 (specified in the spec)
e "x": float64 (added from type annotation)

e "y": array(float64, 1d, A) (specified in the spec)
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e "z": numba.as_numba_type(SomeOtherType) (added from type annotation)

Here SomeOtherType could be any supported Python type (e.g. bool, typing.Dict[int, typing.Tuple[float,
float]], or another jitclass).

Note that only type annotations on the class will be used to infer spec elements. Method type annotations (e.g. those
of __init__ above) are ignored.

Numba requires knowing the dtype and rank of NumPy arrays, which cannot currently be expressed with type annota-
tions. Because of this, NumPy arrays need to be included in the spec explicitly.

1.7.3 Specifying numba. typed containers as class members explicitly

The following patterns demonstrate how to specify a numba. typed.Dict or numba. typed.List explicitly as part of
the spec passed to jitclass.

First, using explicit Numba types and explicit construction.

from numba import types, typed
from numba.experimental import jitclass

# key and value types
kv_ty = (types.int64, types.unicode_type)

# A container class with:
# * member 'd' holding a typed dictionary of int64 -> unicode string (kv_ty)
# * member 'l1' holding a typed list of float64
@jitclass([('d', types.DictType(*kv_ty)),
('l", types.ListType(types.float64))])
class ContainerHolder(object):
def __init__(self):

# initialize the containers

self.d = typed.Dict.empty(*kv_ty)

self.]l = typed.List.empty_list(types.float64)

container = ContainerHolder()
container.d[1] = "apple"

container.d[2] = "orange"
container.l.append(123.)
container.l.append(456.)
print(container.d) # {1: apple, 2: orange}
print(container.l) # [123.0, 456.0]

Another useful pattern is to use the numba. typed container attribute _numba_type_ to find the type of a container,
this can be accessed directly from an instance of the container in the Python interpreter. The same information can be
obtained by calling numba . typeof () on the instance. For example:

from numba import typed, typeof
from numba.experimental import jitclass

d = typed.Dict()
d[1] = "apple"
d[2] = "orange"
1 = typed.List()
1.append(123.)

(continues on next page)
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1.append(456.)

@jitclass([('d', typeof(d)), ('1', typeof(1))])
class ContainerInstHolder(object):
def __init__(self, dict_inst, list_inst):
self.d = dict_inst
self.1 = list_inst

container = ContainerInstHolder(d, 1)
print(container.d) # {1: apple, 2: orange}
print(container.l) # [123.0, 456.0]

It is worth noting that the instance of the container in a jitclass must be initialized before use, for example, this will
cause an invalid memory access as self.d is written to without d being initialized as a type.Dict instance of the
type specified.

from numba import types
from numba.experimental import jitclass

dict_ty = types.DictType(types.int64, types.unicode_type)
@jitclass([('d', dict_ty)])
class NotInitialisingContainer(object):

def __init__(self):

self.d[10] = "apple" # this is invalid, ‘d’ is not initialized

NotInitialisingContainer() # segmentation fault/memory access violation

1.7.4 Support operations

The following operations of jitclasses work in both the interpreter and Numba compiled functions:
* calling the jitclass class object to construct a new instance (e.g. mybag = Bag(123));
 read/write access to attributes and properties (e.g. mybag.value);

* calling methods (e.g. mybag.increment (3));

« calling static methods as instance attributes (e.g. mybag.add(1l, 1));
* calling static methods as class attributes (e.g. Bag.add(1, 2));

* using select dunder methods (e.g. __add__ with mybag + otherbag);

Using jitclasses in Numba compiled function is more efficient. Short methods can be inlined (at the discretion of LLVM
inliner). Attributes access are simply reading from a C structure. Using jitclasses from the interpreter has the same
overhead of calling any Numba compiled function from the interpreter. Arguments and return values must be unboxed
or boxed between Python objects and native representation. Values encapsulated by a jitclass does not get boxed into
Python object when the jitclass instance is handed to the interpreter. It is during attribute access to the field values that
they are boxed. Calling static methods as class attributes is only supported outside of the class definition (i.e. code
cannot call Bag.add () from within another method of Bag).
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Supported dunder methods

The following dunder methods may be defined for jitclasses:

__abs__

__bool__

__complex__

__contains__

__float__
__getitem__
__hash__
__index__

__int__

len

__setitem__

str

——eq__

ne

__floordiv__

__Ishift__
__matmul__
__mod__

mul

__neg__
__pos__
__pow__
__rshift__

sub

__truediv__

and

or

Xor

__iadd__

32

Chapter 1. User Manual



Numba Documentation, Release 0.58.0rc2+0.9g660bf2ce.dirty

e __ifloordiv__
e __jlshift__

e __imatmul__

e __imod__
e __imul__
e __ipow__
e __irshift _
e __isub__

e __itruediv__

e __ijand__
e __dior__

e __ixor__
e __radd__

e __rfloordiv__
e __rlshift__

e __rmatmul__

e __rmod__
e __rmul__
e __rpow__
e __rrshift _
e __rsub__

e __rtruediv__

e __rand__
e __ror__
e __Irxor__

Refer to the Python Data Model documentation for descriptions of these methods.

1.7.5 Limitations

* A jitclass class object is treated as a function (the constructor) inside a Numba compiled function.
* isinstance() only works in the interpreter.
* Manipulating jitclass instances in the interpreter is not optimized, yet.

* Support for jitclasses are available on CPU only. (Note: Support for GPU devices is planned for a future release.)
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1.7.6 The decorator: @jitclass

numba.experimental.jitclass(cls_or_spec=None, spec=None)

A function for creating a jitclass. Can be used as a decorator or function.
Different use cases will cause different arguments to be set.

If specified, spec gives the types of class fields. It must be a dictionary or sequence. With a dictionary, use
collections.OrderedDict for stable ordering. With a sequence, it must contain 2-tuples of (fieldname, fieldtype).

Any class annotations for field names not listed in spec will be added. For class annotation x: 7" we will append
("x", as_numba_type(T)) to the spec if x is not already a key in spec.

Returns

If used as a decorator, returns a callable that takes a class object and
returns a compiled version.

If used as a function, returns the compiled class (an instance of
JitClassType).

Examples

1) cls_or_spec = None, spec = None

>>> @jitclass()
. class Foo:

2) cls_or_spec = None, spec

spec

>>> @jitclass(spec=spec)
. class Foo:

3) cls_or_spec = Foo, spec = None

>>> @jitclass
. class Foo:

4) cls_or_spec = spec, spec = None In this case we update cls_or_spec, spec = None,
cls_or_spec.

>>> @jitclass(spec)
. class Foo:

5) cls_or_spec = Foo, spec = spec

>>> JitFoo = jitclass(Foo, spec)

34
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1.8 Creating C callbacks with @cfunc

Interfacing with some native libraries (for example written in C or C++) can necessitate writing native callbacks to
provide business logic to the library. The numba . cfunc () decorator creates a compiled function callable from foreign
C code, using the signature of your choice.

1.8.1 Basic usage

The @cfunc decorator has a similar usage to @jit, but with an important difference: passing a single signature is
mandatory. It determines the visible signature of the C callback:

from numba import cfunc

@cfunc("float64(float64, float64)")
def add(x, y):
return x + y

The C function object exposes the address of the compiled C callback as the address attribute, so that you can pass it
to any foreign C or C++ library. It also exposes a ctypes callback object pointing to that callback; that object is also
callable from Python, making it easy to check the compiled code:

@cfunc("float64(float64, float64)")
def add(x, y):
return x + y

print(add.ctypes(4.0, 5.0)) # prints "9.0"

1.8.2 Example

In this example, we are going to be using the scipy.integrate.quad function. That function accepts either a regular
Python callback or a C callback wrapped in a ctypes callback object.

Let’s define a pure Python integrand and compile it as a C callback:

>>> import numpy as np
>>> from numba import cfunc
>>> def integrand(t):
return np.exp(-t) / t**2

>>> nb_integrand = cfunc("float64(float64)") (integrand)

We can pass the nb_integrand object’s ctypes callback to scipy.integrate.quad and check that the results are
the same as with the pure Python function:

>>> import scipy.integrate as si
>>> def do_integrate(func):

non

Integrate the given function from 1.0 to +inf.

non

return si.quad(func, 1, np.inf)

>>> do_integrate(integrand)

(continues on next page)
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(0.14849550677592208, 3.8736750296130505e-10)
>>> do_integrate(nb_integrand.ctypes)
(0.14849550677592208, 3.8736750296130505e-10)

Using the compiled callback, the integration function does not invoke the Python interpreter each time it evaluates the
integrand. In our case, the integration is made 18 times faster:

>>> %timeit do_integrate(integrand)

1000 loops, best of 3: 242 us per loop

>>> %timeit do_integrate(nb_integrand.ctypes)
100000 loops, best of 3: 13.5 ps per loop

1.8.3 Dealing with pointers and array memory

A less trivial use case of C callbacks involves doing operation on some array of data passed by the caller. As C doesn’t
have a high-level abstraction similar to Numpy arrays, the C callback’s signature will pass low-level pointer and size
arguments. Nevertheless, the Python code for the callback will expect to exploit the power and expressiveness of Numpy
arrays.

In the following example, the C callback is expected to operate on 2-d arrays, with the signature void(double
*input, double *output, int m, int n). You can implement such a callback thusly:

from numba import cfunc, types, carray

c_sig = types.void(types.CPointer(types.double),
types.CPointer(types.double),
types.intc, types.intc)

@cfunc(c_sig)
def my_callback(in_, out, m, n):
in_array = carray(in_, (m, n))
out_array = carray(out, (m, n))
for i in range(m):
for j in range(n):
out_array[i, j] = 2 * in_array[i, j]

The numba. carray () function takes as input a data pointer and a shape and returns an array view of the given shape
over that data. The data is assumed to be laid out in C order. If the data is laid out in Fortran order, numba. farray ()
should be used instead.

1.8.4 Handling C structures

With CFFI

For applications that have a lot of state, it is useful to pass data in C structures. To simplify the interoperability
with C code, numba can convert a cffi type into a numba Record type using numba.core.typing.cffi_utils.
map_type:

from numba.core.typing import cffi_utils

nbtype = cffi_utils.map_type(cffi_type, use_record_dtype=True)
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Note: use_record_dtype=True is needed otherwise pointers to C structures are returned as void pointers.

Note: From v0.49 the numba.cffi_support module has been phased out in favour of numba.core.typing.

cffi_utils

For example:

from cffi import FFI

src =

/* Define the C struct */
typedef struct my_struct {

int il;
float £2;
double d3;

float af4[7]; // arrays are supported
} my_struct;

/* Define a callback function */
typedef double (*my_func) (my_struct®, size_t);

ffi = FFIQ
ffi.cdef(src)

# Get the function signature from *my_func¥*
sig = cffi_utils.map_type(£ffi.typeof('my_func'), use_record_dtype=True)

# Make the cfunc
from numba import cfunc, carray

@cfunc(sig)
def foo(ptr, n):
base = carray(ptr, n) # view pointer as an array of my_struct
tmp = 0
for i in range(n):
tmp += base[i].il * base[i].f2 / base[i].d3

tmp += base[i].af4.sum() # nested arrays are like normal NumPy arrays

return tmp

1.8. Creating C callbacks with @cfunc
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With numba. types.Record.make_c_struct

The numba. types.Record type can be created manually to follow a C-structure’s layout. To do that, use Record.
make_c_struct, for example:

my_struct = types.Record.make_c_struct([
# Provides a sequence of 2-tuples i.e. (name:str, type:Type)
('il', types.int32),
('"f2', types.float32),
('d3', types.float64),
('af4', types.NestedArray(dtype=types.float32, shape=(7,))),
D

Due to ABI limitations, structures should be passed as pointers using types.CPointer (my_struct) as the argument
type. Inside the cfunc body, the my_struct® can be accessed with carray.

Full example

See full example in examples/notebooks/Accessing C Struct Data.ipynb.

1.8.5 Signature specification
The explicit @cfunc signature can use any Numba types, but only a subset of them make sense for a C callback. You

should generally limit yourself to scalar types (such as int8 or float64) ,pointers to them (for example types.
CPointer(types.int8)), or pointers to Record type.

1.8.6 Compilation options

A number of keyword-only arguments can be passed to the @cfunc decorator: nopython and cache. Their meaning
is similar to those in the @jit decorator.

1.8.7 Calling C code from Numba

It is also possible to call C code from Numba @jit functions. In this example, we are going to be compiling a simple
function sum that adds two integers and calling it within Numba @jit code.

Note: The example below was tested on Linux and will likely work on Unix-like operating systems.

#include <stdint.h>

int64_t sum(int64_t a, int64_t b){
return a + b;

}

Compile the code with gcc 1lib.c -fPIC -shared -o shared_library.so to generate a shared library.

from numba import njit
from numba.core import types, typing
from 1llvmlite import binding

(continues on next page)
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import os

# load the library into LLVM
path = os.path.abspath('./shared_library.so"')
binding.load_library_permanently(path)

# Adds typing information

c_func_name = 'sum'

return_type = types.int64

argty = types.int64

c_sig = typing.signature(return_type, argty, argty)
c_func = types.ExternalFunction(c_func_name, c_sig)

@Gnjit
def example(x, y):

return c_func(x, y)

print(example(3, 4)) # 7

It is also possible to use ctypes as well to call C functions. The advantage of using ctypes is that it is invariant to the
usage of JIT decorators.

from numba import njit
import ctypes
DSO = ctypes.CDLL('./shared_library.so')

# Add typing information

c_func = DSO.sum

c_func.restype = ctypes.c_int

c_func.argtypes = [ctypes.c_int, ctypes.c_int]

@njit
def example(x, y):

return c_func(x, y)

print(example(3, 4)) # 7
print (example.py_func(3, 4)) # 7

1.9 Compiling code ahead of time

While Numba’s main use case is Just-in-Time compilation, it also provides a facility for Ahead-of-Time compilation
(AOT).

Note: To use this feature the setuptools package is required at compilation time, but it is not a runtime dependency
of the extension module produced.

Note: This module is pending deprecation. Please see Deprecation of the numba.pycc module for more information.
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1.9.1 Overview

Benefits
1. AOT compilation produces a compiled extension module which does not depend on Numba: you can distribute
the module on machines which do not have Numba installed (but NumPy is required).

2. There is no compilation overhead at runtime (but see the @jit cache option), nor any overhead of importing
Numba.

See also:

Compiled extension modules are discussed in the Python packaging user guide.

Limitations

1. AOT compilation only allows for regular functions, not ufuncs.
2. You have to specify function signatures explicitly.

3. Each exported function can have only one signature (but you can export several different signatures under different
names).

4. Exported functions do not check the types of the arguments that are passed to them; the caller is expected to
provide arguments of the correct type.

5. AOT compilation produces generic code for your CPU’s architectural family (for example “x86-64"), while JIT
compilation produces code optimized for your particular CPU model.

1.9.2 Usage

Standalone example

from numba.pycc import CC

cc = CC('my_module')
# Uncomment the following line to print out the compilation steps
#cc.verbose = True

@cc.export('multf', 'f8(£f8, £8)')
@cc.export('multi', 'i4(i4, i4)")
def mult(a, b):

return a * b

@cc.export('square', 'f8(£8)')
def square(a):
return a ** 2

if __name__ == "__main__":
cc.compile()

If you run this Python script, it will generate an extension module named my_module. Depending on your platform,
the actual filename may be my_module. so, my_module.pyd, my_module.cpython-34m. so, etc.

The generated module has three functions: multf, multi and square. multi operates on 32-bit integers (i4), while
multf and square operate on double-precision floats (£8):
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>>> import my_module

>>> my_module.multi(3, 4)
12

>>> my_module.square(1.414)
1.9993959999999997

Distutils integration

You can also integrate the compilation step for your extension modules in your setup.py script, using distutils or
setuptools:

from distutils.core import setup
from source_module import cc

setup(...,
ext_modules=[cc.distutils_extension()])

The source_module above is the module defining the cc object. Extensions compiled like this will be automatically
included in the build files for your Python project, so you can distribute them inside binary packages such as wheels or
Conda packages. Note that in the case of using conda, the compilers used for AOT need to be those that are available
in the Anaconda distribution.

Signature syntax

The syntax for exported signatures is the same as in the @jit decorator. You can read more about it in the rypes
reference.

Here is an example of exporting an implementation of the second-order centered difference on a 1d array:

@cc.export('centdiff_1d"', "£8[:1(£8[:1, £8)")
def centdiff 1d(u, dx):
D = np.empty_like(u)
D[O] = O
D[-1] = 0
for i in range(l, len(D) - 1):
D[i] = (u[i+1] - 2 * u[i] + u[i-1]1) / dx**2
return D

You can also omit the return type, which will then be inferred by Numba:

@cc.export('centdiff 1d', '(£8[:1, £8)')
def centdiff 1d(u, dx):
# Same code as above
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1.10 Automatic parallelization with @jit

Setting the parallel option for jit () enables a Numba transformation pass that attempts to automatically parallelize
and perform other optimizations on (part of) a function. At the moment, this feature only works on CPUs.

Some operations inside a user defined function, e.g. adding a scalar value to an array, are known to have parallel
semantics. A user program may contain many such operations and while each operation could be parallelized individ-
ually, such an approach often has lackluster performance due to poor cache behavior. Instead, with auto-parallelization,
Numba attempts to identify such operations in a user program, and fuse adjacent ones together, to form one or more
kernels that are automatically run in parallel. The process is fully automated without modifications to the user pro-
gram, which is in contrast to Numba’s vectorize () or guvectorize () mechanism, where manual effort is required
to create parallel kernels.

1.10.1 Supported Operations
In this section, we give a list of all the array operations that have parallel semantics and for which we attempt to
parallelize.

1. All numba array operations that are supported by Case study: Array Expressions, which include common arith-
metic functions between Numpy arrays, and between arrays and scalars, as well as Numpy ufuncs. They are often
called element-wise or point-wise array operations:

e unary operators: + - ~

* binary operators: + - * / /? % | >> A << &** //

* comparison operators: == =< <=>>=

* Numpy ufuncs that are supported in nopython mode.
 User defined DUFunc through vectorize().

