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This is the Numba documentation. Unless you are already acquainted with Numba, we suggest you start with the User
manual.

FOR ALL USERS 1
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CHAPTER
ONE

USER MANUAL

1.1 A ~5 minute guide to Numba

Numba is a just-in-time compiler for Python that works best on code that uses NumPy arrays and functions, and loops.
The most common way to use Numba is through its collection of decorators that can be applied to your functions to
instruct Numba to compile them. When a call is made to a Numba-decorated function it is compiled to machine code
“just-in-time” for execution and all or part of your code can subsequently run at native machine code speed!

Out of the box Numba works with the following:
* OS: Windows (32 and 64 bit), OSX, Linux (32 and 64 bit). Unofficial support on *BSD.
* Architecture: x86, x86_64, ppc64le, armv7l, armv8l (aarch64). Unofficial support on M1/Arm64.
* GPUs: Nvidia CUDA.
¢ CPython
e NumPy 1.17 - latest

1.1.1 How do | get it?

Numba is available as a conda package for the Anaconda Python distribution:

$ conda install numba

Numba also has wheels available:

$ pip install numba

Numba can also be compiled from source, although we do not recommend it for first-time Numba users.

Numba is often used as a core package so its dependencies are kept to an absolute minimum, however, extra packages
can be installed as follows to provide additional functionality:

* scipy - enables support for compiling numpy . 1inalg functions.
* colorama - enables support for color highlighting in backtraces/error messages.
e pyyaml - enables configuration of Numba via a YAML config file.

e icc_rt - allows the use of the Intel SVML (high performance short vector math library, x86_64 only). Installa-
tion instructions are in the performance tips.



https://conda.io/docs/
https://www.anaconda.com/
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1.1.2 Will Numba work for my code?

This depends on what your code looks like, if your code is numerically orientated (does a lot of math), uses NumPy a
lot and/or has a lot of loops, then Numba is often a good choice. In these examples we’ll apply the most fundamental
of Numba’s JIT decorators, @jit, to try and speed up some functions to demonstrate what works well and what does
not.

Numba works well on code that looks like this:

from numba import jit
import numpy as np

X = np.arange(100) .reshape(10, 10)
@jit(nopython=True) # Set "nopython" mode for best performance, equivalent to @njit

def go_fast(a): # Function is compiled to machine code when called the first time
trace = 0.0

for i in range(a.shape[0]): # Numba likes loops
trace += np.tanh(a[i, i]) # Numba likes NumPy functions
return a + trace # Numba likes NumPy broadcasting

print(go_fast(x))

It won’t work very well, if at all, on code that looks like this:

from numba import jit
import pandas as pd

x={'a": [1, 2, 31, 'b": [20, 30, 401}

@jit

def use_pandas(a): # Function will not benefit from Numba jit
df = pd.DataFrame.from_dict(a) # Numba doesn't know about pd.DataFrame
df += 1 # Numba doesn't understand what this is
return df.cov() # or this!

print (use_pandas(x))

Note that Pandas is not understood by Numba and as a result Numba would simply run this code via the interpreter but
with the added cost of the Numba internal overheads!

1.1.3 What is nopython mode?

The Numba @jit decorator fundamentally operates in two compilation modes, nopython mode and object mode.
In the go_fast example above, nopython=True is set in the @jit decorator; this is instructing Numba to operate in
nopython mode. The behaviour of the nopython compilation mode is to essentially compile the decorated function
so that it will run entirely without the involvement of the Python interpreter. This is the recommended and best-practice
way to use the Numba jit decorator as it leads to the best performance.

Should the compilation in nopython mode fail, Numba can compile using object mode. This is a fall back mode for
the @jit decorator if nopython=True is not set (as seen in the use_pandas example above). In this mode Numba
will identify loops that it can compile and compile those into functions that run in machine code, and it will run the
rest of the code in the interpreter. For best performance avoid using this mode!

4 Chapter 1. User Manual
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1.1.4 How to measure the performance of Numba?

First, recall that Numba has to compile your function for the argument types given before it executes the machine code
version of your function. This takes time. However, once the compilation has taken place Numba caches the machine
code version of your function for the particular types of arguments presented. If it is called again with the same types,
it can reuse the cached version instead of having to compile again.

