Numba Documentation

Release
0.55.2+0.9g2298ad618.dirty-py3.7-linux-x86_64.egg

Anaconda

May 25, 2022

FOR ALL USERS

1 User Manual 3
1.1 A~Sminute guide to Numba L 3
1.2 Overview o e e e e e e e 7
1.3 Imstallation o e e e e e 7
1.4 Compiling Python code with @jit. i et e e 13
1.5 Flexible specializations with @generated_jit 16
1.6 Creating NumPy universal functions 17
1.7 Compiling Python classes with @jitclass 23
1.8 Creating C callbacks with @cfunc e 29
1.9 Compiling code ahead of time L 32
1.10 Automatic parallelization with @it e 34
I.11 Usingthe @stencildecorator. ittt 44
1.12 Callback into the Python Interpreter from within JIT’edcode 47
1.13 Automatic module jitting with jit_module 0oL 49
1.14 Performance TipsS« o o o 0 e e e e 51
1.15 The Threading Layers o 0 i i e e e e e e e e e e e 55
1.16 Command lineinterface L e e 60
1.17 Troubleshooting and tips 62
1.18 Frequently Asked Questions L 81
1.19 Examples o o e e e e e 87
1.20 Talksand Tutorials o o e e e 91

2 Reference Manual 93
2.1 Typesand signatures e e 93
2.2 Just-in-Time compilation L L e e e e e e e e e 99
2.3 Ahead-of-Time compilation e e e 106
24 Utilities oL e e e 107
2.5 Environment variables L oL L e e e e e e 107
2.6 Supported Python features 114
2.7 Supported NumPy features e e e e e e e 142
2.8 Deviations from Python Semantics e 159
2.9 Floating-point pitfalls e 160
2.10 Deprecation Notices e e 161

3 Numba for CUDA GPUs 169
3.1 OVEIVIBW . . . o oo e e e e e e e 169
3.2 Writing CUDA Kernels o o e e e 171
3.3 Memory management et e 174
3.4 Writing Device Functions e e e e e e 179
3.5 Supported Python features in CUDA Python 180

3.6 CUDAFastMath e 185
3.7 Supported Atomic Operations v v v v i e e e e e e e e e e e e e e e e e 185
3.8 Cooperative GrOUPS . . v v v v v v v e 187
3.9 Random Number Generation i i e e e e e e e e e 190
3.10 Device managemento e e e 193
3.11 TheDevice List o o e e e 194
3.12 Device UUIDS ot v e e e e e e e e e e e e e 194
313 Exampleso e e e e e e e e e e e e e 194
3.14 Debugging CUDA Python with the the CUDA Simulator 198
3,15 GPUReduction o o o 0 e e e e e e e e e 199
3.16 CUDA Ufuncs and Generalized Ufuncs oo v ittt 200
3.17 Sharing CUDA MEMOTY v v i it e 202
3.18 CUDA Array Interface (Version 3) o o v i i i i et e e e e e e e e e 203
3.19 External Memory Management (EMM) Plugin interface 211
320 CUDABINAIngs i e e 219
3.21 CUDA Frequently Asked Questions e 219
CUDA Python Reference 221
4.1 CUDAHOost APL e 221
42 CUDAKernel API o e 226
43 Memory Management i it e 235
4.4 Libdevice functions e e e e e 238
Extending Numba 277
5.1 High-level extension APL. e 277
5.2 Low-level extension API e 285
5.3 Example: aninterval type oL e e e e e 288
54 Aguidetousing@overload. e 293
5.5 Registering Extensions with Entry Points 00000000 298
Developer Manual 299
6.1 Contributingto Numba e 299
6.2 NumbaRelease Process e 306
6.3 A Map of the Numba Repository o e e e e 308
6.4 Numbaarchitecture L e e 318
6.5 Polymorphic dispatching L 332
6.6 NOtes on generators e e e e e e e e 336
6.7 Noteson NumbaRuntime e 341
6.8 Using the Numba Rewrite Pass for Fun and Optimization 345
6.9 Live Variable Analysis o e e e e e e e e e 350
6.10 Listings o . i e e e e e e e e e e e e e 351
6.11 Notesonstencils L e e e e e e 551
6.12 Customizing the Compiler 553
6.13 NotesonInlining e 557
6.14 Environment Object L e e e e e e e e e e e e 564
6.15 Noteson Hashing. L e e e 565
6.16 NotesonCaching L e e e e 566
6.17 Notes on Numba’s threading implementation 568
6.18 Noteson Literal Types o o o i i e e 571
6.19 Notesontiming LLVM e e e e e e e 574
6.20 Noteson Debugging e e e e e e e 578
6.21 Event APL L 580
6.22 Notes on Target Extensions e 584
6.23 Numba Project Roadmap e 586