2. Numpy reduction functions sum, prod, min, max, argmin, and argmax. Also, array math functions mean, var,
and std.

3. Numpy array creation functions zeros, ones, arange, linspace, and several random functions (rand, randn,
ranf, random_sample, sample, random, standard_normal, chisquare, weibull, power, geometric, exponential,
poisson, rayleigh, normal, uniform, beta, binomial, f, gamma, lognormal, laplace, randint, triangular).

4. Numpy dot function between a matrix and a vector, or two vectors. In all other cases, Numba’s default imple-
mentation is used.

5. Multi-dimensional arrays are also supported for the above operations when operands have matching dimension
and size. The full semantics of Numpy broadcast between arrays with mixed dimensionality or size is not sup-
ported, nor is the reduction across a selected dimension.

6. Array assignment in which the target is an array selection using a slice or a boolean array, and the value being
assigned is either a scalar or another selection where the slice range or bitarray are inferred to be compatible.

7. The reduce operator of functools is supported for specifying parallel reductions on 1D Numpy arrays but the
initial value argument is mandatory.
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1.10.2 Explicit Parallel Loops

Another feature of the code transformation pass (when parallel=True) is support for explicit parallel loops. One can
use Numba’s prange instead of range to specify that a loop can be parallelized. The user is required to make sure
that the loop does not have cross iteration dependencies except for supported reductions.

A reduction is inferred automatically if a variable is updated by a supported binary function/operator using its previous
value in the loop body. The following functions/operators are supported: +=, +, -=, -, *=, *, /=, /,max(),min(). The
initial value of the reduction is inferred automatically for the supported operators (i.e., not the max and min functions).
Note that the //= operator is not supported because in the general case the result depends on the order in which the
divisors are applied. However, if all divisors are integers then the programmer may be able to rewrite the //= reduction
as a *= reduction followed by a single floor division after the parallel region where the divisor is the accumulated
product. For the max and min functions, the reduction variable should hold the identity value right before entering the
prange loop. Reductions in this manner are supported for scalars and for arrays of arbitrary dimensions.

The example below demonstrates a parallel loop with a reduction (A is a one-dimensional Numpy array):

from numba import njit, prange

@njit(parallel=True)
def prange_test(A):
s =0
# Without "parallel=True" in the jit-decorator
# the prange statement is equivalent to range
for i in prange(A.shape[0]):
s += A[i]
return s

The following example demonstrates a product reduction on a two-dimensional array:

from numba import njit, prange
import numpy as np

@Gnjit(parallel=True)

def two_d_array_reduction_prod(n):
shp = (13, 17)
resultl = 2 * np.ones(shp, np.int_)
tmp = 2 * np.ones_like(resultl)

for i in prange(n):
resultl *= tmp

return resultl

Note: When using Python’s range to induce a loop, Numba types the induction variable as a signed integer. This is
also the case for Numba’s prange when parallel=False. However, for parallel=True, if the range is identifiable
as strictly positive, the type of the induction variable will be uint64. The impact of a uint64 induction variable is
often most noticable when undertaking operations involving it and a signed integer. Under Numba’s type coercion
rules, such a case will commonly result in the operation producing a floating point result type.

Care should be taken, however, when reducing into slices or elements of an array if the elements specified by the slice
or index are written to simultaneously by multiple parallel threads. The compiler may not detect such cases and then a
race condition would occur.
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The following example demonstrates such a case where a race condition in the execution of the parallel for-loop results
in an incorrect return value:

from numba import njit, prange
import numpy as np

@njit(parallel=True)
def prange_wrong_result(x):
n = x.shape[0]
y = np.zeros(4)
for i in prange(n):
# accumulating into the same element of 'y’ from different
# parallel iterations of the loop results in a race condition
y[:]1 += x[i]

return y

as does the following example where the accumulating element is explicitly specified:

from numba import njit, prange
import numpy as np

@njit(parallel=True)
def prange_wrong_result(x):
n = x.shape[0]
y = np.zeros(4)
for i in prange(n):
# accumulating into the same element of 'y  from different
# parallel iterations of the loop results in a race condition
y[i % 4] += x[i]

return y

whereas performing a whole array reduction is fine:

from numba import njit, prange
import numpy as np

@njit(parallel=True)
def prange_ok_result_whole_arr(x):
n = x.shape[0]
y = np.zeros(4)
for i in prange(n):
y += x[i]
return y

as is creating a slice reference outside of the parallel reduction loop:

from numba import njit, prange
import numpy as np

@Gnjit(parallel=True)
def prange_ok_result_outer_slice(x):
n = x.shape[0]

(continues on next page)
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y = np.zeros(4)

z = yl:]

for i in prange(n):
z += x[1]

return y

1.10.3 Examples

In this section, we give an example of how this feature helps parallelize Logistic Regression:

@numba. jit (nopython=True, parallel=True)
def logistic_regression(Y, X, w, iterations):
for i in range(iterations):
w -= np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X)
return w

We will not discuss details of the algorithm, but instead focus on how this program behaves with auto-parallelization:
1. Input Y is a vector of size N, X is an N x D matrix, and w is a vector of size D.

2. The function body is an iterative loop that updates variable w. The loop body consists of a sequence of vector
and matrix operations.

3. The inner dot operation produces a vector of size N, followed by a sequence of arithmetic operations either
between a scalar and vector of size N, or two vectors both of size N.

4. The outer dot produces a vector of size D, followed by an inplace array subtraction on variable w.

5. With auto-parallelization, all operations that produce array of size N are fused together to become a single parallel
kernel. This includes the inner dot operation and all point-wise array operations following it.

6. The outer dot operation produces a result array of different dimension, and is not fused with the above kernel.

Here, the only thing required to take advantage of parallel hardware is to set the parallel option for jit (), with no
modifications to the logistic_regression function itself. If we were to give an equivalence parallel implementation
using guvectorize (), it would require a pervasive change that rewrites the code to extract kernel computation that
can be parallelized, which was both tedious and challenging.

1.10.4 Unsupported Operations

This section contains a non-exhaustive list of commonly encountered but currently unsupported features:
1. Mutating a list is not threadsafe

Concurrent write operations on container types (i.e. lists, sets and dictionaries) in a prange parallel region are
not threadsafe e.g.:

@Gnjit(parallel=True)
def invalidQ:
z =[]
for i in prange(10000):
z.append (i)
return z
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It is highly likely that the above will result in corruption or an access violation as containers require thread-safety
under mutation but this feature is not implemented.

2. Induction variables are not associated with thread ID

The use of the induction variable induced by a prange based loop in conjunction with get_num_threads as a
method of ensuring safe writes into a pre-sized container is not valid e.g.:

@Gnjit(parallel=True)
def invalid(Q):
n = get_num_threads()
z = [0 for _ in range(n)]
for i in prange(100):
z[i % n] += 1
return z

The above can on occasion appear to work, but it does so by luck. There’s no guarantee about which indexes are
assigned to which executing threads or the order in which the loop iterations execute.

1.10.5 Diagnostics

Note: At present not all parallel transforms and functions can be tracked through the code generation process. Occa-
sionally diagnostics about some loops or transforms may be missing.

The parallel option for jit () can produce diagnostic information about the transforms undertaken in automatically
parallelizing the decorated code. This information can be accessed in two ways, the first is by setting the environment
variable NUMBA_PARALLEL_DIAGNOSTICS, the second is by calling parallel_diagnostics(), both methods give
the same information and print to STDOUT. The level of verbosity in the diagnostic information is controlled by an
integer argument of value between 1 and 4 inclusive, 1 being the least verbose and 4 the most. For example:

@njit(parallel=True)
def test(x):
n = x.shape[0]

a = np.sin(x)
b = np.cos(a * a)
acc = 0

for i in prange(n - 2):
for j in prange(n - 1):
acc += b[i] + b[j + 1]
return acc

test(np.arange(10))

test.parallel_diagnostics(level=4)

produces:

======= Parallel Accelerator Optimizing: Function test, example.py (4) =======

(continues on next page)
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Parallel loop listing for Function test, example.py (4)

—————————————————————————————————————— | loop #ID
@njit(parallel=True)
def test(x): |

n = x.shape[0]

a =np.sin(x)-----——-———-————————- | #0

b = np.cos(a * a)--———-—---——-————- | #1

acc = 0 |

for i in prange(n - 2):----————---- | #3

for j in prange(n - 1):------- | #2

acc += b[i] + b[j + 1] |

return acc |
————————————————————————————————— Fusing loops --------—---—-——-——-mm
Attempting fusion of parallel loops (combines loops with similar properties)...
Trying to fuse loops #0 and #1:

- fusion succeeded: parallel for-loop #1 is fused into for-loop #0.
Trying to fuse loops #0 and #3:

- fusion failed: loop dimension mismatched in axis 0. slice(®, x_size0.1, 1)
= slice(®, $40.4, 1)

Parallel region 0:
+--0 (parallel)
+--1 (parallel)

Parallel region 1:
+--3 (parallel)
+--2 (parallel)

Parallel region 0:
+--0 (parallel, fused with loop(s): 1)

Parallel region 1:
+--3 (parallel)
+--2 (serial)

Parallel region 0 (loop #0) had 1 loop(s) fused.

Parallel region 1 (loop #3) had O loop(s) fused and 1 loop(s) serialized as part
of the larger parallel loop (#3).

Instruction hoisting:

(continues on next page)
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loop #0:
Failed to hoist the following:
dependency: $arg_out_var.1l® = getitem(value=x, index=$parfor__index_5.99)
dependency: $0.6.11 = getattr(value=$0.5, attr=sin)
dependency: $expr_out_var.9 = call $0.6.11($arg_out_var.10, func=$0.6.11, args=[Var(
—$arg_out_var.10, example.py (7))], kws=(), vararg=None)
dependency: $arg_out_var.17 = $expr_out_var.9 * $expr_out_var.9
dependency: $0.10.20 = getattr(value=$0.9, attr=cos)
dependency: $expr_out_var.16 = call $0.10.20($arg_out_var.17, func=$0.10.20,.
—.args=[Var($arg_out_var.17, example.py (8))], kws=(), vararg=None)
loop #3:
Has the following hoisted:
$const58.3 = const(int, 1)
$58.4 = _n_23 - $const58.3

To aid users unfamiliar with the transforms undertaken when the parallel option is used, and to assist in the under-
standing of the subsequent sections, the following definitions are provided:

* Loop fusion
Loop fusion is a technique whereby loops with equivalent bounds may be combined under certain conditions
to produce a loop with a larger body (aiming to improve data locality).

* Loop serialization
Loop serialization occurs when any number of prange driven loops are present inside another prange
driven loop. In this case the outermost of all the prange loops executes in parallel and any inner prange
loops (nested or otherwise) are treated as standard range based loops. Essentially, nested parallelism does
not occur.

* Loop invariant code motion
Loop invariant code motion is an optimization technique that analyses a loop to look for statements that
can be moved outside the loop body without changing the result of executing the loop, these statements are
then “hoisted” out of the loop to save repeated computation.

¢ Allocation hoisting
Allocation hoisting is a specialized case of loop invariant code motion that is possible due to the design of
some common NumPy allocation methods. Explanation of this technique is best driven by an example:

@njit(parallel=True)
def test(n):
for i in prange(n):
temp = np.zeros((50, 50)) # <--- Allocate a temporary array with np.
—zeros()
for j in range(50):
temp[j, jl =1

# ...do something with temp

internally, this is transformed to approximately the following:

@njit(parallel=True)
def test(n):
for i in prange(n):
temp = np.empty((50, 50)) # <--- np.zeros() is rewritten as np.empty()

(continues on next page)
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temp[:] = 0 # <--- and then a zero initialisation
for j in range(50):
temp[j, jl =1

# ...do something with temp

then after hoisting:

@njit(parallel=True)
def test(n):
temp = np.empty((50, 50)) # <--- allocation is hoisted as a loop invariant.
—-as ‘np.empty  is considered pure
for i in prange(n):
temp[:] = 0 # <--- this remains as assignment is a side effect
for j in range(50):
temp[j, jl =1

# ...do something with temp

it can be seen that the np.zeros allocation is split into an allocation and an assignment, and then the
allocation is hoisted out of the loop in i, this producing more efficient code as the allocation only occurs
once.

The parallel diagnostics report sections

The report is split into the following sections:

1. Code annotation

This is the first section and contains the source code of the decorated function with loops that have parallel
semantics identified and enumerated. The loop #ID column on the right of the source code lines up with
identified parallel loops. From the example, #0 is np.sin, #1 is np.cos and #2 and #3 are prange():

Parallel loop listing for Function test, example.py (4)

—————————————————————————————————————— [loop #ID
@Gnjit(parallel=True)
def test(x): |

n = x.shape[0] |

a =np.sin(X)-------------------—- | #0

b = np.cos(a * a)---------------—- | #1

acc = 0 |

for i in prange(n - 2):---———-—---—- | #3

for j in prange(n - 1):------- | #2

acc += b[i] + b[j + 1] |
return acc |

It is worth noting that the loop IDs are enumerated in the order they are discovered which is not necessarily
the same order as present in the source. Further, it should also be noted that the parallel transforms use a
static counter for loop ID indexing. As a consequence it is possible for the loop ID index to not start at 0
due to use of the same counter for internal optimizations/transforms taking place that are invisible to the
user.

2. Fusing loops

This section describes the attempts made at fusing discovered loops noting which succeeded and which
failed. In the case of failure to fuse a reason is given (e.g. dependency on other data). From the example:
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————————————————————————————————— Fusing loops --------=----—----mmmm
Attempting fusion of parallel loops (combines loops with similar properties)...
Trying to fuse loops #0 and #1:

- fusion succeeded: parallel for-loop #1 is fused into for-loop #0.
Trying to fuse loops #0 and #3:

- fusion failed: loop dimension mismatched in axis 0. slice(0, x_size®.1, 1)
I= slice(®, $40.4, 1)

It can be seen that fusion of loops #0 and #1 was attempted and this succeeded (both are based on the same
dimensions of x). Following the successful fusion of #0 and #1, fusion was attempted between #0 (now
including the fused #1 loop) and #3. This fusion failed because there is a loop dimension mismatch, #0 is
size x.shape whereas #3 is size x.shape[0] - 2.

3. Before Optimization

This section shows the structure of the parallel regions in the code before any optimization has taken place,
but with loops associated with their final parallel region (this is to make before/after optimization output
directly comparable). Multiple parallel regions may exist if there are loops which cannot be fused, in this
case code within each region will execute in parallel, but each parallel region will run sequentially. From
the example:

Parallel region 0:
+--0 (parallel)
+--1 (parallel)

Parallel region 1:
+--3 (parallel)
+--2 (parallel)

As alluded to by the Fusing loops section, there are necessarily two parallel regions in the code. The first
contains loops #0 and #1, the second contains #3 and #2, all loops are marked parallel as no optimization
has taken place yet.

4. After Optimization

This section shows the structure of the parallel regions in the code after optimization has taken place.
Again, parallel regions are enumerated with their corresponding loops but this time loops which are fused
or serialized are noted and a summary is presented. From the example:

Parallel region 0:
+--0 (parallel, fused with loop(s): 1)

Parallel region 1:
+--3 (parallel)
+--2 (serial)

Parallel region ® (loop #0) had 1 loop(s) fused.

Parallel region 1 (loop #3) had ® loop(s) fused and 1 loop(s) serialized as part
of the larger parallel loop (#3).

It can be noted that parallel region O contains loop #0 and, as seen in the fusing loops section, loop #1 is
fused into loop #0. It can also be noted that parallel region 1 contains loop #3 and that loop #2 (the inner
prange()) has been serialized for execution in the body of loop #3.
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5. Loop invariant code motion
This section shows for each loop, after optimization has occurred:

* the instructions that failed to be hoisted and the reason for failure (dependency/impure).
* the instructions that were hoisted.
* any allocation hoisting that may have occurred.

From the example:

Instruction hoisting:
loop #0:
Failed to hoist the following:
dependency: $arg_out_var.10® = getitem(value=x, index=$parfor__index_5.99)
dependency: $0.6.11 = getattr(value=$0.5, attr=sin)
dependency: $expr_out_var.9 = call $0.6.11($arg_out_var.10, func=$0.6.11,.
—args=[Var($arg_out_var.10, example.py (7))], kws=(), vararg=None)
dependency: $arg_out_var.1l7 = $expr_out_var.9 * $expr_out_var.9
dependency: $0.10.20 = getattr(value=$0.9, attr=cos)
dependency: $expr_out_var.16 = call $0.10.20($arg_out_var.17, func=$0.10.20,
- args=[Var($arg_out_var.17, example.py (8))], kws=(), vararg=None)
loop #3:
Has the following hoisted:
$const58.3 = const(int, 1)
$58.4 = _n_23 - $const58.3

The first thing to note is that this information is for advanced users as it refers to the Numba IR of the
function being transformed. As an example, the expression a * a in the example source partly translates
to the expression $arg_out_var.17 = $expr_out_var.9 * $expr_out_var.9 in the IR, this clearly
cannot be hoisted out of 1loop #0 because it is not loop invariant! Whereas in loop #3, the expression
$const58.3 = const(int, 1) comes from the source b[j + 1], the number 1 is clearly a constant
and so can be hoisted out of the loop.

1.10.6 Scheduling

By default, Numba divides the iterations of a parallel region into approximately equal sized chunks and gives one such
chunk to each configured thread. (See Setting the Number of Threads). This scheduling approach is equivalent to
OpenMP’s static schedule with no specified chunk size and is appropriate when the work required for each iteration is
nearly constant. Conversely, if the work required per iteration, as shown in the prange loop below, varies significantly
then this static scheduling approach can lead to load imbalances and longer execution times.