A really common mistake when measuring performance is to not account for the above behaviour and to time code
once with a simple timer that includes the time taken to compile your function in the execution time.

For example:

from numba import jit
import numpy as np
import time

X = np.arange(100) .reshape(10, 10)

@jit(nopython=True)
def go_fast(a): # Function is compiled and runs in machine code
trace = 0.0
for i in range(a.shape[0]):
trace += np.tanh(a[i, i])
return a + trace

# DO NOT REPORT THIS... COMPILATION TIME IS INCLUDED IN THE EXECUTION TIME!
start = time.time()

go_fast(x)

end = time.time()

print("Elapsed (with compilation) = " % (end - start))

# NOW THE FUNCTION IS COMPILED, RE-TIME IT EXECUTING FROM CACHE
start = time.time()

go_fast(x)

end = time.time()

print("Elapsed (after compilation) = " % (end - start))

This, for example prints:

Elapsed (with compilation) = 0.33030009269714355
Elapsed (after compilation) = 6.67572021484375e-06

A good way to measure the impact Numba JIT has on your code is to time execution using the timeit module functions;
these measure multiple iterations of execution and, as a result, can be made to accommodate for the compilation time
in the first execution.

As a side note, if compilation time is an issue, Numba JIT supports on-disk caching of compiled functions and also has
an Ahead-Of-Time compilation mode.

1.1. A ~5 minute guide to Numba 5
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1.1.5 How fast is it?

Assuming Numba can operate in nopython mode, or at least compile some loops, it will target compilation to your
specific CPU. Speed up varies depending on application but can be one to two orders of magnitude. Numba has a
performance guide that covers common options for gaining extra performance.

1.1.6 How does Numba work?

Numba reads the Python bytecode for a decorated function and combines this with information about the types of the
input arguments to the function. It analyzes and optimizes your code, and finally uses the LLVM compiler library to
generate a machine code version of your function, tailored to your CPU capabilities. This compiled version is then
used every time your function is called.

1.1.7 Other things of interest:

Numba has quite a few decorators, we’ve seen @jit, but there’s also:
* @njit - this is an alias for @jit(nopython=True) as it is so commonly used!
e @vectorize - produces NumPy ufunc s (with all the ufunc methods supported). Docs are here.
* @guvectorize - produces NumPy generalized ufunc s. Docs are here.
* @stencil - declare a function as a kernel for a stencil like operation. Docs are here.
* @jitclass - for jit aware classes. Docs are here.
¢ @cfunc - declare a function for use as a native call back (to be called from C/C++ etc). Docs are here.

* @overload - register your own implementation of a function for use in nopython mode, e.g. @verload(scipy.
special. j®). Docs are here.

Extra options available in some decorators:

e parallel = True - enable the automatic parallelization of the function.

e fastmath = True - enable fast-math behaviour for the function.
ctypes/cffi/cython interoperability:

e cffi - The calling of CFFI functions is supported in nopython mode.

* ctypes - The calling of crypes wrapped functions is supported in nopython mode.

» Cython exported functions are callable.

GPU targets:

Numba can target Nvidia CUDA GPUs. You can write a kernel in pure Python and have Numba handle the computation
and data movement (or do this explicitly). Click for Numba documentation on CUDA.

6 Chapter 1. User Manual
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1.2 Overview

Numba is a compiler for Python array and numerical functions that gives you the power to speed up your applications
with high performance functions written directly in Python.

Numba generates optimized machine code from pure Python code using the LLVM compiler infrastructure. With a few
simple annotations, array-oriented and math-heavy Python code can be just-in-time optimized to performance similar
as C, C++ and Fortran, without having to switch languages or Python interpreters.