7 Numba Enhancement Proposals
Implemented proposals e e e e e e e e e e e e e e
Other proposals o e e e e e e e

7.1
7.2

8 Glossary

9 Release Notes
Version 0.55.2 (25 May, 2022) o o e e e e e e e e
Version 0.55.1 (27 January, 2022) o e e e e e e e e e e e e e
Version 0.55.0 (13 January, 2022) o 0 0 e e e e e e e e
Version 0.54.1 (7 October, 2021) o e e e e e e e e e e e e e e
Version 0.54.0 (19 August, 2021) o o e e
Version 0.53.1 (25 March, 2021) e e e e e e
Version 0.53.0 (11 March, 2021) e e e e e e e
Version 0.52.0 (30 November, 2020) o o v e e e e e e e e e
Version 0.51.2 (September 2, 2020) o o e e e e e
Version 0.51.1 (August 26, 2020) oL e e e e
Version 0.51.0 (August 12,2020) oL e e
Version 0.50.1 (Jun 24, 2020) L e e e e e e e e e e e
Version 0.50.0 (Jun 10, 2020) o e e e e
Version 0.49.1 (May 7,2020) o o i e e e e e e e e e
Version 0.49.0 (Apr 16,2020) o o e e e e e e e e
Version 0.48.0 (Jan 27,2020) e e e e e e e e
Version 0.47.0 (Jan 2, 2020) o . e e e e e e e e

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10
9.11
9.12
9.13
9.14
9.15
9.16
9.17
9.18
9.19
9.20
9.21
9.22
9.23
9.24
9.25
9.26
9.27
9.28
9.29
9.30
9.31
9.32
9.33
9.34
9.35
9.36
9.37
9.38
9.39
9.40
9.41
9.42
9.43
9.44
9.45
9.46
9.47

Version 0.46.0
Version 0.45.1
Version 0.45.0
Version 0.44.1
Version 0.44.0
Version 0.43.1
Version 0.43.0
Version 0.42.1
Version 0.42.0
Version 0.41.0
Version 0.40.1
Version 0.40.0
Version 0.39.0
Version 0.38.1
Version 0.38.0
Version 0.37.0
Version 0.36.2
Version 0.36.1
Version 0.35.0
Version 0.34.0
Version 0.33.0
Version 0.32.0
Version 0.31.0
Version 0.30.1
Version 0.30.0
Version 0.29.0
Version 0.28.1
Version 0.28.0
Version 0.27.0
Version 0.26.0

589
589
607

625

9.48 Version 0.25.0 e e 721
9.49 Version 0.24.0 e e e e 722
9.50 Version 0.23.1 e e e e e e e 723
9.51 Version 0.23.0 L e e e e e 723
9.52 Version 0.22.1 L e e e e e e e 724
9.53 Version 0.22.0 e s 724
9.54 Version 0.21.0 e e 725
9.55 Version 0.20.0 e e e e 726
9.56 Version 0.19.2 e e e e 727
9.57 Version 0.19.1 e e e e e e 727
90.58 Version 0.19.0 e 727
9.59 Version 0.18.2 e e 728
9.60 Version 0.18.1 e e e 729
9.61 Version 0.17.0 e e e 730
9.62 Version 0.16.0 L e e e e e 731
90.63 Version 0.15.1 L e 731
9.64 Version 0.15 L e e 732
9.65 Version 0.14 L e e e e e 733
9.66 Version 0.13.4 e e e e e 734
9.67 Version 0.13.3 L e e e e e 734
9.68 Version 0.13.2 L e e e e e 735
9.69 Version 0.13.1 e e 735
9.70 Version 0.13 L e e e 735
9.71 Version 0.12.2 e e e e e e e e 736
9.72 Version 0.12.1 e e e e e e e 736
9.73 Version 0.12 L e e e e e e e 736
9.74 Version 0.11 L s 737
9.75 Version 0.10 e e 737
9.76 Version 0.9 e e 738
9.77 Version 0.8 e e e e e e 738
9.78 Version 0.7.2 e e e e e e e 738
9.79 Version 0.7.1 e e e e e e e e e e 738
9.80 Version 0.7 e e 738
9.81 Version 0.6.1 e e e 739
9.82 Version 0.6 e e e e e e 739
9.83 Version 0.5 L e e e e 740
9.84 Version 0.4 e e e 740
9.85 Version 0.3.2 L e e 740
9.86 Version 0.3 L e e e e 740
9.87 Version 0.2 e e e e e e e e 741
Python Module Index 743
Index 745