Listing 25: from test_unbalanced_example of numba/tests/
doc_examples/test_parallel_chunksize.py

from numba import (njit,
prange,
)

import numpy as np

@Gnjit(parallel=True)
def funcl(Q:
n = 100
vals = np.empty(n)
# The work in each iteration of the following prange

(continues on next page)
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# loop is proportional to its index.
for i in prange(n):
cur =i + 1
for j in range(i):
if cur % 2 == 0:
cur //= 2
else:
cur = cur * 3 + 1
vals[i] = cur
return vals

result = funcl()

In such cases, Numba provides a mechanism to control how many iterations of a parallel region (i.e., the chunk size)
go into each chunk. Numba then computes the number of required chunks which is equal to the number of iterations
divided by the chunk size, truncated to the nearest integer. All of these chunks are then approximately, equally sized.
Numba then gives one such chunk to each configured thread as above and when a thread finishes a chunk, Numba gives
that thread the next available chunk. This scheduling approach is similar to OpenMP’s dynamic scheduling option with
the specified chunk size. (Note that Numba is only capable of supporting this dynamic scheduling of parallel regions
if the underlying Numba threading backend, The Threading Layers, is also capable of dynamic scheduling. At the
moment, only the tbb backend is capable of dynamic scheduling and so is required if any performance benefit is to be
achieved from this chunk size selection mechanism.) To minimize execution time, the programmer must pick a chunk
size that strikes a balance between greater load balancing with smaller chunk sizes and less scheduling overhead with
larger chunk sizes. See Parallel Chunksize Details for additional details on the internal implementation of chunk sizes.

The number of iterations of a parallel region in a chunk is stored as a thread-local variable and can be set using numba.
set_parallel_chunksize (). This function takes one integer parameter whose value must be greater than or equal to
0. A value of 0 is the default value and instructs Numba to use the static scheduling approach above. Values greater than
0 instruct Numba to use that value as the chunk size in the dynamic scheduling approach described above. numba.
set_parallel_chunksize() returns the previous value of the chunk size. The current value of this thread local
variable is used as the chunk size for all subsequent parallel regions invoked by this thread. However, upon entering a
parallel region, Numba sets the chunk size thread local variable for each of the threads executing that parallel region
back to the default of 0, since it is unlikely that any nested parallel regions would require the same chunk size. If the
same thread is used to execute a sequential and parallel region then that thread’s chunk size variable is set to O at the
beginning of the parallel region and restored to its original value upon exiting the parallel region. This behavior is
demonstrated in funcl in the example below in that the reported chunk size inside the prange parallel region is 0
but is 4 outside the parallel region. Note that if the prange is not executed in parallel for any reason (e.g., setting
parallel=False) then the chunk size reported inside the non-parallel prange would be reported as 4. This behavior
may initially be counterintuitive to programmers as it differs from how thread local variables typically behave in other
languages. A programmer may use the chunk size API described in this section within the threads executing a parallel
region if the programmer wishes to specify a chunk size for any nested parallel regions that may be launched. The
current value of the parallel chunk size can be obtained by calling numba.get_parallel_chunksize(). Both of
these functions can be used from standard Python and from within Numba JIT compiled functions as shown below.
Both invocations of funcl would be executed with a chunk size of 4 whereas func2 would use a chunk size of 8.

Listing 26: from test_chunksize_manual of numba/tests/
doc_examples/test_parallel_chunksize.py

from numba import (njit,
prange,
set_parallel_chunksize,
get_parallel_chunksize,

)

(continues on next page)
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@njit(parallel=True)
def funcl():
acc = 0
print(get_parallel_chunksize()) # Will print 4.
for i in prange(n):
print(get_parallel_chunksize()) # Will print 0.
acc += i
print(get_parallel_chunksize()) # Will print 4.
return acc

@Gnjit(parallel=True)
def func2(n):
acc = 0
# This version gets the previous chunksize explicitly.
old_chunksize = get_parallel_chunksize()
set_parallel_chunksize(8)
for i in prange(n):
acc += 1
set_parallel_chunksize(old_chunksize)
return acc

# This version saves the previous chunksize as returned
# by set_parallel_chunksize.

old_chunksize = set_parallel_chunksize(4)

resultl = funcl(12)

result2 = func2(12)

result3 = funcl(12)
set_parallel_chunksize(old_chunksize)

Since this idiom of saving and restoring is so common, Numba provides the parallel_chunksize() with clause
context-manager to simplify the idiom. As shown below, this with clause can be invoked from both standard Python
and within Numba JIT compiled functions. As with other Numba context-managers, be aware that the raising of
exceptions is not supported from within a context managed block that is part of a Numba JIT compiled function.

Listing 27: from test_chunksize_with of numba/tests/
doc_examples/test_parallel_chunksize.py

from numba import njit, prange, parallel_chunksize

@njit(parallel=True)
def funcl(n):
acc = 0
for i in prange(n):
acc += i
return acc

@njit(parallel=True)
def func2(n):
acc = 0
with parallel_chunksize(8):
for i in prange(n):

(continues on next page)
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acc += 1
return acc

with parallel_chunksize(4):
resultl = funcl(12)
result2 = func2(12)
result3 = funcl(12)

Note that these functions to set the chunk size only have an effect on Numba automatic parallelization with the parallel
option. Chunk size specification has no effect on the vectorize () decorator or the guvectorize () decorator.

See also:

parallel, Parallel FAQs

1.11 Using the @stencil decorator

Stencils are a common computational pattern in which array elements are updated according to some fixed pattern
called the stencil kernel. Numba provides the @stencil decorator so that users may easily specify a stencil kernel and
Numba then generates the looping code necessary to apply that kernel to some input array. Thus, the stencil decorator
allows clearer, more concise code and in conjunction with the parallel jit option enables higher performance through
parallelization of the stencil execution.

1.11.1 Basic usage

An example use of the @stencil decorator:

from numba import stencil

@stencil
def kernell(a):
return 0.25 * (a[0®, 1] + a[l, O] + a[®, -1] + a[-1, 0])

The stencil kernel is specified by what looks like a standard Python function definition but there are different semantics
with respect to array indexing. Stencils produce an output array of the same size and shape as the input array although
depending on the kernel definition may have a different type. Conceptually, the stencil kernel is run once for each
element in the output array. The return value from the stencil kernel is the value written into the output array for that
particular element.

The parameter a represents the input array over which the kernel is applied. Indexing into this array takes place with
respect to the current element of the output array being processed. For example, if element (x, y) is being processed
then a[0, O] in the stencil kernel corresponds to a[x + 0, y + 0] in the input array. Similarly, a[-1, 1] in the
stencil kernel corresponds to a[x - 1, y + 1] in the input array.

Depending on the specified kernel, the kernel may not be applicable to the borders of the output array as this may cause
the input array to be accessed out-of-bounds. The way in which the stencil decorator handles this situation is dependent
upon which func_or_mode is selected. The default mode is for the stencil decorator to set the border elements of the
output array to zero.

To invoke a stencil on an input array, call the stencil as if it were a regular function and pass the input array as the
argument. For example, using the kernel defined above:
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>>> import numpy as np

>>> input_arr = np.arange(100).reshape((10, 10))

array([[ ®, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[18, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[ze, 71, 72, 73, 74, 75, 76, 77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
[90, 91, 92, 93, 94, 95, 96, 97, 98, 991D

>>> output_arr = kernell(input_arr)

array([[ ©., 0., 0., 0., 0., 0., 0., 0., 0., 0.1,
r ., 11., 12., 13., 14., 15., 16., 17., 18., 0.1,
[ 6., 21., 22., 23., 24., 25., 26., 27., 28., 0.1,
[ 6., 31., 32., 33., 34., 35., 36., 37., 38., 0.7,
[ o., 41., 42., 43., 44., 45., 46., 47., 48., 0.1,
[ o., 51., 52., 53., 54., 55., 56., 57., 58., 0.1,
[ 0., 61., 62., 63., 64., 65., 66., 67., 68., 0.1,
r o., 7., 72., 73., 74., 75., 76., 77., 78., 0.1,
[ 6., 81., 82., 83., 84., 85., 86., 87., 88., 0.1,
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.1

>>> input_arr.dtype
dtype('int64"')

>>> output_arr.dtype
dtype('float64"')

Note that the stencil decorator has determined that the output type of the specified stencil kernel is float64 and has
thus created the output array as float64 while the input array is of type int64.

1.11.2 Stencil Parameters

Stencil kernel definitions may take any number of arguments with the following provisions. The first argument must
be an array. The size and shape of the output array will be the same as that of the first argument. Additional arguments
may either be scalars or arrays. For array arguments, those arrays must be at least as large as the first argument (array)
in each dimension. Array indexing is relative for all such input array arguments.

1.11.3 Kernel shape inference and border handling

In the above example and in most cases, the array indexing in the stencil kernel will exclusively use Integer literals.
In such cases, the stencil decorator is able to analyze the stencil kernel to determine its size. In the above example, the
stencil decorator determines that the kernel is 3 x 3 in shape since indices -1 to 1 are used for both the first and second
dimensions. Note that the stencil decorator also correctly handles non-symmetric and non-square stencil kernels.

Based on the size of the stencil kernel, the stencil decorator is able to compute the size of the border in the output
array. If applying the kernel to some element of input array would cause an index to be out-of-bounds then that element
belongs to the border of the output array. In the above example, points -1 and +1 are accessed in each dimension and
thus the output array has a border of size one in all dimensions.

The parallel mode is able to infer kernel indices as constants from simple expressions if possible. For example:
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@njit(parallel=True)
def stencil_test(A):
c=2
B = stencil(
lambda a, c: 0.3 * (a[-c+1] + a[0] + a[c-11))(A, ©)
return B

1.11.4 Stencil decorator options

Note: The stencil decorator may be augmented in the future to provide additional mechanisms for border handling.
At present, only one behaviour is implemented, "constant" (see func_or_mode below for details).

neighborhood

Sometimes it may be inconvenient to write the stencil kernel exclusively with Integer literals. For example, let
us say we would like to compute the trailing 30-day moving average of a time series of data. One could write
(a[-29] + a[-28] + ... + a[-1] + a[®]) / 30 but the stencil decorator offers a more concise form using
the neighborhood option:

@stencil (neighborhood = ((-29, 0),))
def kernel2(a):
cumul = 0
for i in range(-29, 1):
cumul += a[i]
return cumul / 30

The neighborhood option is a tuple of tuples. The outer tuple’s length is equal to the number of dimensions of the input
array. The inner tuple’s lengths are always two because each element of the inner tuple corresponds to minimum and
maximum index offsets used in the corresponding dimension.

If a user specifies a neighborhood but the kernel accesses elements outside the specified neighborhood, the behavior
is undefined.

func_or_mode

The optional func_or_mode parameter controls how the border of the output array is handled. Currently, there is only
one supported value, "constant"”. In constant mode, the stencil kernel is not applied in cases where the kernel
would access elements outside the valid range of the input array. In such cases, those elements in the output array are
assigned to a constant value, as specified by the cval parameter.
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cval

The optional cval parameter defaults to zero but can be set to any desired value, which is then used for the border of
the output array if the func_or_mode parameter is set to constant. The cval parameter is ignored in all other modes.
The type of the cval parameter must match the return type of the stencil kernel. If the user wishes the output array to
be constructed from a particular type then they should ensure that the stencil kernel returns that type.

standard_indexing

By default, all array accesses in a stencil kernel are processed as relative indices as described above. However, some-
times it may be advantageous to pass an auxiliary array (e.g. an array of weights) to a stencil kernel and have that
array use standard Python indexing rather than relative indexing. For this purpose, there is the stencil decorator op-
tion standard_indexing whose value is a collection of strings whose names match those parameters to the stencil
function that are to be accessed with standard Python indexing rather than relative indexing:

@stencil (standard_indexing=("b",))
def kernel3(a, b):
return a[-1] * b[0] + a[0] + b[1]

1.11.5 StencilFunc

The stencil decorator returns a callable object of type StencilFunc. A StencilFunc object contains a number of
attributes but the only one of potential interest to users is the neighborhood attribute. If the neighborhood option
was passed to the stencil decorator then the provided neighborhood is stored in this attribute. Else, upon first execution
or compilation, the system calculates the neighborhood as described above and then stores the computed neighborhood
into this attribute. A user may then inspect the attribute if they wish to verify that the calculated neighborhood is
correct.

1.11.6 Stencil invocation options

Internally, the stencil decorator transforms the specified stencil kernel into a regular Python function. This function
will have the same parameters as specified in the stencil kernel definition but will also include the following optional
parameter.

out

The optional out parameter is added to every stencil function generated by Numba. If specified, the out parameter
tells Numba that the user is providing their own pre-allocated array to be used for the output of the stencil. In this case,
the stencil function will not allocate its own output array. Users should assure that the return type of the stencil kernel
can be safely cast to the element-type of the user-specified output array following the NumPy ufunc casting rules.

An example usage is shown below:

>>> import numpy as np

>>> input_arr = np.arange(100) .reshape((10, 10))
>>> output_arr = np.full(input_arr.shape, 0.0)
>>> kernell(input_arr, out=output_arr)
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1.12 Callback into the Python Interpreter from within JIT’ed code

There are rare but real cases when a nopython-mode function needs to callback into the Python interpreter to invoke
code that cannot be compiled by Numba. Such cases include:

logging progress for long running JIT ed functions;
use data structures that are not currently supported by Numba;

debugging inside JIT ed code using the Python debugger.

When Numba callbacks into the Python interpreter, the following has to happen:

acquire the GIL;

convert values in native representation back into Python objects;
call-back into the Python interpreter;

convert returned values from the Python-code into native representation;

release the GIL.

These steps can be expensive. Users should not rely on the feature described here on performance-critical paths.

1.12.1 The objmode context-manager

Warning: This feature can be easily mis-used. Users should first consider alternative approaches to achieve their
intended goal before using this feature.

numba.objmode (*args, **kwargs)

Creates a contextmanager to be used inside jitted functions to enter object-mode for using interpreter features.
The body of the with-context is lifted into a function that is compiled in object-mode. This transformation process
is limited and cannot process all possible Python code. However, users can wrap complicated logic in another
Python function, which will then be executed by the interpreter.

Use this as a function that takes keyword arguments only. The argument names must correspond to the output
variables from the with-block. Their respective values can be:

1. strings representing the expected types; i.e. "float32".

2. compile-time bound global or nonlocal variables referring to the expected type. The variables are read at
compile time.

When exiting the with-context, the output variables are converted to the expected nopython types according to
the annotation. This process is the same as passing Python objects into arguments of a nopython function.

Example:

import numpy as np
from numba import njit, objmode, types

def bar(x):
# This code is executed by the interpreter.

return np.asarray(list(reversed(x.tolist())))

# Output type as global variable

(continues on next page)
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out_ty = types.intp[:]

@Gnjit
def foo():
X = np.arange(5)
y = np.zeros_like(x)
with objmode(y="intp[:]', z=out_ty): # annotate return type
# this region is executed by object-mode.
y += bar(x)
zZ =Yy
return y, z

Note: Known limitations:
» with-block cannot use incoming list objects.
 with-block cannot use incoming function objects.

¢ with-block cannot yield, break, return or raise such that the execution will leave the with-block im-
mediately.

¢ with-block cannot contain with statements.

» random number generator states do not synchronize; i.e. nopython-mode and object-mode uses different
RNG states.

Note: When used outside of no-python mode, the context-manager has no effect.

Warning: This feature is experimental. The supported features may change with or without notice.

1.13 Automatic module jitting with jit_module

A common usage pattern is to have an entire module containing user-defined functions that all need to be jitted. One
option to accomplish this is to manually apply the @jit decorator to each function definition. This approach works and
is great in many cases. However, for large modules with many functions, manually jit-wrapping each function defini-
tion can be tedious. For these situations, Numba provides another option, the jit_module function, to automatically
replace functions declared in a module with their jit-wrapped equivalents.

It’s important to note the conditions under which jit_module will not impact a function:

1. Functions which have already been wrapped with a Numba decorator (e.g. jit, vectorize, cfunc, etc.) are
not impacted by jit_module.

2. Functions which are declared outside the module from which jit_module is called are not automatically jit-
wrapped.

3. Function declarations which occur logically after calling jit_module are not impacted.

All other functions in a module will have the @jit decorator automatically applied to them. See the following section
for an example use case.
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Note: This feature is for use by module authors. jit_module should not be called outside the context of a module
containing functions to be jitted.

1.13.1 Example usage

Let’s assume we have a Python module we’ve created, mymodule. py (shown below), which contains several functions.
Some of these functions are defined in mymodule . py while others are imported from other modules. We wish to have
all the functions which are defined in mymodule. py jitted using jit_module.

# mymodule.py
from numba import jit, jit_module

def inc(x):
return x + 1

def add(x, y):
return x + vy

import numpy as np
# Use NumPy's mean function
mean = np.mean

@jit(nogil=True)
def mul(a, b):
return a * b

jit_module (nopython=True, error_model="numpy")

def div(a, b):
return a / b

There are several things to note in the above example:

* Both the inc and add functions will be replaced with their jit-wrapped equivalents with compilation options
nopython=True and error_model="numpy".

* The mean function, because it’s defined outside of mymodule.py in NumPy, will not be modified.
* mul will not be modified because it has been manually decorated with jit.
* div will not be automatically jit-wrapped because it is declared after jit_module is called.

When the above module is imported, we have:

>>> import mymodule

>>> mymodule.inc

CPUDispatcher(<function inc at 0x1032f86a8>)
>>> mymodule.mean

<function mean at 0x1096b8950>
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1.13.2 API

Warning: This feature is experimental. The supported features may change with or without notice.

numba. jit_module (**kwargs)
Automatically jit-wraps functions defined in a Python module

Note that jit_module should only be called at the end of the module to be jitted. In addition, only functions
which are defined in the module jit_module is called from are considered for automatic jit-wrapping. See the
Numba documentation for more information about what can/cannot be jitted.

Parameters
kwargs — Keyword arguments to pass to jit such as nopython or error_model.