Numba’s main features are:
* on-the-fly code generation (at import time or runtime, at the user’s preference)
* native code generation for the CPU (default) and GPU hardware
* integration with the Python scientific software stack (thanks to Numpy)

Here is how a Numba-optimized function, taking a Numpy array as argument, might look like:

@numba. jit
def sum2d(arr):
M, N = arr.shape
result = 0.0
for i in range(M):
for j in range(N):
result += arr[i,j]
return result

1.3 Installation

1.3.1 Compatibility

Numba is compatible with Python 3.7 or later, and NumPy versions from 1.17 up to but excluding 1.21.
Our supported platforms are:

¢ Linux x86 (32-bit and 64-bit)

* Linux ppcle64 (POWERS, POWERY)

¢ Windows 7 and later (32-bit and 64-bit)

e OS X 10.9 and later (64-bit and unofficial support on M1/Arm64)

* *BSD (unofficial support only)

* NVIDIA GPUs of compute capability 3.0 and later

* ARMvV7 (32-bit little-endian, such as Raspberry Pi 2 and 3)

¢ ARMVvS (64-bit little-endian, such as the NVIDIA Jetson)

Automatic parallelization with @jit is only available on 64-bit platforms.

1.2. Overview 7



http://llvm.org/

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

1.3.2 Installing using conda on x86/x86_64/POWER Platforms

The easiest way to install Numba and get updates is by using conda, a cross-platform package manager and software
distribution maintained by Anaconda, Inc. You can either use Anaconda to get the full stack in one download, or
Miniconda which will install the minimum packages required for a conda environment.

Once you have conda installed, just type:

$ conda install numba

or:

$ conda update numba

Note that Numba, like Anaconda, only supports PPC in 64-bit little-endian mode.

To enable CUDA GPU support for Numba, install the latest graphics drivers from NVIDIA for your platform. (Note
that the open source Nouveau drivers shipped by default with many Linux distributions do not support CUDA.) Then
install the cudatoolkit package:

$ conda install cudatoolkit

You do not need to install the CUDA SDK from NVIDIA.

1.3.3 Installing using pip on x86/x86_64 Platforms

Binary wheels for Windows, Mac, and Linux are also available from PyPI. You can install Numba using pip:

$ pip install numba

This will download all of the needed dependencies as well. You do not need to have LLVM installed to use Numba (in
fact, Numba will ignore all LLVM versions installed on the system) as the required components are bundled into the
Ilvmlite wheel.

To use CUDA with Numba installed by pip, you need to install the CUDA SDK from NVIDIA. Please refer to Setting
CUDA Installation Path for details. Numba can also detect CUDA libraries installed system-wide on Linux.

1.3.4 Installing on Linux ARMv7 Platforms

Berryconda is a conda-based Python distribution for the Raspberry Pi. We are now uploading packages to the numba
channel on Anaconda Cloud for 32-bit little-endian, ARMv7-based boards, which currently includes the Raspberry Pi
2 and 3, but not the Pi 1 or Zero. These can be installed using conda from the numba channel:

$ conda install -c numba numba

Berryconda and Numba may work on other Linux-based ARMvV7 systems, but this has not been tested.

8 Chapter 1. User Manual
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1.3.5 Installing on Linux ARMv8 (AArch64) Platforms

We build and test conda packages on the NVIDIA Jetson TX2, but they are likely to work for other A Arch64 platforms.
(Note that while the Raspberry Pi CPU is 64-bit, Raspbian runs it in 32-bit mode, so look at Installing on Linux ARMv7
Platforms instead.)

Conda-forge support for AArch64 is still quite experimental and packages are limited, but it does work enough for
Numba to build and pass tests. To set up the environment:

* Install miniforge. This will create a minimal conda environment.

* Then you can install Numba from the numba channel:

$ conda install -c numba numba

On CUDA-enabled systems, like the Jetson, the CUDA toolkit should be automatically detected in the environment.

1.3.6 Installing from source

Installing Numba from source is fairly straightforward (similar to other Python packages), but installing llvmlite can be
quite challenging due to the need for a special LLVM build. If you are building from source for the purposes of Numba
development, see Build environment for details on how to create a Numba development environment with conda.