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

This is the Numba documentation. Unless you are already acquainted with Numba, we suggest you start with the User
manual.

FOR ALL USERS 1

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

2 FOR ALL USERS

CHAPTER
ONE

USER MANUAL

1.1 A ~5 minute guide to Numba

Numba is a just-in-time compiler for Python that works best on code that uses NumPy arrays and functions, and loops.
The most common way to use Numba is through its collection of decorators that can be applied to your functions to
instruct Numba to compile them. When a call is made to a Numba-decorated function it is compiled to machine code
“just-in-time” for execution and all or part of your code can subsequently run at native machine code speed!

Out of the box Numba works with the following:
* OS: Windows (32 and 64 bit), OSX, Linux (32 and 64 bit). Unofficial support on *BSD.
* Architecture: x86, x86_64, ppc64le, armv7l, armv8l (aarch64). Unofficial support on M1/Arm64.
* GPUs: Nvidia CUDA.
¢ CPython
e NumPy 1.18 - latest

1.1.1 How do | get it?

Numba is available as a conda package for the Anaconda Python distribution:

$ conda install numba

Numba also has wheels available:

$ pip install numba

Numba can also be compiled from source, although we do not recommend it for first-time Numba users.

Numba is often used as a core package so its dependencies are kept to an absolute minimum, however, extra packages
can be installed as follows to provide additional functionality:

* scipy - enables support for compiling numpy . 1inalg functions.
* colorama - enables support for color highlighting in backtraces/error messages.
e pyyaml - enables configuration of Numba via a YAML config file.

e icc_rt - allows the use of the Intel SVML (high performance short vector math library, x86_64 only). Installa-
tion instructions are in the performance tips.

https://conda.io/docs/
https://www.anaconda.com/

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

1.1.2 Will Numba work for my code?

This depends on what your code looks like, if your code is numerically orientated (does a lot of math), uses NumPy a
lot and/or has a lot of loops, then Numba is often a good choice. In these examples we’ll apply the most fundamental
of Numba’s JIT decorators, @jit, to try and speed up some functions to demonstrate what works well and what does
not.

Numba works well on code that looks like this:

from numba import jit
import numpy as np

X = np.arange(100) .reshape(10, 10)
@jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit

def go_fast(a): # Function is compiled to machine code when called the first time
trace = 0.0

for i in range(a.shape[0]): # Numba likes loops
trace += np.tanh(a[i, i]) # Numba likes NumPy functions
return a + trace # Numba likes NumPy broadcasting

print(go_fast(x))

It won’t work very well, if at all, on code that looks like this:

from numba import jit
import pandas as pd

x={'a": [1, 2, 31, 'b": [20, 30, 401}

@jit

def use_pandas(a): # Function will not benefit from Numba jit
df = pd.DataFrame.from_dict(a) # Numba doesn't know about pd.DataFrame
df += 1 # Numba doesn't understand what this is
return df.cov() # or this!

print (use_pandas(x))

Note that Pandas is not understood by Numba and as a result Numba would simply run this code via the interpreter but
with the added cost of the Numba internal overheads!

1.1.3 What is nopython mode?

The Numba @jit decorator fundamentally operates in two compilation modes, nopython mode and object mode.
In the go_fast example above, nopython=True is set in the @jit decorator; this is instructing Numba to operate in
nopython mode. The behaviour of the nopython compilation mode is to essentially compile the decorated function
so that it will run entirely without the involvement of the Python interpreter. This is the recommended and best-practice
way to use the Numba jit decorator as it leads to the best performance.