1.14 Performance Tips

This is a short guide to features present in Numba that can help with obtaining the best performance from code. Two
examples are used, both are entirely contrived and exist purely for pedagogical reasons to motivate discussion. The first
is the computation of the trigonometric identity cos(x)42 + sin(x)*2, the second is a simple element wise square
root of a vector with reduction over summation. All performance numbers are indicative only and unless otherwise
stated were taken from running on an Intel 17-4790 CPU (4 hardware threads) with an input of np.arange(1l.e7).

Note: A reasonably effective approach to achieving high performance code is to profile the code running with real
data and use that to guide performance tuning. The information presented here is to demonstrate features, not to act as
canonical guidance!

1.14.1 No Python mode vs Object mode

A common pattern is to decorate functions with @jit as this is the most flexible decorator offered by Numba. @jit
essentially encompasses two modes of compilation, first it will try and compile the decorated function in no Python
mode, if this fails it will try again to compile the function using object mode. Whilst the use of looplifting in object
mode can enable some performance increase, getting functions to compile under no python mode is really the key to
good performance. To make it such that only no python mode is used and if compilation fails an exception is raised the
decorators @njit and @jit (nopython=True) can be used (the first is an alias of the second for convenience).

1.14.2 Loops

Whilst NumPy has developed a strong idiom around the use of vector operations, Numba is perfectly happy with loops
too. For users familiar with C or Fortran, writing Python in this style will work fine in Numba (after all, LLVM gets a
lot of use in compiling C lineage languages). For example:

@Gnjit
def ident_np(x):

return np.cos(x) ** 2 + np.sin(x) ** 2
OGnjit

def ident_loops(x):

(continues on next page)
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r = np.empty_like(x)
n = len(x)
for i in range(n):
r[i] = np.cos(x[i]) ** 2 + np.sin(x[i]) ** 2
return r

The above run at almost identical speeds when decorated with @njit, without the decorator the vectorized function is
a couple of orders of magnitude faster.

Function Name | @nijit | Execution time
ident_np No 0.581s
ident_np Yes 0.659s
ident_loops No 25.2s
ident_loops Yes 0.670s

1.14.3 Fastmath

In certain classes of applications strict IEEE 754 compliance is less important. As a result it is possible to relax some
numerical rigour with view of gaining additional performance. The way to achieve this behaviour in Numba is through
the use of the fastmath keyword argument:

@Gnjit(fastmath=False)
def do_sum(A):
acc = 0.
# without fastmath, this loop must accumulate in strict order
for x in A:
acc += np.sqrt(x)
return acc

@njit(fastmath=True)
def do_sum_fast(A):
acc = 0.
# with fastmath, the reduction can be vectorized as floating point
# reassociation is permitted.
for x in A:
acc += np.sqrt(x)
return acc

Function Name | Execution time
do_sum 35.2ms
do_sum_fast 17.8 ms

In some cases you may wish to opt-in to only a subset of possible fast-math optimizations. This can be done by supplying
a set of LLVM fast-math flags to fastmath.:

def add_assoc(x, y):
return (x - y) +y

print(njit(fastmath=False) (add_assoc) (0, np.inf)) # nan
print(njit(fastmath=True) (add_assoc) (0, np.inf)) # 0.0

(continues on next page)
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print(njit(fastmath={'reassoc', 'nsz'})(add_assoc) (0, np.inf)) # 0.0
print(njit(fastmath={'reassoc'}) (add_assoc) (0, np.inf)) # nan
print(njit(fastmath={'nsz'}) (add_assoc) (0, np.inf)) # nan

1.14.4 Parallel=True

If code contains operations that are parallelisable (and supported) Numba can compile a version that will run in parallel
on multiple native threads (no GIL!). This parallelisation is performed automatically and is enabled by simply adding
the parallel keyword argument:

@njit(parallel=True)
def ident_parallel(x):
return np.cos(x) ** 2 + np.sin(x) ** 2

Executions times are as follows:

Function Name Execution time
ident_parallel | 112 ms

The execution speed of this function with parallel=True present is approximately 5x that of the NumPy equivalent
and 6x that of standard @njit.

Numba parallel execution also has support for explicit parallel loop declaration similar to that in OpenMP. To indicate
that a loop should be executed in parallel the numba . prange function should be used, this function behaves like Python
range and if parallel=True is not set it acts simply as an alias of range. Loops induced with prange can be used
for embarrassingly parallel computation and also reductions.

Revisiting the reduce over sum example, assuming it is safe for the sum to be accumulated out of order, the loop in n
can be parallelised through the use of prange. Further, the fastmath=True keyword argument can be added without
concern in this case as the assumption that out of order execution is valid has already been made through the use of
parallel=True (as each thread computes a partial sum).

@njit(parallel=True)
def do_sum_parallel(A):
# each thread can accumulate its own partial sum, and then a cross
# thread reduction is performed to obtain the result to return
n = len(A)
acc = 0.
for i in prange(n):
acc += np.sqrt(A[i])
return acc

@Gnjit(parallel=True, fastmath=True)
def do_sum_parallel_fast(A):
n = len(A)
acc = 0.
for i in prange(n):
acc += np.sqrt(A[i])
return acc

Execution times are as follows, fastmath again improves performance.
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Function Name Execution time
do_sum_parallel 9.81 ms
do_sum_parallel_fast | 5.37 ms

1.14.5 Intel SVML

Intel provides a short vector math library (SVML) that contains a large number of optimised transcendental functions
available for use as compiler intrinsics. If the intel-cmplr-1ib-rt package is present in the environment (or the
SVML libraries are simply locatable!) then Numba automatically configures the LLVM back end to use the SVML
intrinsic functions where ever possible. SVML provides both high and low accuracy versions of each intrinsic and the
version that is used is determined through the use of the fastmath keyword. The default is to use high accuracy which
is accurate to within 1 ULP, however if fastmath is set to True then the lower accuracy versions of the intrinsics are
used (answers to within 4 ULP).

First obtain SVML, using conda for example:

conda install intel-cmplr-lib-rt

Note: The SVML library was previously provided through the icc_rt conda package. The icc_rt package has
since become a meta-package and as of version 2021.1.1 it has intel-cmplr-1ib-rt amongst other packages as a
dependency. Installing the recommended intel-cmplr-1ib-rt package directly results in fewer installed packages.

Rerunning the identity function example ident_np from above with various combinations of options to @njit and
with/without SVML yields the following performance results (input size np.arange(1.e8)). For reference, with just
NumPy the function executed in 5. 84s:

@njit kwargs SVML | Execution time
None No 5.95s

None Yes 2.26s
fastmath=True No 5.97s
fastmath=True Yes 1.8s
parallel=True No 1.36s
parallel=True Yes 0.624s
parallel=True, fastmath=True | No 1.32s
parallel=True, fastmath=True | Yes 0.576s

It is evident that SVML significantly increases the performance of this function. The impact of fastmath in the case
of SVML not being present is zero, this is expected as there is nothing in the original function that would benefit from
relaxing numerical strictness.
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1.14.6 Linear algebra

Numba supports most of numpy.linalg in no Python mode. The internal implementation relies on a LAPACK and
BLAS library to do the numerical work and it obtains the bindings for the necessary functions from SciPy. Therefore,
to achieve good performance in numpy.linalg functions with Numba it is necessary to use a SciPy built against a
well optimised LAPACK/BLAS library. In the case of the Anaconda distribution SciPy is built against Intel’s MKL
which is highly optimised and as a result Numba makes use of this performance.

1.15 The Threading Layers

This section is about the Numba threading layer, this is the library that is used internally to perform the parallel execution
that occurs through the use of the parallel targets for CPUs, namely:

* The use of the parallel=True kwarg in @jit and @njit.

* The use of the target="parallel' kwarg in @vectorize and @guvectorize.

Note: If a code base does not use the threading or multiprocessing modules (or any other sort of parallelism)
the defaults for the threading layer that ship with Numba will work well, no further action is required!

1.15.1 Which threading layers are available?

There are three threading layers available and they are named as follows:
* tbb - A threading layer backed by Intel TBB.
* omp - A threading layer backed by OpenMP.
* workqueue -A simple built-in work-sharing task scheduler.

In practice, the only threading layer guaranteed to be present is workqueue. The omp layer requires the presence of a
suitable OpenMP runtime library. The tbb layer requires the presence of Intel’s TBB libraries, these can be obtained
via the conda command:

$ conda install tbb

If you installed Numba with pip, TBB can be enabled by running:

$ pip install tbb

Due to compatibility issues with manylinux1 and other portability concerns, the OpenMP threading layer is disabled
in the Numba binary wheels on PyPI.

Note: The default manner in which Numba searches for and loads a threading layer is tolerant of missing libraries,
incompatible runtimes etc.
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1.15.2 Setting the threading layer

The threading layer is set via the environment variable NUMBA_THREADING_LAYER or through assignment to numba.
config.THREADING_LAYER. If the programmatic approach to setting the threading layer is used it must occur logically
before any Numba based compilation for a parallel target has occurred. There are two approaches to choosing a thread-
ing layer, the first is by selecting a threading layer that is safe under various forms of parallel execution, the second is
through explicit selection via the threading layer name (e.g. tbb).

1.15.3 Setting the threading layer selection priority

By default the threading layers are searched in the order of 'tbb', 'omp', then 'workqueue'. To change this
search order whilst maintaining the selection of a threading layer based on availability, the environment variable
NUMBA_THREADING_LAYER_PRIORITY can be used.

Note that it can also be set via numba.config.THREADING_LAYER_PRIORITY. Similar to numba.config.
THREADING_LAYER, it must occur logically before any Numba based compilation for a parallel target has occurred.

For example, to instruct Numba to choose omp first if available, then tbb and so on, set the environment vari-
able as NUMBA_THREADING_LAYER_PRIORITY="omp tbb workqueue". Or programmatically, numba.config.
THREADING_LAYER_PRIORITY = ["omp", "tbb", "workqueue"].

Selecting a threading layer for safe parallel execution
Parallel execution is fundamentally derived from core Python libraries in four forms (the first three also apply to code
using parallel execution via other means!):

¢ threads from the threading module.

* spawn ing processes from the multiprocessing module via spawn (default on Windows, only available in
Python 3.4+ on Unix)

e fork ing processes from the multiprocessing module via fork (default on Unix).

e fork ing processes from the multiprocessing module through the use of a forkserver (only available in
Python 3 on Unix). Essentially a new process is spawned and then forks are made from this new process on
request.

Any library in use with these forms of parallelism must exhibit safe behaviour under the given paradigm. As a result,
the threading layer selection methods are designed to provide a way to choose a threading layer library that is safe for
a given paradigm in an easy, cross platform and environment tolerant manner. The options that can be supplied to the
setting mechanisms are as follows:

» default provides no specific safety guarantee and is the default.

 safe is both fork and thread safe, this requires the tbb package (Intel TBB libraries) to be installed.
» forksafe provides a fork safe library.

* threadsafe provides a thread safe library.

To discover the threading layer that was selected, the function numba . threading_layer () may be called after parallel
execution. For example, on a Linux machine with no TBB installed:

from numba import config, njit, threading_layer
import numpy as np

# set the threading layer before any parallel target compilation
config.THREADING_LAYER = 'threadsafe'

(continues on next page)
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@njit(parallel=True)
def foo(a, b):
return a + b

X = np.arange(10.)
y = x.copy(Q)

# this will force the compilation of the function, select a threading layer
# and then execute in parallel
foo(x, y)

# demonstrate the threading layer chosen
print("Threading layer chosen: " % threading_layer())

which produces:

Threading layer chosen: omp

and this makes sense as GNU OpenMP, as present on Linux, is thread safe.

Selecting a named threading layer

Advanced users may wish to select a specific threading layer for their use case, this is done by directly supplying the
threading layer name to the setting mechanisms. The options and requirements are as follows:

Thread- | Plat- Requirements

ing Layer | form

Name

tbb All The tbb package ($ conda install tbb)

omp Linux GNU OpenMP libraries (very likely this will already exist)
Win- MS OpenMP libraries (very likely this will already exist)
dows Either the intel-openmp package or the 11vm-openmp package (conda install the
0OSX package as named).

workqueue All None

Should the threading layer not load correctly Numba will detect this and provide a hint about how to resolve the prob-
lem. It should also be noted that the Numba diagnostic command numba -s has a section __Threading Layer
Information__ that reports on the availability of threading layers in the current environment.

1.15.4 Extra notes

The threading layers have fairly complex interactions with CPython internals and system level libraries, some additional
things to note:

* The installation of Intel’s TBB libraries vastly widens the options available in the threading layer selection pro-
cess.

* On Linux, the omp threading layer is not fork safe due to the GNU OpenMP runtime library (1ibgomp) not being
fork safe. If a fork occurs in a program that is using the omp threading layer, a detection mechanism is present
that will try and gracefully terminate the forked child and print an error message to STDERR.
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* On systems with the fork(2) system call available, if the TBB backed threading layer is in use and a fork call
is made from a thread other than the thread that launched TBB (typically the main thread) then this results in
undefined behaviour and a warning will be displayed on STDERR. As spawn is essentially fork followed by exec
it is safe to spawn from a non-main thread, but as this cannot be differentiated from just a fork call the warning
message will still be displayed.

* On OSX, the intel-openmp package is required to enable the OpenMP based threading layer.

1.15.5 Setting the Number of Threads

The number of threads used by numba is based on the number of CPU cores available (see numba.config.
NUMBA_DEFAULT_NUM_THREADS), but it can be overridden with the NUMBA_NUM_THREADS environment variable.

The total number of threads that numba launches is in the variable numba. config. NUMBA_NUM_THREADS.

For some use cases, it may be desirable to set the number of threads to a lower value, so that numba can be used with
higher level parallelism.

The number of threads can be set dynamically at runtime using numba.set_num_threads(). Note that
set_num_threads () only allows setting the number of threads to a smaller value than NUMBA_NUM_THREADS. Numba
always launches numba. config. NUMBA_NUM_THREADS threads, but set_num_threads () causes it to mask out un-
used threads so they aren’t used in computations.

The current number of threads used by numba can be accessed with numba. get_num_threads(). Both functions
work inside of a jitted function.

Example of Limiting the Number of Threads

In this example, suppose the machine we are running on has 8 cores (so numba. config. NUMBA_NUM_THREADS would
be 8). Suppose we want to run some code with @njit (parallel=True), but we also want to run our code concurrently
in 4 different processes. With the default number of threads, each Python process would run 8 threads, for a total in
4*8 = 32 threads, which is oversubscription for our 8 cores. We should rather limit each process to 2 threads, so that
the total will be 4*2 = §, which matches our number of physical cores.

There are two ways to do this. One is to set the NUMBA_NUM_THREADS environment variable to 2.

$ NUMBA_NUM_THREADS=2 python ourcode.py

However, there are two downsides to this approach:

1. NUMBA_NUM_THREADS must be set before Numba is imported, and ideally before Python is launched. As soon
as Numba is imported the environment variable is read and that number of threads is locked in as the number of
threads Numba launches.

2. If we want to later increase the number of threads used by the process, we cannot. NUMBA_NUM_THREADS sets the
maximum number of threads that are launched for a process. Calling set_num_threads () with a value greater
than numba. config. NUMBA_NUM_THREADS results in an error.

The advantage of this approach is that we can do it from outside of the process without changing the code.

Another approach is to use the numba. set_num_threads () function in our code

from numba import njit, set_num_threads

@Gnjit(parallel=True)
def func(Q:

(continues on next page)
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set_num_threads(2)
func(

If we call set_num_threads(2) before executing our parallel code, it has the same effect as calling the process
with NUMBA_NUM_THREADS=2, in that the parallel code will only execute on 2 threads. However, we can later call
set_num_threads(8) to increase the number of threads back to the default size. And we do not have to worry about
setting it before Numba gets imported. It only needs to be called before the parallel function is run.

1.15.6 Getting a Thread ID

In some cases it may be beneficial to have access to a unique identifier for the current thread that is executing a parallel
region in Numba. For that purpose, Numba provides the numba.get_thread_id() function. This function is the
corollary of OpenMP’s function omp_get_thread_num and returns an integer between 0 (inclusive) and the number
of configured threads as described above (exclusive).

API Reference

numba . config.NUMBA_NUM_THREADS
The total (maximum) number of threads launched by numba.

Defaults to numba.config.NUMBA_DEFAULT_NUM_THREADS, but can be overridden with the
NUMBA_NUM_THREADS environment variable.

numba.config.NUMBA_DEFAULT_NUM_THREADS

The number of usable CPU cores on the system (as determined by len(os.sched_getaffinity(0)), if sup-
ported by the OS, or multiprocessing.cpu_count() if not). This is the default value for numba. config.
NUMBA_NUM_THREADS unless the NUMBA_NUM_THREADS environment variable is set.

numba.set_num_threads(n)
Set the number of threads to use for parallel execution.

By default, all numba.config. NUMBA_NUM_THREADS threads are used.

This functionality works by masking out threads that are not used. Therefore, the number of threads n must be
less than or equal to NUMBA_NUM_THREADS, the total number of threads that are launched. See its documentation
for more details.

This function can be used inside of a jitted function.
Parameters
n: The number of threads. Must be between 1 and NUMBA_NUM_THREADS.
See also:

get_num_threads, numba. config. NUMBA_NUM_THREADS
numba.config.NUMBA_DEFAULT_NUM_THREADS, NUMBA_NUM_THREADS

numba.get_num_threads()

Get the number of threads used for parallel execution.
By default (if set_num_threads () is never called), all numba . config. NUMBA_NUM_THREADS threads are used.

This number is less than or equal to the total number of threads that are launched, numba.config.
NUMBA_NUM_THREADS.
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This function can be used inside of a jitted function.
Returns
The number of threads.
See also:

set_num_threads, numba. config. NUMBA_NUM_THREADS
numba.config. NUMBA_DEFAULT_NUM_THREADS, NUMBA_NUM_THREADS

numba.get_thread_id()
Returns a unique ID for each thread in the range O (inclusive) to get_num_threads () (exclusive).