If you are building Numba from source for other reasons, first follow the llvmlite installation guide. Once that is
completed, you can download the latest Numba source code from Github:

$ git clone git://github.com/numba/numba.git

Source archives of the latest release can also be found on PyPI. In addition to 11vmlite, you will also need:

* A C compiler compatible with your Python installation. If you are using Anaconda, you can use the following
conda packages:

Linux x86: gcc_linux-32 and gxx_linux-32

Linux x86_64: gcc_linux-64 and gxx_linux-64

Linux POWER: gcc_linux-ppc64le and gxx_linux-ppc64le

Linux ARM: no conda packages, use the system compiler

Mac OSX: clang_osx-64 and clangxx_osx-64 or the system compiler at /usr/bin/clang (Mojave
onwards)

Windows: a version of Visual Studio appropriate for the Python version in use
* NumPy

Then you can build and install Numba from the top level of the source tree:

$ python setup.py install
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Build time environment variables and configuration of optional components

Below are environment variables that are applicable to altering how Numba would otherwise build by default along
with information on configuration options.

NUMBA_DISABLE_OPENMP (default: not set)
To disable compilation of the OpenMP threading backend set this environment variable to a non-empty string
when building. If not set (default):

» For Linux and Windows it is necessary to provide OpenMP C headers and runtime libraries compatible
with the compiler tool chain mentioned above, and for these to be accessible to the compiler via standard
flags.

* For OSX the conda packages 11vm-openmp and intel-openmp provide suitable C headers and libraries.
If the compilation requirements are not met the OpenMP threading backend will not be compiled

NUMBA_DISABLE_TBB (default: not set)
To disable the compilation of the TBB threading backend set this environment variable to a non-empty string
when building. If not set (default) the TBB C headers and libraries must be available at compile time. If build-
ing with conda build this requirement can be met by installing the tbb-devel package. If not building with
conda build the requirement can be met via a system installation of TBB or through the use of the TBBROOT en-
vironment variable to provide the location of the TBB installation. For more information about setting TBBROOT
see the Intel documentation.

1.3.7 Dependency List

Numba has numerous required and optional dependencies which additionally may vary with target operating system
and hardware. The following lists them all (as of July 2020).

* Required build time:

setuptools

numpy
— 1lvmlite
— Compiler toolchain mentioned above
* Required run time:
— setuptools
— numpy
— 1llvmlite
* Optional build time:

See Build time environment variables and configuration of optional components for more details about additional
options for the configuration and specification of these optional components.

— 1lvm-openmp (OSX) - provides headers for compiling OpenMP support into Numba’s threading backend
— intel-openmp (OSX) - provides OpenMP library support for Numba’s threading backend.

— tbb-devel - provides TBB headers/libraries for compiling TBB support into Numba’s threading backend
(version >= 2021 required).

* Optional runtime are:

— scipy - provides cython bindings used in Numba’s np.linalg. * support
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— tbb - provides the TBB runtime libraries used by Numba’s TBB threading backend (version >= 2021
required).

— jinja2 - for “pretty” type annotation output (HTML) via the numba CLI

— cffi - permits use of CFFI bindings in Numba compiled functions

— intel-openmp - (OSX) provides OpenMP library support for Numba’s OpenMP threading backend
— ipython - if in use, caching will use IPython’s cache directories/caching still works

— pyyaml - permits the use of a .numba_config.yaml file for storing per project configuration options
— colorama - makes error message highlighting work

— icc_rt - (numba channel) allows Numba to use Intel SVML for extra performance

— pygments - for “pretty” type annotation

— gdb as an executable on the $PATH - if you would like to use the gdb support

— Compiler toolchain mentioned above, if you would like to use pycc for Ahead-of-Time (AOT) compilation
— r2pipe - required for assembly CFG inspection.

— radare2 as an executable on the $PATH - required for assembly CFG inspection. See here for information
on obtaining and installing.

— graphviz - for some CFG inspection functionality.
— pickle5 - provides Python 3.8 pickling features for faster pickling in Python 3.7.
— typeguard - used by runtests.py for runtime type-checking.