Should the compilation in nopython mode fail, Numba can compile using object mode. This is a fall back mode for
the @jit decorator if nopython=True is not set (as seen in the use_pandas example above). In this mode Numba
will identify loops that it can compile and compile those into functions that run in machine code, and it will run the
rest of the code in the interpreter. For best performance avoid using this mode!

4 Chapter 1. User Manual

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

1.1.4 How to measure the performance of Numba?

First, recall that Numba has to compile your function for the argument types given before it executes the machine code
version of your function. This takes time. However, once the compilation has taken place Numba caches the machine
code version of your function for the particular types of arguments presented. If it is called again with the same types,
it can reuse the cached version instead of having to compile again.

A really common mistake when measuring performance is to not account for the above behaviour and to time code
once with a simple timer that includes the time taken to compile your function in the execution time.

For example:

from numba import jit
import numpy as np
import time

X = np.arange(100) .reshape(10, 10)

@jit(nopython=True)
def go_fast(a): # Function is compiled and runs in machine code
trace = 0.0
for i in range(a.shape[0]):
trace += np.tanh(a[i, i])
return a + trace

DO NOT REPORT THIS... COMPILATION TIME IS INCLUDED IN THE EXECUTION TIME!
start = time.time()

go_fast(x)

end = time.time()

print("Elapsed (with compilation) = " % (end - start))

NOW THE FUNCTION IS COMPILED, RE-TIME IT EXECUTING FROM CACHE
start = time.time()

go_fast(x)

end = time.time()

print("Elapsed (after compilation) = " % (end - start))

This, for example prints:

Elapsed (with compilation) = 0.33030009269714355
Elapsed (after compilation) = 6.67572021484375e-06

A good way to measure the impact Numba JIT has on your code is to time execution using the timeit module functions;
these measure multiple iterations of execution and, as a result, can be made to accommodate for the compilation time
in the first execution.

As a side note, if compilation time is an issue, Numba JIT supports on-disk caching of compiled functions and also has
an Ahead-Of-Time compilation mode.

1.1. A ~5 minute guide to Numba 5

https://docs.python.org/3/library/timeit.html

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

1.1.5 How fast is it?

Assuming Numba can operate in nopython mode, or at least compile some loops, it will target compilation to your
specific CPU. Speed up varies depending on application but can be one to two orders of magnitude. Numba has a
performance guide that covers common options for gaining extra performance.

1.1.6 How does Numba work?

Numba reads the Python bytecode for a decorated function and combines this with information about the types of the
input arguments to the function. It analyzes and optimizes your code, and finally uses the LLVM compiler library to
generate a machine code version of your function, tailored to your CPU capabilities. This compiled version is then
used every time your function is called.

1.1.7 Other things of interest:

Numba has quite a few decorators, we’ve seen @jit, but there’s also:
* @njit - this is an alias for @jit(nopython=True) as it is so commonly used!
e @vectorize - produces NumPy ufunc s (with all the ufunc methods supported). Docs are here.
* @guvectorize - produces NumPy generalized ufunc s. Docs are here.
* @stencil - declare a function as a kernel for a stencil like operation. Docs are here.
* @jitclass - for jit aware classes. Docs are here.
¢ @cfunc - declare a function for use as a native call back (to be called from C/C++ etc). Docs are here.

* @overload - register your own implementation of a function for use in nopython mode, e.g. @verload(scipy.
special. j®). Docs are here.

Extra options available in some decorators:

e parallel = True - enable the automatic parallelization of the function.

e fastmath = True - enable fast-math behaviour for the function.
ctypes/cffi/cython interoperability:

e cffi - The calling of CFFI functions is supported in nopython mode.

* ctypes - The calling of crypes wrapped functions is supported in nopython mode.

» Cython exported functions are callable.

GPU targets:

Numba can target Nvidia CUDA GPUs. You can write a kernel in pure Python and have Numba handle the computation
and data movement (or do this explicitly). Click for Numba documentation on CUDA.

6 Chapter 1. User Manual

https://developer.nvidia.com/cuda-zone

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

1.2 Overview

Numba is a compiler for Python array and numerical functions that gives you the power to speed up your applications
with high performance functions written directly in Python.

Numba generates optimized machine code from pure Python code using the LLVM compiler infrastructure. With a few
simple annotations, array-oriented and math-heavy Python code can be just-in-time optimized to performance similar
as C, C++ and Fortran, without having to switch languages or Python interpreters.