1.16 Command line interface

Numba is a Python package, usually you import numba from Python and use the Python application programming
interface (API). However, Numba also ships with a command line interface (CLI), i.e. a tool numba that is installed
when you install Numba.

Currently, the only purpose of the CLI is to allow you to quickly show some information about your system and instal-
lation, or to quickly get some debugging information for a Python script using Numba.

1.16.1 Usage

To use the Numba CLI from the terminal, use numba followed by the options and arguments like --help or -s, as
explained below.

Sometimes it can happen that you get a “command not found” error when you type numba, because your PATH isn’t
configured properly. In that case you can use the equivalent command python -m numba. If that still gives “command
not found”, try to import numba as suggested here: Dependency List.

The two versions numba and python -m numba are the same. The first is shorter to type, but if you get a “command not
found” error because your PATH doesn’t contain the location where numba is installed, having the python -m numba
variant is useful.

To use the Numba CLI from IPython or Jupyter, use !numba, i.e. prefix the command with an exclamation mark. This
is a general IPython/Jupyter feature to execute shell commands, it is not available in the regular python terminal.

1.16.2 Help

To see all available options, use numba --help:

$ numba --help

usage: numba [-h] [--annotate] [--dump-llvm] [--dump-optimized]
[--dump-assembly] [--annotate-html ANNOTATE_HTML] [-s]
[--sys-json SYS_JSON]
[filename]

positional arguments:
filename Python source filename

optional arguments:

(continues on next page)
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-h, --help show this help message and exit
--annotate Annotate source

--dump-11lvm Print generated 1llvm assembly
--dump-optimized Dump the optimized llvm assembly
--dump-assembly Dump the LLVM generated assembly

--annotate-html ANNOTATE_HTML

Output source annotation as html
-s, --sysinfo Output system information for bug reporting
--sys-json SYS_JSON Saves the system info dict as a json file

1.16.3 System information

The numba -s (or the equivalent numba --sysinfo) command prints a lot of information about your system and your
Numba installation and relevant dependencies.

Remember: you can use !'numba -s with an exclamation mark to see this information from IPython or Jupyter.

Example output:

$ numba -s

System info:

__Time Stamp__

Report started (local time) : 2022-11-30 15:40:42.368114
UTC start time : 2022-11-30 15:40:42.368129
Running time (s) : 2.563586

__Hardware Information__

Machine : x86_64

CPU Name : ivybridge

CPU Count i3

Number of accessible CPUs 1 ?

List of accessible CPUs cores 1 ?

CFS Restrictions (CPUs worth of runtime) : None

CPU Features : 64bit aes avx cmov cx16 cx8 fl6c¢c

fsgsbase fxsr mmx pclmul popcnt
rdrnd sahf sse sse2 sse3 sse4.1
sse4.2 ssse3 xsave

Memory Total (MB) : 14336
Memory Available (MB) : 11540

__0S Information__

Platform Name : mac0S-10.16-x86_64-1386-64bit

Platform Release : 20.6.0

0S Name : Darwin

0S Version : Darwin Kernel Version 20.6.0: Thu Sep 29.
-»20:15:11 PDT 2022; root:xnu-7195.141.42~1/RELEASE_X86_64

0S Specific Version : 10.16 x86_64

Libc Version 1 ?

(continues on next page)
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__Python Information__
Python Compiler

Python Implementation
Python Version

Python Locale

__Numba Toolchain Versions__
Numba Version
llvmlite Version

__LLVM Information__
LLVM Version

__CUDA Information__

CUDA Device Initialized

CUDA Driver Version

CUDA Runtime Version

CUDA NVIDIA Bindings Available
CUDA NVIDIA Bindings In Use
CUDA Detect Output:

None

CUDA Libraries Test Output:
None

__NumPy Information__
NumPy Version
NumPy Supported SIMD features

- 'SSE41', 'POPCNT', 'SSE42', 'AVX', 'F16C')

NumPy Supported SIMD dispatch

—'AVX', 'F1e6C', 'FMA3', 'AVX2', 'AVX512F',
—"AVX512_CLX', "AVX512_CNL', 'AVX512_ICL")

NumPy Supported SIMD baseline
NumPy AVX512_SKX support detected

__SVML Information__

SVML State, config.USING_SVML
SVML Library Loaded

llvmlite Using SVML Patched LLVM
SVML Operational

__Threading Layer Information__

TBB Threading Layer Available
+-->TBB imported successfully.
OpenMP Threading Layer Available
+-->Vendor: Intel

Workqueue Threading Layer Available
+-->Workqueue imported successfully.

__Numba Environment Variable Information__
None found.

: Clang 14.0.6
: CPython

3.10.8

: en_US.UTF-8

: O+untagged.gb9leec710
: 0.40.0dev0+43.97783803

11.1.0

: False

NN N N

1.23.4
('MMX', 'SSE', 'SSE2', 'SSE3', 'SSSE3',

('SSSE3', 'SSE41', 'POPCNT', 'SSE42',

'AVX512CD', 'AVX512_KNL', 'AVX512_SKX',

('SSE', 'SSE2', 'SSE3")

: False

: False
: False
. True
: False
. True

. True

: True

(continues on next page)
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__Conda Information__

Conda Build : not installed
Conda Env 1 4.12.0

Conda Platform . 0sx-64

Conda Python Version : 3.9.12.final.®
Conda Root Writable : True

__Installed Packages__
(output truncated due to length)

1.16.4 Debugging

As shown in the help output above, the numba command includes options that can help you to debug Numba compiled
code.

To try it out, create an example script called myscript.py:

import numba
@Gnumba. jit
def f(x):

return 2 * x

£(42)

and then execute one of the following commands:

numba myscript.py --annotate

numba myscript.py --annotate-html myscript.html
numba myscript.py --dump-1llvm

numba myscript.py --dump-optimized

numba myscript.py --dump-assembly

A A A A

1.17 Troubleshooting and tips

1.17.1 What to compile

The general recommendation is that you should only try to compile the critical paths in your code. If you have a piece of
performance-critical computational code amongst some higher-level code, you may factor out the performance-critical
code in a separate function and compile the separate function with Numba. Letting Numba focus on that small piece
of performance-critical code has several advantages:

* it reduces the risk of hitting unsupported features;
* it reduces the compilation times;

« it allows you to evolve the higher-level code which is outside of the compiled function much easier.
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1.17.2 My code doesn’t compile

There can be various reasons why Numba cannot compile your code, and raises an error instead. One common reason
is that your code relies on an unsupported Python feature, especially in nopython mode. Please see the list of Supported
Python features. If you find something that is listed there and still fails compiling, please report a bug.

When Numba tries to compile your code it first tries to work out the types of all the variables in use, this is so it can
generate a type specific implementation of your code that can be compiled down to machine code. A common reason
for Numba failing to compile (especially in nopython mode) is a type inference failure, essentially Numba cannot work
out what the type of all the variables in your code should be.

For example, let’s consider this trivial function:

@jit(nopython=True)
def f(x, y):
return x +y

If you call it with two numbers, Numba is able to infer the types properly:

>>> £(1, 2)
3

If however you call it with a tuple and a number, Numba is unable to say what the result of adding a tuple and number
is, and therefore compilation errors out:

>>> £(1, (2,))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<path>/numba/numba/dispatcher.py", line 339, in _compile_for_args
reraise(type(e), e, None)

File "<path>/numba/numba/six.py", line 658, in reraise
raise value.with_traceback(th)

numba.errors.TypingError: Failed at nopython (nopython frontend)

Invalid use of + with parameters (int64, tuple(int64 x 1))

Known signatures:

* (int64, int64) -> intb64

* (int64, uint64) -> int64

* (uint64, int64) -> int64

* (uint64, uint64) -> uint64

* (float32, float32) -> float32

* (float64, float64) -> floatb64

* (complex64, complex64) -> complex64

* (complex128, complex128) -> complex128

* (uintl16,) -> uint64

* (uint8,) -> uint64

* (uint64,) -> uint64

* (uint32,) -> uint64

* (intl16,) -> int64

* (int64,) -> int64

* (int8,) -> int64

* (int32,) -> int64

* (float32,) -> float32

* (float64,) -> float64

* (complex64,) -> complex64

* (complex128,) -> complex128

(continues on next page)
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* parameterized
[1] During: typing of intrinsic-call at <stdin> (3)

File "<stdin>", line 3:

The error message helps you find out what went wrong: “Invalid use of + with parameters (int64, tuple(int64 x 1))” is
to be interpreted as “Numba encountered an addition of variables typed as integer and 1-tuple of integer, respectively,
and doesn’t know about any such operation”.

Note that if you allow object mode:

@jit
def g(x, y):
return x + vy

compilation will succeed and the compiled function will raise at runtime as Python would do:

>>> g(1, (2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'tuple'

1.17.3 My code has a type unification problem

Another common reason for Numba not being able to compile your code is that it cannot statically determine the return
type of a function. The most likely cause of this is the return type depending on a value that is available only at runtime.
Again, this is most often problematic when using nopython mode. The concept of type unification is simply trying to
find a type in which two variables could safely be represented. For example a 64 bit float and a 64 bit complex number
could both be represented in a 128 bit complex number.

As an example of type unification failure, this function has a return type that is determined at runtime based on the
value of x:

In [1]: from numba import jit

In [2]: @jit(nopython=True)
: def f(x):
if x > 10:
return (1,)
else:
return 1

In [3]: £(10)

Trying to execute this function, errors out as follows:

TypingError: Failed at nopython (nopython frontend)

Can't unify return type from the following types: tuple(int64 x 1), int64
Return of: IR name '$8.2', type '(int64 x 1)', location:

File "<ipython-input-2-5leflcc64bea>", line 4:

def f(x):

(continues on next page)
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<source elided>
if x > 10:
return (1,)
A
Return of: IR name '$12.2', type 'int64', location:
File "<ipython-input-2-5leflcc64bea>", line 6:
def f(x):
<source elided>
else:
return 1

The error message “Can’t unify return type from the following types: tuple(int64 x 1), int64” should be read as “Numba
cannot find a type that can safely represent a 1-tuple of integer and an integer”.

1.17.4 My code has an untyped list problem

As noted previously the first part of Numba compiling your code involves working out what the types of all the variables
are. In the case of lists, a list must contain items that are of the same type or can be empty if the type can be inferred
from some later operation. What is not possible is to have a list which is defined as empty and has no inferable type
(i.e. an untyped list).

For example, this is using a list of a known type:

from numba import jit
@jit(nopython=True)
def £(O:
return [1, 2, 3] # this list is defined on construction with “int" type

This is using an empty list, but the type can be inferred:

from numba import jit
@jit(nopython=True)
def f(x):
tmp = [] # defined empty
for i in range(x):
tmp.append(i) # list type can be inferred from the type of 'i°
return tmp

This is using an empty list and the type cannot be inferred:

from numba import jit
@jit(nopython=True)
def f(x):
tmp = [] # defined empty
return (tmp, x) # ERROR: the type of “tmp" is unknown

Whilst slightly contrived, if you need an empty list and the type cannot be inferred but you know what type you want
the list to be, this “trick” can be used to instruct the typing mechanism:

from numba import jit
import numpy as np
@jit(nopython=True)

(continues on next page)
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def f(x):
# define empty list, but instruct that the type is np.complex64
tmp = [np.complex64(x) for x in range(0)]
return (tmp, x) # the type of “tmp  is known, but it is still empty

1.17.5 The compiled code is too slow

The most common reason for slowness of a compiled JIT function is that compiling in nopython mode has failed and
the Numba compiler has fallen back to object mode. object mode currently provides little to no speedup compared
to regular Python interpretation, and its main point is to allow an internal optimization known as loop-lifting: this
optimization will allow to compile inner loops in nopython mode regardless of what code surrounds those inner loops.

To find out if type inference succeeded on your function, you can use the inspect_types () method on the compiled
function.

For example, let’s take the following function:

@jit

def f(a, b):
s = a + float(b)
return s

When called with numbers, this function should be fast as Numba is able to convert number types to floating-point
numbers. Let’s see:

>>> £(1, 2)

3.0

>>> f.inspect_types()
f (int64, int64)

# --- LINE 7 ---
@jit
# --- LINE 8 ---
def f(a, b):
# --- LINE 9 ---
# label O
# a.l =a :: int64
# del a
# b.1 =Db :: int64
# del b
# $0.2 = global(float: <class 'float'>) :: Function(<class 'float'>)
# $0.4 = call $0.2(b.1, ) :: (int64,) -> float64
# del b.1
# del $0.2
# $0.5 =a.1 + $0.4 :: floato4
# del a.l
# del $0.4
# s = $0.5 :: float64

(continues on next page)
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# del $0.5

s = a + float(b)

# --- LINE 10 ---

# $0.7 = cast(value=s) :: floatb64
# del s

#

return $0.7

return s

Without trying to understand too much of the Numba intermediate representation, it is still visible that all variables and
temporary values have had their types inferred properly: for example a has the type int64, $0.5 has the type float64,
etc.

However, if b is passed as a string, compilation will fall back on object mode as the float() constructor with a string is
currently not supported by Numba:

>>> £(1, "2")

3.0

>>> f.inspect_types()

[... snip annotations for other signatures, see above ...]

f (int64, str)

# --- LINE 7 ---
@jit
# --- LINE 8 ---
def f(a, b):
# --- LINE 9 ---
# label O
# a.l =a :: pyobject
# del a
# b.1 =Db :: pyobject
# del b
# $0.2 = global(float: <class 'float'>) :: pyobject
# $0.4 = call $0.2(b.1, ) :: pyobject
# del b.1
# del $0.2
# $0.5 =a.1 + $0.4 :: pyobject
# del a.l
# del $0.4
# s = 3$0.5 :: pyobject
# del $0.5

s = a + float(b)

H*

-—— LINE 10 ---
$0.7 = cast(value=s) :: pyobject

HH

(continues on next page)
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# del s
# return $0.7

return s

Here we see that all variables end up typed as pyobject. This means that the function was compiled in object mode
and values are passed around as generic Python objects, without Numba trying to look into them to reason about their
raw values. This is a situation you want to avoid when caring about the speed of your code.

If a function fails to compile in nopython mode warnings will be emitted with explanation as to why compilation
failed. For example with the £() function above (slightly edited for documentation purposes):

>>> £(1, 2)
3.0
>>> £(1, "2")
example.py:7: NumbaWarning:
Compilation is falling back to object mode WITH looplifting enabled because Function "f".
—.failed type inference due to: Invalid use of Function(<class 'float'>) with.
—argument(s) of type(s): (unicode_type)
* parameterized
In definition O:
TypeError: float() only support for numbers
raised from <path>/numba/typing/builtins.py:880
In definition 1:
TypeError: float() only support for numbers
raised from <path>/numba/typing/builtins.py:880
This error is usually caused by passing an argument of a type that is unsupported by the.
—named function.
[1] During: resolving callee type: Function(<class 'float'>)
[2] During: typing of call at example.py (9)

File "example.py", line 9:
def f(a, b):
s = a + float(b)

A

<path>/numba/compiler.py:722: NumbaWarning: Function "f" was compiled in object mode.
—without forceobj=True.

File "example.py", line 8:
@jit
def f(a, b):

A

3.0
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1.17.6 Disabling JIT compilation

In order to debug code, it is possible to disable JIT compilation, which makes the jit decorator (and the njit decorator)
act as if they perform no operation, and the invocation of decorated functions calls the original Python function instead
of a compiled version. This can be toggled by setting the NUMBA_DISABLE_JIT environment variable to 1.

When this mode is enabled, the vectorize and guvectorize decorators will still result in compilation of a ufunc, as
there is no straightforward pure Python implementation of these functions.

1.17.7 Debugging JIT compiled code with GDB

Setting the debug keyword argument in the jit decorator (e.g. @jit(debug=True)) enables the emission of debug
info in the jitted code. To debug, GDB version 7.0 or above is required. Currently, the following debug info is available:

* Function name will be shown in the backtrace along with type information and values (if available).

* Source location (filename and line number) is available. For example, users can set a break point by the absolute
filename and line number; e.g. break /path/to/myfile.py:6.

* Arguments to the current function can be show with info args
* Local variables in the current function can be shown with info locals.
* The type of variables can be shown with whatis myvar.
¢ The value of variables can be shown with print myvar or display myvar.
— Simple numeric types, i.e. int, float and double, are shown in their native representation.
— Other types are shown as a structure based on Numba’s memory model representation of the type.

Further, the Numba gdb printing extension can be loaded into gdb (if the gdb has Python support) to permit the
printing of variables as they would be in native Python. The extension does this by reinterpreting Numba’s memory
model representations as Python types. Information about the gdb installation that Numba is using, including the path
to load the gdb printing extension, can be displayed by using the numba -g command. For best results ensure that the
Python that gdb is using has a NumPy module accessible. An example output of the gdb information follows:

$ numba -g

GDB info:

Binary location : <some path>/gdb

Print extension location : <some python path>/numba/misc/gdb_
—print_extension.py

Python version : 3.8

NumPy version : 1.20.0

Numba printing extension supported : True

To load the Numba gdb printing extension, execute the following from the gdb prompt:

source <some python path>/numba/misc/gdb_print_extension.py

Known issues:

 Stepping depends heavily on optimization level. At full optimization (equivalent to O3), most of the variables
are optimized out. It is often beneficial to use the jit option _dbg_optnone=True or the environment variable
NUMBA_OPT to adjust the optimization level and the jit option _dbg_extend_lifetimes=True (which is on by
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default if debug=True) or NUMBA_EXTEND_VARIABLE_LIFETIMES to extend the lifetime of variables to the end
of their scope so as to get a debugging experience closer to the semantics of Python execution.

* Memory consumption increases significantly with debug info enabled. The compiler emits extra information
(DWARF) along with the instructions. The emitted object code can be 2x bigger with debug info.