¢ To build the documentation:

sphinx

pygments

sphinx_rtd_theme

numpydoc

make as an executable on the $PATH

1.3.8 Checking your installation

You should be able to import Numba from the Python prompt:

$ python

Python 3.8.1 (default, Jan 8 2020, 16:15:59)

[Clang 4.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numba

>>> numba.__version__

'0.48.0'

You can also try executing the numba --sysinfo (or numba -s for short) command to report information about your
system capabilities. See Command line interface for further information.
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$ numba -s

System info:

__Time Stamp__

2018-08-28 15:46:24.631054

__Hardware Information__

Machine : x86_64

CPU Name : haswell

CPU Features :

aes avx avx2 bmi bmi2 cmov cx16 fl6c fma fsgsbase lzcnt mmx movbe pclmul popcnt
rdrnd sse sse2 sse3 sse4.l ssed.2 ssse3 xsave xsaveopt

__0S Information__

Platform : Darwin-17.6.0-x86_64-1386-64bit

Release : 17.6.0

System Name : Darwin

Version : Darwin Kernel Version 17.6.0: Tue May 8 15:22:16.
—PDT 2018; root:xnu-4570.61.1~1/RELEASE_X86_64

0S specific info : 10.13.5 x86_64

__Python Information__

Python Compiler : GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_401/
—final)

Python Implementation : CPython

Python Version 1 2.7.15

Python Locale : en_US UTF-8

__LLVM information__
LLVM version : 6.0.0

__CUDA Information__
Found 1 CUDA devices
id 0 GeForce GT 750M [SUPPORTED]
compute capability: 3.0
pci device id: ®
pci bus id: 1

(output truncated due to length)

1.4 Compiling Python code with @jit

Numba provides several utilities for code generation, but its central feature is the numba. jit () decorator. Using
this decorator, you can mark a function for optimization by Numba’s JIT compiler. Various invocation modes trigger
differing compilation options and behaviours.

12 Chapter 1. User Manual




Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

1.4.1 Basic usage
Lazy compilation

The recommended way to use the @jit decorator is to let Numba decide when and how to optimize:

from numba import jit

@jit

def f(x, y):
# A somewhat trivial example
return x + y

In this mode, compilation will be deferred until the first function execution. Numba will infer the argument types
at call time, and generate optimized code based on this information. Numba will also be able to compile separate
specializations depending on the input types. For example, calling the £() function above with integer or complex
numbers will generate different code paths:

>>> £(1, 2)
3

>>> £(15, 2)
(2+13)

Eager compilation

You can also tell Numba the function signature you are expecting. The function £() would now look like:

from numba import jit, int32

@jit(int32(int32, int32))

def f(x, y):
# A somewhat trivial example
return x +y

int32(int32, int32) is the function’s signature. In this case, the corresponding specialization will be compiled by
the @jit decorator, and no other specialization will be allowed. This is useful if you want fine-grained control over
types chosen by the compiler (for example, to use single-precision floats).

If you omit the return type, e.g. by writing (int32, int32) instead of int32(int32, int32), Numba will try to
infer it for you. Function signatures can also be strings, and you can pass several of them as a list; see the numba. jit ()
documentation for more details.

Of course, the compiled function gives the expected results:

>>> £(1,2)
3

and if we specified int32 as return type, the higher-order bits get discarded:

>>> £(2%%31, 2**31 + 1)
1
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1.4.2 Calling and inlining other functions

Numba-compiled functions can call other compiled functions. The function calls may even be inlined in the native
code, depending on optimizer heuristics. For example:

@jit
def square(x):
return x ** 2

@jit
def hypot(x, y):
return math.sqrt(square(x) + square(y))

The @jit decorator must be added to any such library function, otherwise Numba may generate much slower code.

1.4.3 Signature specifications

Explicit @jit signatures can use a number of types. Here are some common ones:
* void is the return type of functions returning nothing (which actually return None when called from Python)
* intp and uintp are pointer-sized integers (signed and unsigned, respectively)
e intc and uintc are equivalent to C int and unsigned int integer types

e int8, uint8, intl6, uintl6, int32, uint32, int64, uint64 are fixed-width integers of the corresponding
bit width (signed and unsigned)

» float32 and float64 are single- and double-precision floating-point numbers, respectively
* complex64 and complex128 are single- and double-precision complex numbers, respectively

e array types can be specified by indexing any numeric type, e.g. float32[:] for a one-dimensional single-
precision array or int8[:, :] for a two-dimensional array of 8-bit integers.

1.4.4 Compilation options

A number of keyword-only arguments can be passed to the @jit decorator.

nopython

Numba has two compilation modes: nopython mode and object mode. The former produces much faster code, but has
limitations that can force Numba to fall back to the latter. To prevent Numba from falling back, and instead raise an
error, pass nopython=True.