Numba’s main features are:
* on-the-fly code generation (at import time or runtime, at the user’s preference)
* native code generation for the CPU (default) and GPU hardware
* integration with the Python scientific software stack (thanks to Numpy)

Here is how a Numba-optimized function, taking a Numpy array as argument, might look like:

@numba. jit
def sum2d(arr):
M, N = arr.shape
result = 0.0
for i in range(M):
for j in range(N):
result += arr[i,j]
return result

1.3 Installation

1.3.1 Compatibility

Numba is compatible with Python 3.7-3.10, and Numpy versions 1.18 up to 1.22.
Our supported platforms are:

¢ Linux x86 (32-bit and 64-bit)

* Linux ppcle64 (POWERS, POWERY)

¢ Windows 7 and later (32-bit and 64-bit)

e OS X 10.9 and later (64-bit and unofficial support on M1/Arm64)

* *BSD (unofficial support only)

* NVIDIA GPUs of compute capability 5.3 and later

— Compute capabilities 3.0 - 5.2 are supported, but deprecated.
* ARMvV7 (32-bit little-endian, such as Raspberry Pi 2 and 3)
* ARMVvS (64-bit little-endian, such as the NVIDIA Jetson)

Automatic parallelization with @jit is only available on 64-bit platforms.

1.2. Overview 7

http://llvm.org/

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

1.3.2 Installing using conda on x86/x86_64/POWER Platforms

The easiest way to install Numba and get updates is by using conda, a cross-platform package manager and software
distribution maintained by Anaconda, Inc. You can either use Anaconda to get the full stack in one download, or
Miniconda which will install the minimum packages required for a conda environment.

Once you have conda installed, just type:

$ conda install numba

or:

$ conda update numba

Note that Numba, like Anaconda, only supports PPC in 64-bit little-endian mode.

To enable CUDA GPU support for Numba, install the latest graphics drivers from NVIDIA for your platform. (Note
that the open source Nouveau drivers shipped by default with many Linux distributions do not support CUDA.) Then
install the cudatoolkit package:

$ conda install cudatoolkit

You do not need to install the CUDA SDK from NVIDIA.

1.3.3 Installing using pip on x86/x86_64 Platforms

Binary wheels for Windows, Mac, and Linux are also available from PyPI. You can install Numba using pip:

$ pip install numba

This will download all of the needed dependencies as well. You do not need to have LLVM installed to use Numba (in
fact, Numba will ignore all LLVM versions installed on the system) as the required components are bundled into the
Ilvmlite wheel.

To use CUDA with Numba installed by pip, you need to install the CUDA SDK from NVIDIA. Please refer to Setting
CUDA Installation Path for details. Numba can also detect CUDA libraries installed system-wide on Linux.

1.3.4 Installing on Linux ARMv7 Platforms

Berryconda is a conda-based Python distribution for the Raspberry Pi. We are now uploading packages to the numba
channel on Anaconda Cloud for 32-bit little-endian, ARMv7-based boards, which currently includes the Raspberry Pi
2 and 3, but not the Pi 1 or Zero. These can be installed using conda from the numba channel:

$ conda install -c numba numba

Berryconda and Numba may work on other Linux-based ARMvV7 systems, but this has not been tested.

8 Chapter 1. User Manual

https://www.anaconda.com/download
https://conda.io/miniconda.html
https://www.nvidia.com/Download/index.aspx
https://pypi.org/project/numba/
https://developer.nvidia.com/cuda-downloads
https://github.com/jjhelmus/berryconda

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

1.3.5 Installing on Linux ARMv8 (AArch64) Platforms

We build and test conda packages on the NVIDIA Jetson TX2, but they are likely to work for other A Arch64 platforms.
(Note that while the Raspberry Pi CPU is 64-bit, Raspbian runs it in 32-bit mode, so look at Installing on Linux ARMv7
Platforms instead.)

Conda-forge support for AArch64 is still quite experimental and packages are limited, but it does work enough for
Numba to build and pass tests. To set up the environment:

* Install miniforge. This will create a minimal conda environment.

* Then you can install Numba from the numba channel:

$ conda install -c numba numba

On CUDA-enabled systems, like the Jetson, the CUDA toolkit should be automatically detected in the environment.