Internal details:

 Since Python semantics allow variables to bind to value of different types, Numba internally creates multiple
versions of the variable for each type. So for code like:

x =1 # type int
x =2.3 # type float
x = (1, 2, 3) # type 3-tuple of int

Each assignments will store to a different variable name. In the debugger, the variables will be x, x$1 and x$2.
(In the Numba IR, they are x, x.1 and x.2.)

* When debug is enabled, inlining of functions at LLVM IR level is disabled.

JIT options for debug

* debug (bool). Set to True to enable debug info. Defaults to False.

» _dbg_optnone (bool). Set to True to disable all LLVM optimization passes on the function. Defaults to False.
See NUMBA_OPT for a global setting to disable optimization.

e _dbg_extend_lifetimes (bool). Set to True to extend the lifetime of objects such that they more closely
follow the semantics of Python. Automatically set to True when debug=True; otherwise, defaults to False.
Users can explicitly set this option to False to retain the normal execution semantics of compiled code. See
NUMBA_EXTEND_VARIABLE_LIFETIMES for a global option to extend object lifetimes.

Example debug usage

The python source:

from numba import njit

@njit(debug=True)

def foo(a):
b=a+1
c=a%*2.34
d = (a, b, ©
print(a, b, c, d)

r = foo(123)
print(r)

In the terminal:

$ NUMBA_OPT=0 NUMBA_EXTEND_VARIABLE_LIFETIMES=1 gdb -q python
Reading symbols from python...

(gdb) break testl.py:5

No source file named testl.py.

Make breakpoint pending on future shared library load? (y or [n]) y

(continues on next page)
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Breakpoint 1 (testl.py:5) pending.
(gdb) run testl.py
Starting program: <path>/bin/python testl.py

Breakpoint 1, __main__::foo_241[abi:c8tITC_2fWigEeGLSgydRTQUgigKEZ6gEoDvQImaQIA] (long..
—long) (a=123) at testl.py:5

5 b=a+1
(gdb) info args

a = 123

(gdb) n

6 c=a?®*2.34
(gdb) info locals

b = 124

c=0

d={f0 =0, f1 =0, £f2 = 0}
(gdb) n

7 d =(a, b, ©
(gdb) info locals

b = 124

c = 287.81999999999999

d={f0 =0, f1 =0, f2 = 0}

(gdb) whatis b

type = int64

(gdb) whatis d

type = Tuple(int64, int64, float64) ({i64, i64, double})

(gdb) n

8 print(a, b, c, d)
(gdb) print b

$1 = 124

(gdb) print d

$2 = {f0 = 123, f1 = 124, £f2 = 287.81999999999999}

(gdb) bt

#0 __main__::foo_241[abi:c8t]TC_2fWgEeGLSgydRTQUgigKEZ6gEoDvQImaQIA] (long long)..
—(a=123) at testl.py:8

#1 0x00007ffff06439fa in cpython::__main__::foo_241[abi:c8tJTC_
. 2fWgEeGLSgydRTQUgigKEZ6gEoDvQImaQIA] (long long) ()

Another example follows that makes use of the Numba gdb printing extension mentioned above, note the change in the
print format once the extension is loaded with source :

The Python source:

from numba import njit
import numpy as np

@njit(debug=True)
def foo(n):
X = np.arange(n)
y = (x[0], x[-11)

return x, y

foo(4)
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In the terminal:

$ NUMBA_OPT=0 NUMBA_EXTEND_VARIABLE_LIFETIMES=1 gdb -q python
Reading symbols from python...

(gdb) set breakpoint pending on

(gdb) break test2.py:8

No source file named test2.py.

Breakpoint 1 (test2.py:8) pending.

(gdb) run test2.py

Starting program: <path>/bin/python test2.py

Breakpoint 1, __main__::foo_241[abi:c8t]JTC_2fWgEeGLSgydRTQUgigKEZ6gEoDvQImaQIA] (long..
—long) (n=4) at test2.py:8

8 return x, y

(gdb) print x

$1 = {meminfo = 0x55555688f470 "\001", parent = 0x0, nitems = 4, itemsize = 8, data =.
—0x55555688f4a0, shape = {4}, strides = {8}}

(gdb) print y

$2 = {0, 3}

(gdb) source numba/misc/gdb_print_extension.py

(gdb) print x

$3 =

[0 12 3]

(gdb) print y

$4 = (0, 3)

Globally override debug setting

It is possible to enable debug for the full application by setting environment variable NUMBA_DEBUGINFO=1. This sets
the default value of the debug option in jit. Debug can be turned off on individual functions by setting debug=False.

Beware that enabling debug info significantly increases the memory consumption for each compiled function. For large
application, this may cause out-of-memory error.

1.17.8 Using Numba’s direct gdb bindings in nopython mode

Numba (version 0.42.0 and later) has some additional functions relating to gdb support for CPUs that make it easier
to debug programs. All the gdb related functions described in the following work in the same manner irrespective
of whether they are called from the standard CPython interpreter or code compiled in either nopython mode or object
mode.

Note: This feature is experimental!

Warning: This feature does unexpected things if used from Jupyter or alongside the pdb module. It’s behaviour
is harmless, just hard to predict!
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Set up

Numba’s gdb related functions make use of a gdb binary, the location and name of this binary can be configured via
the NUMBA_GDB_BINARY environment variable if desired.

Note: Numba’s gdb support requires the ability for gdb to attach to another process. On some systems (notably Ubuntu
Linux) default security restrictions placed on ptrace prevent this from being possible. This restriction is enforced at
the system level by the Linux security module Yama. Documentation for this module and the security implications
of making changes to its behaviour can be found in the Linux Kernel documentation. The Ubuntu Linux security
documentation discusses how to adjust the behaviour of Yama on with regards to ptrace_scope so as to permit the
required behaviour.

Basic gdb support

Warning: Calling numba.gdb() and/or numba.gdb_init () more than once in the same program is not advis-
able, unexpected things may happen. If multiple breakpoints are desired within a program, launch gdb once via
numba.gdb() or numba.gdb_init () and then use numba.gdb_breakpoint () to register additional breakpoint
locations.

The most simple function for adding gdb support is numba . gdb (), which, at the call location, will:
* launch gdb and attach it to the running process.

* create a breakpoint at the site of the numba.gdb() function call, the attached gdb will pause execution here
awaiting user input.

use of this functionality is best motivated by example, continuing with the example used above:

from numba import njit, gdb

@njit(debug=True)
def foo(a):
b=a+1
gdb() # instruct Numba to attach gdb at this location and pause execution
c=a* 2.34
d = (a, b, ©
print(a, b, c, d)

r= foo(123)
print(r)

In the terminal (. . . on a line by itself indicates output that is not presented for brevity):

$ NUMBA_OPT=0 NUMBA_EXTEND_VARIABLE_LIFETIMES=1 python demo_gdb.py

Breakpoint 1, 0x00007fb75238d830 in numba_gdb_breakpoint () from numba/_helperlib.
—cpython-39-x86_64-1linux-gnu.so

(gdb) s

Single stepping until exit from function numba_gdb_breakpoint,

which has no line number information.

0x00007fb75233elct in numba::misc::gdb_hook: :hook_gdb::_3clocals_3e::impl_

(continues on next page)
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-»242[abi:c8tITIeFCjyCbUFRqqOAK_2f6h0phxApMogi jRBAA_3d] (StarArgTuple) ()

(gdb) s

Single stepping until exit from function _ZN5numba4misc8gdb_hook8hook_gdbl2_3clocals_
—3e8impl_242B44c8t]TIeFCjyCbUFRqqOAK_2£f6h0phxApMogi jRBAA_3dE12StarArgTuple,

which has no line number information.
__main__::foo_241[abi:c8tITC_2fWgEeGLSgydRTQUgiqKEZ6gEoDvQImaQIA] (long long) (a=123) at.
—demo_gdb.py:7

c=a*2.34
(gdb) 1
2
3 Onjit(debug=True)
4 def foo(a):
5 b=a+1
6 gdb() # instruct Numba to attach gdb at this location and pause execution
7 c=a*®*2.34
8 d=(a, b, ©
9 print(a, b, c, d)
10
11 r= foo(123)
(gdb) p a
$1 = 123
(gdb) p b
$2 = 124
(gdb) p c
$3 =0
(gdb) b 9
Breakpoint 2 at 0x7fb73d1£7287: file demo_gdb.py, line 9.
(gdb) ¢
Continuing.

Breakpoint 2, __main__::foo_241[abi:c8t]JTC_2fWgEeGLSgydRTQUgiqKEZ6gEoDvQImaQIA] (long..

—long) (a=123) at demo_gdb.py:9

9 print(a, b, c, d)
(gdb) info locals

b = 124

c = 287.81999999999999

d = {f0 = 123, f1 = 124, f2 = 287.81999999999999}

It can be seen in the above example that execution of the code is paused at the location of the gdb() function call at
end of the numba_gdb_breakpoint function (this is the Numba internal symbol registered as breakpoint with gdb).
Issuing a step twice at this point moves to the stack frame of the compiled Python source. From there, it can be seen
that the variables a and b have been evaluated but c has not, as demonstrated by printing their values, this is precisely
as expected given the location of the gdb () call. Issuing a break on line 9 and then continuing execution leads to the
evaluation of line 7. The variable c is assigned a value as a result of the execution and this can be seen in output of
info locals when the breakpoint is hit.
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Running with gdb enabled

The functionality provided by numba. gdb () (launch and attach gdb to the executing process and pause on a breakpoint)
is also available as two separate functions:

e numba.gdb_init() this function injects code at the call site to launch and attach gdb to the executing process
but does not pause execution.

e numba.gdb_breakpoint() this function injects code at the call site that will call the special
numba_gdb_breakpoint function that is registered as a breakpoint in Numba’s gdb support. This is
demonstrated in the next section.

This functionality enables more complex debugging capabilities. Again, motivated by example, debugging a ‘segfault’
(memory access violation signalling SIGSEGV):

from numba import njit, gdb_init
import numpy as np

# NOTE debug=True switches bounds-checking on, but for the purposes of this
# example it is explicitly turned off so that the out of bounds index is
# not caught!
@njit(debug=True, boundscheck=False)
def foo(a, index):
gdb_init() # instruct Numba to attach gdb at this location, but not to pause.
—execution
b=a+1
c=a*2.34
d = c[index] # access an address that is a) invalid b) out of the page
print(a, b, c, d)

bad_index = int(1e9) # this index is invalid
z = np.arange(10)

r = foo(z, bad_index)

print(r)

In the terminal (... on a line by itself indicates output that is not presented for brevity):

§$ NUMBA_OPT=0 python demo_gdb_segfault.py

Program received signal SIGSEGV, Segmentation fault.

0x00007f5a4cab55eb in __main__::foo_241[abi:c8tITC_

-, 2fligEeGLSgydRTQUgigKEZ6gEoDvQImaQIA] (Array<long long, 1, C, mutable, aligned>, long.
—long) (a=..., index=1000000000) at demo_gdb_segfault.py:12

12 d = c[index] # access an address that is a) invalid b) out of the page
(gdb) p index

$1 = 1000000000

(gdb) p c

$2 = {meminfo = 0x5586cfb95830 "\001", parent = 0x0, nitems = 10, itemsize = 8, data =.
—0x5586cfb95860, shape = {10}, strides = {8}}

(gdb) whatis c

type = array(float64, 1d, ¢ ({i8*, i8%*, i64, i64, double*, [1 x i64], [1 x i64]})
(gdb) p c.nitems

$3 = 10

In the gdb output it can be noted that a SIGSEGV signal was caught, and the line in which the access violation occurred
is printed.
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Continuing the example as a debugging session demonstration, first index can be printed, and it is evidently 1e9.
Printing c shows that it is a structure, so the type needs looking up and it can be seen that it is an array(float64,
1d, ©) type. Given the segfault came from an invalid access it would be informative to check the number of items in
the array and compare that to the index requested. Inspecting the nitems member of the structure ¢ shows 10 items.
It’s therefore clear that the segfault comes from an invalid access of index 1000000000 in an array containing 10 items.

Adding breakpoints to code

The next example demonstrates using multiple breakpoints that are defined through the invocation of the numba.
gdb_breakpoint () function:

from numba import njit, gdb_init, gdb_breakpoint

@njit(debug=True)

def foo(a):
gdb_init() # instruct Numba to attach gdb at this location
b=a+1
gdb_breakpoint() # instruct gdb to break at this location
c=a*2.34
d =(, b, ©

gdb_breakpoint() # and to break again at this location
print(a, b, c, d)

r= foo(123)
print(r)

In the terminal (. . . on a line by itself indicates output that is not presented for brevity):

$ NUMBA_OPT=0 python demo_gdb_breakpoints.py

Breakpoint 1, 0x00007fb65bb4c830 in numba_gdb_breakpoint () from numba/_helperlib.
—cpython-39-x86_64-1linux-gnu.so

(gdb) step

Single stepping until exit from function numba_gdb_breakpoint,

which has no line number information.
__main__::foo_241[abi:c8tITC_2fWgEeGLSgydRTQUgiqKEZ6gEoDvQImaQIA] (long long) (a=123) at.
—demo_gdb_breakpoints.py:8

8 c=a*2.34

(gdb) 1

3 Gnjit(debug=True)

4 def foo(a):

5 gdb_init() # instruct Numba to attach gdb at this location
6 b=a+1

7 gdb_breakpoint() # instruct gdb to break at this location
8 c=a*®*2.34

9 d=(a, b, ©

10 gdb_breakpoint() # and to break again at this location

11 print(a, b, c, d)

12

(gdb) p b

$1 = 124

(gdb) p ¢

$2 =0

(continues on next page)
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(gdb) ¢
Continuing.

Breakpoint 1, 0x00007fb65bb4c830 in numba_gdb_breakpoint ()
from numba/_helperlib.cpython-39-x86_64-1inux-gnu.so

(gdb) step

11 print(a, b, c, d)

(gdb) p c

$3 = 287.81999999999999

From the gdb output it can be seen that execution paused at line 8 as a breakpoint was hit, and after a continue was
issued, it broke again at line 11 where the next breakpoint was hit.

Debugging in parallel regions

The following example is quite involved, it executes with gdb instrumentation from the outset as per the example above,
but it also uses threads and makes use of the breakpoint functionality. Further, the last iteration of the parallel section
calls the function work, which is actually just a binding to glibc’s free(3) in this case, but could equally be some
involved function that is presenting a segfault for unknown reasons.

from numba import njit, prange, gdb_init, gdb_breakpoint
import ctypes

def get_free():
lib = ctypes.cdll.LoadLibrary('libc.so0.6")
free_binding = lib.free
free_binding.argtypes = [ctypes.c_void_p,]
free_binding.restype = None
return free_binding

work = get_free()

@njit(debug=True, parallel=True)
def foo():
gdb_init() # instruct Numba to attach gdb at this location, but not to pause.
—execution
counter = 0
n=9
for i in prange(n):
if i >3 and i < 8: # iterations 4, 5, 6, 7 will break here
gdb_breakpoint ()

if i == 8: # last iteration segfaults
work (9xBADADD)

counter += 1
return counter

r = foo()
print(r)

In the terminal (... on a line by itself indicates output that is not presented for brevity), note the setting of
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NUMBA_NUM_THREADS to 4 to ensure that there are 4 threads running in the parallel section:

$ NUMBA_NUM_THREADS=4 NUMBA_OPT=0 python demo_gdb_threads.py
Attaching to PID: 21462

Attaching to process 21462

[New LWP 21467]

[New LWP 21468]

[New LWP 21469]

[New LWP 21470]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib64/libthread_db.so.1".
0x00007£59ec31756d in nanosleep () at ../sysdeps/unix/syscall-template.S:81

81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
Breakpoint 1 at 0x7£f59d631e8f0: file numba/_helperlib.c, line 1090.
Continuing.

[Switching to Thread 0x7£59d1fd1700 (LWP 21470)]

Thread 5 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }
(gdb) info threads
Id Target Id Frame
1 Thread 0x7£f59eca2f740 (LWP 21462) "python" pthread_cond_wait@@GLIBC_2.3.2 ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
2 Thread 0x7£59d37d4700 (LWP 21467) "python" pthread_cond_wait@@GLIBC_2.3.2 ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
3 Thread 0x7£59d2fd3700 (LWP 21468) "python" pthread_cond_wait@@GLIBC_2.3.2 ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
4 Thread 0x7£59d27d2700 (LWP 21469) "python" numba_gdb_breakpoint () at numba/_
—helperlib.c:1090
* 5 Thread 0x7£59d1£fd1700 (LWP 21470) "python" numba_gdb_breakpoint () at numba/_
—helperlib.c:1090
(gdb) thread apply 2-5 info locals

Thread 2 (Thread 0x7£59d37d4700 (LWP 21467)):
No locals.

Thread 3 (Thread 0x7£59d2£fd3700 (LWP 21468)):
No locals.

Thread 4 (Thread 0x7£59d27d2700 (LWP 21469)):
No locals.

Thread 5 (Thread 0x7£59d1£fd1700 (LWP 21470)):

sched$35 = '\000' <repeats 55 times>

counter__arr = '\000' <repeats 16 times>, "\001\000\000\000\000\000\000\000\b\00O\000\
—000\000\000\000\000\370B]\"hU\0OO\000\001", '\000' <repeats 14 times>

counter = 0

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d27d2700 (LWP 21469)]

Thread 4 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090

(continues on next page)
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1090 }

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d1£d1700 (LWP 21470)]

Thread 5 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d27d2700 (LWP 21469)]

Thread 4 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) continue

Continuing.

Thread 5 "python" received signal SIGSEGV, Segmentation fault.