@jit(nopython=True)
def f(x, y):
return x + y

See also:

Troubleshooting and tips
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nogil

Whenever Numba optimizes Python code to native code that only works on native types and variables (rather than
Python objects), it is not necessary anymore to hold Python’s global interpreter lock (GIL). Numba will release the
GIL when entering such a compiled function if you passed nogil=True.

@jit(nogil=True)
def f(x, y):
return x + y

Code running with the GIL released runs concurrently with other threads executing Python or Numba code (either
the same compiled function, or another one), allowing you to take advantage of multi-core systems. This will not be
possible if the function is compiled in object mode.

When using nogil=True, you’ll have to be wary of the usual pitfalls of multi-threaded programming (consistency,
synchronization, race conditions, etc.).

cache

To avoid compilation times each time you invoke a Python program, you can instruct Numba to write the result of
function compilation into a file-based cache. This is done by passing cache=True:

@jit(cache=True)
def f(x, y):
return x + y

parallel

Enables automatic parallelization (and related optimizations) for those operations in the function known to have parallel
semantics. For a list of supported operations, see Automatic parallelization with @jit. This feature is enabled by passing
parallel=True and must be used in conjunction with nopython=True:

@jit(nopython=True, parallel=True)
def f(x, y):
return x + y

See also:

Automatic parallelization with @jit

1.5 Flexible specializations with @generated_jit

While the jit () decorator is useful for many situations, sometimes you want to write a function that has different
implementations depending on its input types. The generated_jit () decorator allows the user to control the selection
of a specialization at compile-time, while fully retaining runtime execution speed of a JIT function.
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1.5.1 Example
Suppose you want to write a function which returns whether a given value is a “missing” value according to certain
conventions. For the sake of the example, let’s adopt the following definition:

« for floating-point arguments, a missing value is a NaN

¢ for Numpy datetime64 and timedelta64 arguments, a missing value is a NaT

* other types don’t have the concept of a missing value.

That compile-time logic is easily implemented using the generated_jit () decorator:

import numpy as np
from numba import generated_jit, types

@generated_jit(nopython=True)
def is_missing(x):

mren

Return True if the value is missing, False otherwise.
if isinstance(x, types.Float):
return lambda x: np.isnan(x)
elif isinstance(x, (types.NPDatetime, types.NPTimedelta)):
# The corresponding Not-a-Time value
missing = x('NaT")
return lambda x: x == missing
else:
return lambda x: False

There are several things to note here:
* The decorated function is called with the Numba types of the arguments, not their values.

* The decorated function doesn’t actually compute a result, it returns a callable implementing the actual definition
of the function for the given types.

* Itis possible to pre-compute some data at compile-time (the missing variable above) to have them reused inside
the compiled implementation.

* The function definitions use the same names for arguments as in the decorated function, this is required to ensure
passing arguments by name works as expected.

1.5.2 Compilation options

The generated_jit () decorator supports the same keyword-only arguments as the jit () decorator, for example the
nopython and cache options.
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1.6 Creating NumPy universal functions

There are two types of universal functions:
» Those which operate on scalars, these are “universal functions” or ufuncs (see @vectorize below).

* Those which operate on higher dimensional arrays and scalars, these are “generalized universal functions” or
gufuncs (@guvectorize below).

1.6.1 The @vectorize decorator

Numba’s vectorize allows Python functions taking scalar input arguments to be used as NumPy ufuncs. Creating a
traditional NumPy ufunc is not the most straightforward process and involves writing some C code. Numba makes this
easy. Using the vectorize() decorator, Numba can compile a pure Python function into a ufunc that operates over
NumPy arrays as fast as traditional ufuncs written in C.

Using vectorize (), you write your function as operating over input scalars, rather than arrays. Numba will generate
the surrounding loop (or kernel) allowing efficient iteration over the actual inputs.

The vectorize () decorator has two modes of operation:

 Eager, or decoration-time, compilation: If you pass one or more type signatures to the decorator, you will be build-
ing a Numpy universal function (ufunc). The rest of this subsection describes building ufuncs using decoration-
time compilation.