1.3.6 Installing from source

Installing Numba from source is fairly straightforward (similar to other Python packages), but installing llvmlite can be
quite challenging due to the need for a special LLVM build. If you are building from source for the purposes of Numba
development, see Build environment for details on how to create a Numba development environment with conda.

If you are building Numba from source for other reasons, first follow the llvmlite installation guide. Once that is
completed, you can download the latest Numba source code from Github:

$ git clone git://github.com/numba/numba.git

Source archives of the latest release can also be found on PyPI. In addition to 11vmlite, you will also need:

* A C compiler compatible with your Python installation. If you are using Anaconda, you can use the following
conda packages:

Linux x86: gcc_linux-32 and gxx_linux-32

Linux x86_64: gcc_linux-64 and gxx_linux-64

Linux POWER: gcc_linux-ppc64le and gxx_linux-ppc64le

Linux ARM: no conda packages, use the system compiler

Mac OSX: clang_osx-64 and clangxx_osx-64 or the system compiler at /usr/bin/clang (Mojave
onwards)

Mac OSX (M1): clang_osx-arm64 and clangxx_osx-arm64

Windows: a version of Visual Studio appropriate for the Python version in use
e NumPy

Then you can build and install Numba from the top level of the source tree:

$ python setup.py install

1.3. Installation 9

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://github.com/conda-forge/miniforge
https://github.com/numba/llvmlite
https://llvmlite.readthedocs.io/en/latest/admin-guide/install.html
https://github.com/numba/numba
https://pypi.org/project/numba/
http://www.numpy.org/

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

Build time environment variables and configuration of optional components

Below are environment variables that are applicable to altering how Numba would otherwise build by default along
with information on configuration options.

NUMBA_DISABLE_OPENMP (default: not set)
To disable compilation of the OpenMP threading backend set this environment variable to a non-empty string
when building. If not set (default):

» For Linux and Windows it is necessary to provide OpenMP C headers and runtime libraries compatible
with the compiler tool chain mentioned above, and for these to be accessible to the compiler via standard
flags.

¢ For OSX the conda package 11vm-openmp provides suitable C headers and libraries. If the compilation
requirements are not met the OpenMP threading backend will not be compiled.

NUMBA_DISABLE_TBB (default: not set)
To disable the compilation of the TBB threading backend set this environment variable to a non-empty string
when building. If not set (default) the TBB C headers and libraries must be available at compile time. If build-
ing with conda build this requirement can be met by installing the tbb-devel package. If not building with
conda build the requirement can be met via a system installation of TBB or through the use of the TBBROOT en-
vironment variable to provide the location of the TBB installation. For more information about setting TBBROOT
see the Intel documentation.

1.3.7 Dependency List

Numba has numerous required and optional dependencies which additionally may vary with target operating system
and hardware. The following lists them all (as of July 2020).

* Required build time:

setuptools

numpy
— 1lvmlite
— Compiler toolchain mentioned above
* Required run time:
— setuptools
— numpy
— 1llvmlite
 Optional build time:

See Build time environment variables and configuration of optional components for more details about additional
options for the configuration and specification of these optional components.

— 1lvm-openmp (OSX) - provides headers for compiling OpenMP support into Numba’s threading backend

— tbb-devel - provides TBB headers/libraries for compiling TBB support into Numba’s threading backend
(2021 <= version < 2021.6 required).

— importlib_metadata (for Python versions < 3.9)
* Optional runtime are:

— scipy - provides cython bindings used in Numba’s np.1linalg. * support

10 Chapter 1. User Manual

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/appendix/adding-parallelism-to-your-program/adding-the-parallel-framework-to-your-build-environment/defining-the-tbbroot-environment-variable.html

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

tbb - provides the TBB runtime libraries used by Numba’s TBB threading backend (version >= 2021
required).

jinja2 - for “pretty” type annotation output (HTML) via the numba CLI
cffi - permits use of CFFI bindings in Numba compiled functions
11vm-openmp - (OSX) provides OpenMP library support for Numba’s OpenMP threading backend.

intel-openmp - (OSX) provides an alternative OpenMP library for use with Numba’s OpenMP threading
backend.

ipython - if in use, caching will use IPython’s cache directories/caching still works

pyyaml - permits the use of a .numba_config.yaml file for storing per project configuration options
colorama - makes error message highlighting work

icc_rt - (numba channel) allows Numba to use Intel SVML for extra performance

pygments - for “pretty” type annotation

gdb as an executable on the $PATH - if you would like to use the gdb support

Compiler toolchain mentioned above, if you would like to use pycc for Ahead-of-Time (AOT) compilation
r2pipe - required for assembly CFG inspection.