[Switching to Thread 0x7£59d1fd1700 (LWP 21470)]

__GI___libc_free (mem=0xbadadd) at malloc.c:2935

2935 if (chunk_is_mmapped(p)) /% release mmapped memory. */
(gdb) bt

#9 __GI___libc_free (mem=0xbadadd) at malloc.c:2935

#1 0x00007£59d37ded84 in $3cdynamic$3e::__numba_parfor_gufunc__0x7ffff80a6lae3e3l
—$244 (Array<unsigned long long, 1, C, mutable, aligned>, Array<long long, 1, C, mutable,
< aligned>) () at <string>:24

#2 0x00007£59d17ce326 in __gufunc__._ZN13$3cdynamic$3e45__numba_parfor_gufunc__
—0x7ffff80a6lae3e31$244E5ArraylyLil1E1C7mutable7alignedES5ArrayIxLilE1C7mutable7alignedE..
-0

#3 0x00007£59d37d7320 in thread_worker ()

from <path>/numba/numba/npyufunc/workqueue.cpython-37m-x86_64-1linux-gnu.so

#4 0x00007£f59ec626e25 in start_thread (arg=0x7£59d1f£d1700) at pthread_create.c:308

#5 0x00007f59ec350bad in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:113

In the output it can be seen that there are 4 threads launched and that they all break at the breakpoint, further that
Thread 5 receives a signal SIGSEGV and that back tracing shows that it came from __GI___libc_free with the
invalid address in mem, as expected.

Using the gdb command language

Both the numba.gdb() and numba.gdb_init() functions accept unlimited string arguments which will be passed
directly to gdb as command line arguments when it initializes, this makes it easy to set breakpoints on other functions
and perform repeated debugging tasks without having to manually type them every time. For example, this code runs
with gdb attached and sets a breakpoint on _dgesdd (say for example the arguments passed to the LAPACK’s double
precision divide and conqueror SVD function need debugging).

from numba import njit, gdb
import numpy as np

@njit(debug=True)
def foo(a):
# instruct Numba to attach gdb at this location and on launch, switch

(continues on next page)
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# breakpoint pending on , and then set a breakpoint on the function
# _dgesdd, continue execution, and once the breakpoint is hit, backtrace

gdb('-ex', 'set breakpoint pending on',
'-ex', 'b dgesdd_',
'_eX"'C"
l_exl,lbtl)

b=a+ 10

u, s, vh = np.linalg.svd(b)
return s # just return singular values

z = np.arange(70.) .reshape(10, 7)
r foo(z)
print(r)

In the terminal (. .. on a line by itself indicates output that is not presented for brevity), note that no interaction is
required to break and backtrace:

$ NUMBA_OPT=0 python demo_gdb_args.py
Attaching to PID: 22300
GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7

Attaching to process 22300
Reading symbols from <py_env>/bin/python3.7...done.
0x00007£652305a550 in __nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81

81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
Breakpoint 1 at 0x7f650d0618f0: file numba/_helperlib.c, line 1090.
Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

Breakpoint 2 at 0x7£f65102322e® (2 locations)

Continuing.

Breakpoint 2, 0x00007f65182be5f0 in mkl_lapack.dgesdd_ ()
from <py_env>/lib/python3.7/site-packages/numpy/core/../../../../1libmkl_rt.so
#0 0x00007£65182be5f0 in mkl_lapack.dgesdd_ ()
from <py_env>/1ib/python3.7/site-packages/numpy/core/../../../../libmkl_rt.so
#1 0x00007£650d065b71 in numba_raw_rgesdd (kind=kind@entry=100 'd', jobz=<optimized out>
—, jobz@entry=65 'A', m=m@entry=10,

n=n@entry=7, a=al@entry=0x561c6fbb20cO®, lda=lda@entry=10, s=0x561lc6facf3al,..
—u=0x561c6fb680e®, 1ldu=10, vt=0x561c6£fd375cO,

ldvt=7, work=0x7fff4c926c30, lwork=-1, iwork=0x7fff4c926c40, info=0x7fff4c926c20) at..
—numba/_lapack.c:1277
#2 0x00007£650d06768f in numba_ez_rgesdd (ldvt=7, vt=0x561c6fd375c0®, 1ldu=10,.
—~u=0x561c6fb680e®d, s=0x561c6facf3a®, 1lda=10,

a=0x561c6fbb20cO®, n=7, m=10, jobz=65 'A', kind=<optimized out>) at numba/_lapack.
—c:1307
#3 numba_ez_gesdd (kind=<optimized out>, jobz=<optimized out>, m=10, n=7,.
—a=0x561c6fbb20c®, 1da=10, s=0x56lc6facf3ald,

u=0x561c6fb680e®, 1ldu=10, vt=0x561c6£fd375c®, ldvt=7) at numba/_lapack.c:1477
#4 0x00007f650a3147a3 in numba::targets::1linalg::svd_impl::$3clocals$3e::svd_impl
—.$243(Array<double, 2, C, mutable, aligned>, omitted$28default$3di1$29) (O

(continues on next page)
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#5 0x00007£650a1c0489 in __main__::foo$241(Array<double, 2, C, mutable, aligned>) () at.
—demo_gdb_args.py:15

#6 0x00007f650al1c2110 in cpython::__main__::foo$241(Array<double, 2, C, mutable,.
—aligned>) QO

#7 0x00007£650cd®96a4 in call_cfunc O

from <path>/numba/numba/_dispatcher.cpython-37m-x86_64-1linux-gnu.so

How does the gdb binding work?

For advanced users and debuggers of Numba applications it’s important to know some of the internal implementation
details of the outlined gdb bindings. The numba.gdb() and numba.gdb_init() functions work by injecting the
following into the function’s LLVM IR:

* At the call site of the function first inject a call to getpid(3) to get the PID of the executing process and store
this for use later, then inject a fork(3) call:

— In the parent:

% Inject a call sleep(3) (hence the pause whilst gdb loads).

% Inject a call to the numba_gdb_breakpoint function (only numba.gdb() does this).
— In the child:

# Injectacallto execl (3) with the arguments numba.config.GDB_BINARY, the attach command and
the PID recorded earlier. Numba has a special gdb command file that contains instructions to break
on the symbol numba_gdb_breakpoint and then £inish, this is to make sure that the program stops
on the breakpoint but the frame it stops in is the compiled Python frame (or one step away from,
depending on optimisation). This command file is also added to the arguments and finally and any
user specified arguments are added.

At the call site of a numba.gdb_breakpoint () a call is injected to the special numba_gdb_breakpoint symbol,
which is already registered and instrumented as a place to break and finish immediately.

As a result of this, a e.g. numba.gdb() call will cause a fork in the program, the parent will sleep whilst the
child launches gdb and attaches it to the parent and tells the parent to continue. The launched gdb has the
numba_gdb_breakpoint symbol registered as a breakpoint and when the parent continues and stops sleeping it will
immediately call numba_gdb_breakpoint on which the child will break. Additional numba.gdb_breakpoint ()
calls create calls to the registered breakpoint hence the program will also break at these locations.

1.17.9 Debugging CUDA Python code

Using the simulator

CUDA Python code can be run in the Python interpreter using the CUDA Simulator, allowing it to be debugged
with the Python debugger or with print statements. To enable the CUDA simulator, set the environment variable
NUMBA_ENABLE_CUDASIM to 1. For more information on the CUDA Simulator, see the CUDA Simulator documenta-
tion.
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Debug Info

By setting the debug argument to cuda. jit to True (@cuda. jit(debug=True)), Numba will emit source location
in the compiled CUDA code. Unlike the CPU target, only filename and line information are available, but no variable
type information is emitted. The information is sufficient to debug memory error with cuda-memcheck.

For example, given the following cuda python code:

import numpy as np
from numba import cuda

@cuda. jit(debug=True)
def foo(arr):
arr[cuda.threadIdx.x] = 1

arr = np.arange(30)
foo[1l, 32](arr) # more threads than array elements

We can use cuda-memcheck to find the memory error:

$ cuda-memcheck python chk_cuda_debug.py

========= (CUDA-MEMCHECK

========= Invalid __global__ write of size 8

========= at 0x00000148 in /home/user/chk_cuda_debug.py:6:cudapy::__main__::foo
- $241(Array<__int64, int=1, C, mutable, aligned>)

by thread (31,0,0) in block (0,0,0)

Address 0x500a600f8 is out of bounds

========= Invalid __global__ write of size 8

========= at 0x00000148 in /home/user/chk_cuda_debug.py:6:cudapy::__main__::foo
—$241(Array<__int64, int=1, C, mutable, aligned>)

by thread (30,0,0) in block (0,0,0)

Address 0x500a600f0 is out of bounds

1.18 Frequently Asked Questions

1.18.1 Installation

Numba could not be imported

If you are seeing an exception on importing Numba with an error message that starts with:

ImportError: Numba could not be imported.

here are some common issues and things to try to fix it.
1. Your installation has more than one version of Numba a given environment.
Common ways this occurs include:

¢ Installing Numba with conda and then installing again with pip.
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¢ Installing Numba with pip and then updating to a new version with pip (pip re-installations don’t seem to
always clean up very well).

To fix this the best approach is to create an entirely new environment and install a single version of Numba in
that environment using a package manager of your choice.

. Your installation has Numba for Python version X but you are running with Python version Y.

This occurs due to a variety of Python environment mix-up/mismatch problems. The most common mismatch
comes from installing Numba into the site-packages/environment of one version of Python by using a base or
system installation of Python that is a different version, this typically happens through the use of the “wrong”
pip binary. This will obviously cause problems as the C-Extensions on which Numba relies are bound to specific
Python versions. A way to check if this likely the problem is to see if the path to the python binary at:

python -c 'import sys; print(sys.executable)’

matches the path to your installation tool and/or matches the reported installation location and if the Python
versions match up across all of these. Note that Python version X.Y.A is compatible with X.Y.B.

To fix this the best approach is to create an entirely new environment and ensure that the installation tool used to
install Numba is the one from that environment/the Python versions at install and run time match.

. Your core system libraries are too old.

This is a somewhat rare occurrence, but there are occasions when a very old (typically out of support) version
of Linux is in use it doesn’t have a glibc library with sufficiently new versioned symbols for Numba’s shared
libraries to resolve against. The fix for this is to update your OS system libraries/update your OS.

. You are using an IDE e.g. Spyder.

There are some unknown issues in relation to installing Numba via IDEs, but it would appear that these are likely
variations of 1. or 2. with the same suggested fixes. Also, try installation from outside of the IDE with the
command line.

If you have an installation problem which is not one of the above problems, please do ask on numba.discourse.group
and if possible include the path where Numba is installed and also the output of:

python -c '"import sys; print(sys.executable)'

1.18.2 Programming

Can | pass a function as an argument to a jitted function?

As of Numba 0.39, you can, so long as the function argument has also been JIT-compiled:

@jit(nopython=True)
def f(g, x):

return g(x) + g(-x)

result = f(jitted_g_function, 1)

However, dispatching with arguments that are functions has extra overhead. If this matters for your application, you
can also use a factory function to capture the function argument in a closure:

def make_f(g):

# Note: a new f() is created each time make_f() is called!

@jit(nopython=True)

(continues on next page)
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def f(x):
return g(x) + g(-x)
return f

f = make_f(jitted_g_function)
result = £(1)

Improving the dispatch performance of functions in Numba is an ongoing task.

Numba doesn’t seem to care when | modify a global variable

Numba considers global variables as compile-time constants. If you want your jitted function to update itself when
you have modified a global variable’s value, one solution is to recompile it using the recompile () method. This is a
relatively slow operation, though, so you may instead decide to rearchitect your code and turn the global variable into
a function argument.

Can | debug a jitted function?

Calling into pdb or other such high-level facilities is currently not supported from Numba-compiled code. However,
you can temporarily disable compilation by setting the NUMBA_DISABLE_JIT environment variable.

How can | create a Fortran-ordered array?

Numba currently doesn’t support the order argument to most Numpy functions such as numpy . empty () (because of
limitations in the type inference algorithm). You can work around this issue by creating a C-ordered array and then
transposing it. For example:

a = np.empty((3, 5), order="F")
b = np.zeros(some_shape, order='F')

can be rewritten as:

a = np.empty((5, 3)).T
b = np.zeros(some_shape[::-1]).T

How can | increase integer width?

By default, Numba will generally use machine integer width for integer variables. On a 32-bit machine, you may
sometimes need the magnitude of 64-bit integers instead. You can simply initialize relevant variables as np . int64 (for
example np.int64(0) instead of 0). It will propagate to all computations involving those variables.
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How can | tell if parallel=True worked?

If the parallel=True transformations failed for a function decorated as such, a warning will be displayed. See also
Diagnostics for information about parallel diagnostics.

1.18.3 Performance

Does Numba inline functions?

Numba gives enough information to LLVM so that functions short enough can be inlined. This only works in nopython
mode.

Does Numba vectorize array computations (SIMD)?

Numba doesn’t implement such optimizations by itself, but it lets LLVM apply them.

Why has my loop not vectorized?

Numba enables the loop-vectorize optimization in LLVM by default. While it is a powerful optimization, not all
loops are applicable. Sometimes, loop-vectorization may fail due to subtle details like memory access pattern. To see
additional diagnostic information from LLVM, add the following lines:

import llvmlite.binding as 1llvm
llvm.set_option('', '--debug-only=loop-vectorize')

This tells LLVM to print debug information from the loop-vectorize pass to stderr. Each function entry looks like:

Note: Using --debug-only requires LLVM to be build with assertions enabled to work. Use the build of llvmlite in
the Numba channel which is linked against LLVM with assertions enabled.

LV: Checking a loop in "<low-level symbol name>" from <function name>
LV: Loop hints: force=? width=0 unroll=0

LV: Vectorization is possible but not beneficial.
LV: Interleaving is not beneficial.

Each function entry is separated by an empty line. The reason for rejecting the vectorization is usually at the end of the
entry. In the example above, LLVM rejected the vectorization because doing so will not speedup the loop. In this case,
it can be due to memory access pattern. For instance, the array being looped over may not be in contiguous layout.

When memory access pattern is non-trivial such that it cannot determine the access memory region, LLVM may reject
with the following message:

LV: Can't vectorize due to memory conflicts

Another common reason is:

LV: Not vectorizing: loop did not meet vectorization requirements.

In this case, vectorization is rejected because the vectorized code may behave differently. This is a case to try turning
on fastmath=True to allow fastmath instructions.
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Why are the typed containers slower when used from the interpreter?

The Numba typed containers found in numba. typed e.g. numba. typed.List store their data in an efficient form for
access from JIT compiled code. When these containers are used from the CPython interpreter, the data involved has
to be converted from/to the container format. This process is relatively costly and as a result impacts performance. In
JIT compiled code no such penalty exists and so operations on the containers are much quicker and often faster than
the pure Python equivalent.

Does Numba automatically parallelize code?

It can, in some cases:
e Ufuncs and gufuncs with the target="parallel" option will run on multiple threads.

* The parallel=True option to @jit will attempt to optimize array operations and run them in parallel. It also
adds support for prange () to explicitly parallelize a loop.

You can also manually run computations on multiple threads yourself and use the nogil=True option (see releasing
the GIL). Numba can also target parallel execution on GPU architectures using its CUDA and HSA backends.

Can Numba speed up short-running functions?

Not significantly. New users sometimes expect to JIT-compile such functions:

def f(x, y):
return x +y

and get a significant speedup over the Python interpreter. But there isn’t much Numba can improve here: most of the
time is probably spent in CPython’s function call mechanism, rather than the function itself. As a rule of thumb, if a
function takes less than 10 us to execute: leave it.

The exception is that you should JIT-compile that function if it is called from another jitted function.

There is a delay when JIT-compiling a complicated function, how can | improve it?

Try to pass cache=True to the @jit decorator. It will keep the compiled version on disk for later use.

A more radical alternative is ahead-of-time compilation.

1.18.4 GPU Programming

How do | work around the CUDA initialized before forking error?

On Linux, the multiprocessing module in the Python standard library defaults to using the fork method for creating
new processes. Because of the way process forking duplicates state between the parent and child processes, CUDA
will not work correctly in the child process if the CUDA runtime was initialized prior to the fork. Numba detects this
and raises a CudaDriverError with the message CUDA initialized before forking.

One approach to avoid this error is to make all calls to numba. cuda functions inside the child processes or after the
process pool is created. However, this is not always possible, as you might want to query the number of available
GPUs before starting the process pool. In Python 3, you can change the process start method, as described in the
multiprocessing documentation. Switching from fork to spawn or forkserver will avoid the CUDA initialization
issue, although the child processes will not inherit any global variables from their parent.
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1.18.5 Integration with other utilities

Can | “freeze” an application which uses Numba?

If you’re using Pylnstaller or a similar utility to freeze an application, you may encounter issues with llvmlite. llvmlite
needs a non-Python DLL for its working, but it won’t be automatically detected by freezing utilities. You have to
inform the freezing utility of the DLL’s location: it will usually be named 11vmlite/binding/libllvmlite.so or
1llvmlite/binding/11lvmlite.dll, depending on your system.

| get errors when running a script twice under Spyder

When you run a script in a console under Spyder, Spyder first tries to reload existing modules. This doesn’t work well
with Numba, and can produce errors like TypeError: No matching definition for argument type(s).

There is a fix in the Spyder preferences. Open the “Preferences” window, select “Console”, then “Advanced Settings”,
click the “Set UMR excluded modules” button, and add numba inside the text box that pops up.

To see the setting take effect, be sure to restart the IPython console or kernel.

Why does Numba complain about the current locale?

If you get an error message such as the following:

RuntimeError: Failed at nopython (nopython mode backend)
LLVM will produce incorrect floating-point code in the current locale

it means you have hit a LLVM bug which causes incorrect handling of floating-point constants. This is known to happen
with certain third-party libraries such as the Qt backend to matplotlib.

To work around the bug, you need to force back the locale to its default value, for example:

import locale
locale.setlocale(locale.LC_NUMERIC, 'C')

How do | get Numba development builds?

Pre-release versions of Numba can be installed with conda:

$ conda install -c numba/label/dev numba

1.18.6 Miscellaneous

Where does the project name “Numba” come from?

“Numba” is a combination of “NumPy” and “Mamba”. Mambas are some of the fastest snakes in the world, and Numba
makes your Python code fast.