radare2 as an executable on the $PATH - required for assembly CFG inspection. See here for information
on obtaining and installing.

graphviz - for some CFG inspection functionality.
pickle5 - provides Python 3.8 pickling features for faster pickling in Python 3.7.
typeguard - used by runtests.py for runtime type-checking.

cuda-python - The NVIDIA CUDA Python bindings. See CUDA Bindings. Numba requires Version 11.6
or greater.

¢ To build the documentation:

sphinx

pygments
sphinx_rtd_theme
numpydoc

make as an executable on the $PATH

1.3.8 Checking your installation

You should be able to import Numba from the Python prompt:

$ python

Python 3.10.2 | packaged by conda-forge | (main, Jan 14 2022, 08:02:09) [GCC 9.4.0] on.
—linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import numba
>>> numba.__version__
'0.55.1"'

1.3. Installation

11

https://github.com/radareorg/radare2

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

You can also try executing the numba --sysinfo (or numba -s for short) command to report information about your
system capabilities. See Command line interface for further information.

$ numba -s

System info:

__Time Stamp__

Report started (local time) : 2022-01-18 10:35:08.981319

__Hardware Information__

Machine : x86_64
CPU Name : skylake-avx512
CPU Count 112

CPU Features :

64bit adx aes avx avx2 avx512bw avx512cd avx512dgq avx512f avx512vl bmi bmi2
clflushopt clwb cmov cx16 cx8 fl6c fma fsgsbase fxsr invpcid lzcnt mmx
movbe pclmul pku popcnt prfchw rdrnd rdseed rtm sahf sse sse2 sse3 sse4.l
sse4.2 ssse3 xsave Xxsavec Xxsaveopt xsaves

__0S Information__

Platform Name : Linux-5.4.0-94-generic-x86_64-with-

—glibc2.31

Platform Release 5.4.0-94-generic

0S Name : Linux

0S Version : #106-Ubuntu SMP Thu Jan 6 23:58:14 UTC.
2022

__Python Information__

Python Compiler : GCC 9.4.0
Python Implementation : CPython
Python Version : 3.10.2
Python Locale : en_GB.UTF-8
__LLVM information__

LLVM Version 11.1.0

__CUDA Information__
Found 1 CUDA devices
id © b'Quadro RTX 8000'
Compute Capability: 7.5
PCI Device ID: O
PCI Bus ID: 21
UUID: GPU-e6489c45-5b68-3b03-bab7-0e7c8e809643
Watchdog: Enabled
FP32/FP64 Performance Ratio: 32

[SUPPORTED]

(output truncated due to length)

12 Chapter 1. User Manual

Numba Documentation, Release 0.55.2+0.92298ad618.dirty-py3.7-linux-x86_64.egg

1.4 Compiling Python code with @jit

Numba provides several utilities for code generation, but its central feature is the numba. jit () decorator. Using
this decorator, you can mark a function for optimization by Numba’s JIT compiler. Various invocation modes trigger
differing compilation options and behaviours.

1.4.1 Basic usage
Lazy compilation

The recommended way to use the @jit decorator is to let Numba decide when and how to optimize:

from numba import jit

@jit

def f(x, y):
A somewhat trivial example
return x + y

In this mode, compilation will be deferred until the first function execution. Numba will infer the argument types
at call time, and generate optimized code based on this information. Numba will also be able to compile separate
specializations depending on the input types. For example, calling the £() function above with integer or complex
numbers will generate different code paths:

>>> £(1, 2)
3

>>> £(1j, 2)
2+13)

Eager compilation

You can also tell Numba the function signature you are expecting. The function £() would now look like:

from numba import jit, int32

@jit(int32(int32, int32))

def f(x, y):
A somewhat trivial example
return x + vy

int32(int32, int32) is the function’s signature. In this case, the corresponding specialization will be compiled by
the @jit decorator, and no other specialization will be allowed. This is useful if you want fine-grained control over
types chosen by the compiler (for example, to use single-precision floats).

If you omit the return type, e.g. by writing (int32, int32) instead of int32(int32, int32)