98 Chapter 1. User Manual




Numba Documentation, Release 0.58.0rc2+0.9g660bf2ce.dirty

How do | reference/cite/acknowledge Numba in other work?

For academic use, the best option is to cite our ACM Proceedings: Numba: a LLVM-based Python JIT compiler. You
can also find the sources on github, including a pre-print pdf, in case you don’t have access to the ACM site but would
like to read the paper.

Other related papers

A paper describing Parallel Accelerator technology, that is activated when the parallel=True jit option is used, can
be found here.

How do | write a minimal working reproducer for a problem with Numba?

A minimal working reproducer for Numba should include:
1. The source code of the function(s) that reproduce the problem.

2. Some example data and a demonstration of calling the reproducing code with that data. As Numba compiles
based on type information, unless your problem is numerical, it’s fine to just provide dummy data of the right
type, e.g. use numpy . ones of the correct dtype/size/shape for arrays.

3. Ideally put 1. and 2. into a script with all the correct imports. Make sure your script actually executes and
reproduces the problem before submitting it! The target is to make it so that the script can just be copied directly
from the issue tracker and run by someone else such that they can see the same problem as you are having.

Having made a reproducer, now remove every part of the code that does not contribute directly to reproducing the
problem to create a “minimal” reproducer. This means removing imports that aren’t used, removing variables that
aren’t used or have no effect, removing lines of code which have no effect, reducing the complexity of expressions, and
shrinking input data to the minimal amount required to trigger the problem.

Doing the above really helps out the Numba issue triage process and will enable a faster response to your problem!

Suggested further reading on writing minimal working reproducers.

1.19 Examples
1.19.1 Mandelbrot

Listing 28: from test_mandelbrot of numba/tests/
doc_examples/test_examples.py

from timeit import default_timer as timer
try:
from matplotlib.pylab import imshow, show
have_mpl = True
except ImportError:
have_mpl = False
import numpy as np
from numba import jit

@jit(nopython=True)
def mandel(x, y, max_iters):

(continues on next page)
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e

Given the real and imaginary parts of a complex number,
determine if it is a candidate for membership in the Mandelbrot
set given a fixed number of iterations.

e

i=20
= complex(x,y)
z = 0.0j

for i in range(max_iters):
z=2z%z+C¢C
if (z.real * z.real + z.imag * z.imag) >= 4:
return i

return 255

@jit(nopython=True)

def create_fractal(min_x, max_x, min_y, max_y, image, iters):
height = image.shape[0]
width = image.shape[1]

pixel_size_x = (max_x - min_x) / width
pixel_size_y = (max_y - min_y) / height
for x in range(width):
real = min_x + x * pixel_size_x
for y in range(height):
imag = min_y + y * pixel_size_y
color = mandel(real, imag, iters)
imagel[y, x] = color

return image

image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8)
s = timer()
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20)
e = timer()
print(e - s)
if have_mpl:
imshow(image)
show()

1.19.2 Moving average

Listing 29: from test_moving_average of numba/tests/

doc_examples/test_examples.py

import numpy as np
from numba import guvectorize

@guvectorize(['void(float64[:], intp[:], float64[:]1)'],

(continues on next page)

100

Chapter 1. User Manual




Numba Documentation, Release 0.58.0rc2+0.9g660bf2ce.dirty

(continued from previous page)

'm), 0->m)")

def move_mean(a, window_arr, out):
window_width = window_arr[0]

asum = 0.0
count = 0
for i in range(window_width):

for

asum += a[i]

count += 1

out[i] = asum / count

i in range(window_width, len(a)):
asum += a[i] - a[i - window_width]
out[i] = asum / count

arr = np.arange(20, dtype=np.float64).reshape(2, 10)
print(arr)
print (move_mean(arr, 3))

1.19.3

Multi-threading

The code below showcases the potential performance improvement when using the nogil feature. For example, on a
4-core machine, the following results were printed:

numpy (1 thread) 145 ms
numba (1 thread) 128 ms
numba (4 threads) 35 ms

Note: If preferred it’s possible to use the standard concurrent.futures module rather than spawn threads and dispatch
tasks by hand.

Listing 30: from test_no_gil of numba/tests/doc_examples/

test_examples.py

import math
import threading
from timeit import repeat

import numpy as np
from numba import jit

nthreads =

size =

4
1®:‘::‘:6

def func_np(a, b):

o

Control function using Numpy.

e

return np.exp(2.1 * a + 3.2 * b)

@jit('void(double[:], double[:], double[:])', nopython=True,

(continues on next page)
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nogil=True)
def inner_func_nb(result, a, b):

o

Function under test.
for i in range(len(result)):
result[i] = math.exp(2.1 * a[i] + 3.2 * b[i])

def timefunc(correct, s, func, *args, **kwargs):

e

Benchmark *func® and print out its runtime.
print(s.ljust(20), end=" ")
# Make sure the function is compiled before the benchmark is
# started
res = func(*args, **kwargs)
if correct is not None:

assert np.allclose(res, correct), (res, correct)
# time it
print('{:>5.0f} ms'.format(min(repeat(

lambda: func(*args, **kwargs), number=5, repeat=2)) * 1000))
return res

def make_singlethread(inner_func):

e

Run the given function inside a single thread.
def func(*args):
length = len(args[0])
result = np.empty(length, dtype=np.float64)
inner_func(result, *args)
return result
return func

def make_multithread(inner_func, numthreads):
Run the given function inside *numthreads* threads, splitting
its arguments into equal-sized chunks.
def func_mt(*args):
length = len(args[0])
result = np.empty(length, dtype=np.float64)
args = (result,) + args
chunklen = (length + numthreads - 1) // numthreads
# Create argument tuples for each input chunk
chunks = [[arg[i * chunklen:(i + 1) * chunklen] for arg in
args] for i in range(numthreads)]
# Spawn one thread per chunk
threads = [threading.Thread(target=inner_func, args=chunk)
for chunk in chunks]
for thread in threads:
thread.start()

(continues on next page)
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for thread in threads:
thread. join(Q)
return result
return func_mt

func_nb = make_singlethread(inner_func_nb)
func_nb_mt = make_multithread(inner_func_nb, nthreads)

a
b

np.random.rand(size)
np.random.rand(size)

correct = timefunc(None, "numpy (1 thread)", func_np, a, b)
timefunc(correct, "numba (1 thread)", func_nb, a, b)
timefunc(correct, "numba ( threads)" % nthreads, func_nb_mt, a, b)

1.20 Talks and Tutorials

Note: This is a selection of talks and tutorials that have been given by members of the Numba team as well as Numba
users. If you know of a Numba-related talk that should be included on this list, please open an issue.

1.20.1 Talks on Numba

* AnacondaCON 2018 - Accelerating Scientific Workloads with Numba - Siu Kwan Lam (Video)
¢ DIANA-HEP Meeting, 23 April 2018 - Overview of Numba - Stan Seibert

1.20.2 Talks on Applications of Numba
* GPU Technology Conference 2016 - Accelerating a Spectral Algorithm for Plasma Physics with Python/Numba
on GPU - Manuel Kirchen & Rémi Lehe (Slides)
* DIANA-HEP Meeting, 23 April 2018 - Use of Numba in XENONNT - Chris Tunnell
e DIANA-HEP Meeting, 23 April 2018 - Extending Numba for HEP data types - Jim Pivarski

e STAC Summit, Nov 1 2017 - Scaling High-Performance Python with Minimal Effort - Ehsan Totoni (Video,
Slides)

e SciPy 2018 - UMAP: Uniform Manifold Approximation and Projection for Dimensional Reduction - Leland
Mclnnes (Video, Github)

» PyData Berlin 2018 - Extending Pandas using Apache Arrow and Numba - Uwe L. Korn (Video, Blog)

* FOSDEM 2019 - Extending Numba - Joris Geessels (Video, Slides & Examples)

* PyCon India 2019 - Real World Numba: Taking the Path of Least Resistance - Ankit Mahato (Video)

* SciPy 2019 - How to Accelerate an Existing Codebase with Numba - Siu Kwan Lam & Stanley Seibert (Video)
¢ SciPy 2019 - Real World Numba: Creating a Skeleton Analysis Library - Juan Nunez-Iglesias (Video)

* SciPy 2019 - Fast Gradient Boosting Decision Trees with PyGBM and Numba - Nicholas Hug (Video)
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* PyCon Sweden 2020 - Accelerating Scientific Computing using Numba - Ankit Mahato (Video)

1.20.3 Tutorials

* SciPy 2017 - Numba: Tell those C++ Bullies to Get Lost - Gil Forsyth & Lorena Barba (Video, Notebooks)
¢ GPU Technology Conference 2018 - GPU Computing in Python with Numba - Stan Seibert (Notebooks)
» PyData Amsterdam 2019 - Create CUDA kernels from Python using Numba and CuPy - Valentin Haenel (Video)

104 Chapter 1. User Manual


https://www.youtube.com/watch?v=d_21Q0UoWrQ
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://github.com/gforsyth/numba_tutorial_scipy2017
https://github.com/ContinuumIO/gtc2018-numba
https://www.youtube.com/watch?v=CQDsT81GyS8

CHAPTER
TWO

REFERENCE MANUAL

2.1 Types and signatures

2.1.1 Rationale
As an optimizing compiler, Numba needs to decide on the type of each variable to generate efficient machine code.
Python’s standard types are not precise enough for that, so we had to develop our own fine-grained type system.

You will encounter Numba types mainly when trying to inspect the results of Numba’s type inference, for debugging
or educational purposes. However, you need to use types explicitly if compiling code ahead-of-time.

2.1.2 Signatures

A signature specifies the type of a function. Exactly which kind of signature is allowed depends on the context (AOT
or JIT compilation), but signatures always involve some representation of Numba types to specify the concrete types
for the function’s arguments and, if required, the function’s return type.

An example function signature would be the string "£8(i4, i4)" (or the equivalent "float64(int32, int32)")
which specifies a function taking two 32-bit integers and returning a double-precision float.

2.1.3 Basic types
The most basic types can be expressed through simple expressions. The symbols below refer to attributes of the main

numba module (so if you read “boolean”, it means that symbol can be accessed as numba.boolean). Many types are
available both as a canonical name and a shorthand alias, following NumPy’s conventions.

Numbers

The following table contains the elementary numeric types currently defined by Numba and their aliases.
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Type name(s) | Shorthand | Comments

boolean bl represented as a byte

uint8, byte ul 8-bit unsigned byte

uint16 u2 16-bit unsigned integer

uint32 u4 32-bit unsigned integer

uint64 ud 64-bit unsigned integer

int8, char il 8-bit signed byte

intl6 i2 16-bit signed integer

int32 i4 32-bit signed integer

int64 i8 64-bit signed integer

intc - C int-sized integer

uintc - C int-sized unsigned integer

intp - pointer-sized integer

uintp - pointer-sized unsigned integer

ssize_t - C ssize_t

size_t — C size_t

float32 f4 single-precision floating-point number
float64, double | {8 double-precision floating-point number
complex64 c8 single-precision complex number
complex128 cl6 double-precision complex number

Arrays

The easy way to declare Array types is to subscript an elementary type according to the number of dimensions. For
example a 1-dimension single-precision array:

>>> numba.float32[:]
array(float32, 1d, A)

or a 3-dimension array of the same underlying type:

>>> numba.float32[:, :, :]
array(float32, 3d, A)

This syntax defines array types with no particular layout (producing code that accepts both non-contiguous and con-
tiguous arrays), but you can specify a particular contiguity by using the : : 1 index either at the beginning or the end of
the index specification:

>>> numba.float32[::1]
array(float32, 1d, O

>>> numba.float32[:, :, ::1]
array(float32, 3d, O
>>> numba.float32[::1, :, :]

array(float32, 3d, F)

This style of type declaration is supported within Numba compiled-functions, e.g. declaring the type of a ryped.List.:

from numba import njit, types, typed

@Gnjit
def example():
return typed.List.empty_list(types.float64[:, ::1])
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Note that this feature is only supported for simple numerical types. Application to compound types, e.g. record types,
is not supported.

Functions

Warning: The feature of considering functions as first-class type objects is under development.

Functions are often considered as certain transformations of input arguments to output values. Within Numba JIT
compiled functions, the functions can also be considered as objects, that is, functions can be passed around as arguments
or return values, or used as items in sequences, in addition to being callable.

First-class function support is enabled for all Numba JI/7 compiled functions and Numba cfunc compiled functions
except when:

* using a non-CPU compiler,
* the compiled function is a Python generator,
¢ the compiled function has Omitted arguments,
* or the compiled function returns Optional value.
To disable first-class function support, use no_cfunc_wrapper=True decorator option.

For instance, consider an example where the Numba J/7 compiled function applies user-specified functions as a com-
position to an input argument:

>>> @numba.njit
. def composition(funcs, x):

r=x

for f in funcs[::-1]:
r = f(r)

return r

>>> @numba.cfunc("double(double)")
. def a(x):
return x + 1.0

>>> @numba.njit
. def b(x):
return x * x

>>> composition((a, b), 0.5), 0.5 ** 2 + 1

(1.25, 1.25)

>>> composition((b, a, b, b, a), 0.5), b(a(b(b(a(0.5)))))
(36.75390625, 36.75390625)

Here, cfunc compiled functions a and b are considered as first-class function objects because these are passed in to the
Numba JIT compiled function composition as arguments, that is, the composition is JIT compiled independently
from its argument function objects (that are collected in the input argument funcs).

Currently, first-class function objects can be Numba cfunc compiled functions, J/7 compiled functions, and objects
that implement the Wrapper Address Protocol (WAP, see below) with the following restrictions:
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Context JIT compiled | cfunc compiled | WAP objects
Can be used as arguments | yes yes yes
Can be called yes yes yes
Can be used as items yes* yes yes
Can be returned yes yes yes
Namespace scoping yes yes yes
Automatic overload yes no no

* at least one of the items in a sequence of first-class function objects must have a precise type.

Wrapper Address Protocol - WAP

Wrapper Address Protocol provides an API for making any Python object a first-class function for Numba JI/7 compiled
functions. This assumes that the Python object represents a compiled function that can be called via its memory address
(function pointer value) from Numba JIT compiled functions. The so-called WAP objects must define the following
two methods:

__wrapper_address__(self) — int
Return the memory address of a first-class function. This method is used when a Numba J/T compiled function
tries to call the given WAP instance.

signature(self) — numba.typing.Signature
Return the signature of the given first-class function. This method is used when passing in the given WAP

instance to a Numba JI7 compiled function.

In addition, the WAP object may implement the __call__ method. This is necessary when calling WAP objects from
Numba JIT compiled functions in object mode.

As an example, let us call the standard math library function cos within a Numba JI7T compiled function. The memory
address of cos can be established after loading the math library and using the ctypes package:

>>> import numba, ctypes, ctypes.util, math
>>> libm = ctypes.cdll.LoadLibrary(ctypes.util.find_library('m'))
>>> class LibMCos(numba.types.WrapperAddressProtocol):
def __wrapper_address__(self):
return ctypes.cast(libm.cos, ctypes.c_voidp).value
def signature(self):
return numba.float64(numba.float64)

>>> @numba.njit
. def foo(f, x):
return f£(x)

>>> foo(LibMCos(), 0.0)

1.0

>>> foo(LibMCos(), 0.5), math.cos(0.5)
(0.8775825618903728, 0©.8775825618903728)
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Miscellaneous Types

There are some non-numerical types that do not fit into the other categories.

Type name(s) | Comments
pyobject generic Python object
voidptr raw pointer, no operations can be performed on it

2.1.4 Advanced types

For more advanced declarations, you have to explicitly call helper functions or classes provided by Numba.

Warning: The APIs documented here are not guaranteed to be stable. Unless necessary, it is recommended to let
Numbea infer argument types by using the signature-less variant of @jit.

Inference

numba . typeof (value)

Create a Numba type accurately describing the given Python value. ValueError is raised if the value isn’t
supported in nopython mode.

>>> numba.typeof(np.empty(3))
array(float64, 1d, O

>>> numba.typeof((1l, 2.0))
(int64, float64)

>>> numba.typeof([0])
reflected list(int64)

NumPy scalars

Instead of using typeof (), non-trivial scalars such as structured types can also be constructed programmatically.

numba. from_dtype (dtype)
Create a Numba type corresponding to the given NumPy dtype:

>>> struct_dtype = np.dtype([('row', np.float64), ('col', np.float64)])
>>> ty = numba.from_dtype(struct_dtype)

>>> ty

Record([('row', '<£f8'), ('col', '<f8')1)

>>> ty[:, :]

unaligned array(Record([('row', '<£f8'), ('col', '<£f8')]1), 2d, A)

class numba.types.NPDatetime (unit)
Create a Numba type for NumPy datetimes of the given unit. unit should be a string amongst the codes recognized
by NumPy (e.g. Y, M, D, etc.).

class numba.types.NPTimedelta(unir)

Create a Numba type for NumPy timedeltas of the given unit. unit should be a string amongst the codes recog-
nized by NumPy (e.g. Y, I, D, etc.).
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See also:

NumPy datetime units.

Arrays

class numba.types.Array(dtype, ndim, layout)

Create an array type. dtype should be a Numba type. ndim is the number of dimensions of the array (a positive
integer). layout is a string giving the layout of the array: A means any layout, C means C-contiguous and F means
Fortran-contiguous.

Optional types

class numba.optional (¢typ)

Create an optional type based on the underlying Numba type fyp. The optional type will allow any value of either
typ or None.

>>> @jit((optional(intp),))
. def f(x):
return x is not None
>>> £(0)
True

>>> f(None)
False

Type annotations

numba. extending.as_numba_type(py_type)

Create a Numba type corresponding to the given Python type annotation. TypingError is raised if the type
annotation can’t be mapped to a Numba type. This function is meant to be used at statically compile time to
evaluate Python type annotations. For runtime checking of Python objects see typeof above.

For any numba type, as_numba_typ