 Lazy, or call-time, compilation: When not given any signatures, the decorator will give you a Numba dynamic
universal function (DUFunc) that dynamically compiles a new kernel when called with a previously unsupported
input type. A later subsection, “Dynamic universal functions”, describes this mode in more depth.

As described above, if you pass a list of signatures to the vectorize () decorator, your function will be compiled into
a Numpy ufunc. In the basic case, only one signature will be passed:

from numba import vectorize, float64

@vectorize([float64(float64, float64)])
def f(x, y):
return x + y

If you pass several signatures, beware that you have to pass most specific signatures before least specific ones (e.g.,
single-precision floats before double-precision floats), otherwise type-based dispatching will not work as expected:

@vectorize([int32(int32, int32),
int64(int64, int64),
float32(float32, float32),
float64(float64, float64)])

def f(x, y):

return x +y

The function will work as expected over the specified array types:

>>> a = np.arange(6)

>>> f(a, a)

array([ 0, 2, 4, 6, 8, 10])

>>> a = np.linspace(®, 1, 6)

>>> f(a, a)

array([ 0. , 0.4, 0.8, 1.2, 1.6, 2. 1)
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but it will fail working on other types:

>>> a = np.linspace(®, 1+1j, 6)
>>> f(a, a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ufunc 'ufunc' not supported for the input types, and the inputs could not be.
—safely coerced to any supported types according to the casting rule ''safe''

You might ask yourself, “why would I go through this instead of compiling a simple iteration loop using the @jir
decorator?”. The answer is that NumPy ufuncs automatically get other features such as reduction, accumulation or
broadcasting. Using the example above:

>>> a = np.arange(12).reshape(3, 4)
>>> a
array([[ ®, 1, 2, 31,

[ 4, 5, 6, 7],

[ 8 9, 10, 11]11)
>>> f.reduce(a, axis=0)
array([12, 15, 18, 21])
>>> f.reduce(a, axis=1)
array([ 6, 22, 38])
>>> f.accumulate(a)
array([[ ®, 1, 2, 3],

[ 4, 6, 8, 10],

[12, 15, 18, 2111
>>> f.accumulate(a, axis=1)
array([[ ®, 1, 3, 6],

[ 4, 9, 15, 22],

[ 8, 17, 27, 38]1)

See also:

Standard features of ufuncs (NumPy documentation).

Note: Only the broadcasting features of ufuncs are supported in compiled code.

The vectorize() decorator supports multiple ufunc targets:

Tar- | Description
get
cpu | Single-threaded CPU
par- | Multi-core CPU

al-
lel
cuda| CUDA GPU

Note: This creates an ufunc-like object. See documentation for CUDA ufunc for detail.

A general guideline is to choose different targets for different data sizes and algorithms. The “cpu’ target works well for
small data sizes (approx. less than 1KB) and low compute intensity algorithms. It has the least amount of overhead. The
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“parallel” target works well for medium data sizes (approx. less than IMB). Threading adds a small delay. The “cuda”
target works well for big data sizes (approx. greater than 1MB) and high compute intensity algorithms. Transferring
memory to and from the GPU adds significant overhead.

1.6.2 The @guvectorize decorator

While vectorize() allows you to write ufuncs that work on one element at a time, the guvectorize() decorator
takes the concept one step further and allows you to write ufuncs that will work on an arbitrary number of elements
of input arrays, and take and return arrays of differing dimensions. The typical example is a running median or a
convolution filter.

Contrary to vectorize () functions, guvectorize () functions don’t return their result value: they take it as an array
argument, which must be filled in by the function. This is because the array is actually allocated by NumPy’s dispatch
mechanism, which calls into the Numba-generated code.

Similar to vectorize() decorator, guvectorize() also has two modes of operation: Eager, or decoration-time
compilation and lazy, or call-time compilation.

Here is a very simple example:

@guvectorize([(int64[:], int64, int64[:]1)], '(),O->(m)")
def g(x, y, res):
for i in range(x.shape[0]):
res[i] = x[i] + vy

The underlying Python function simply adds a given scalar (y) to all elements of a 1-dimension array. What’s more
interesting is the declaration. There are two things there:

* the declaration of input and output layouts, in symbolic form: (n), () ->(n) tells NumPy that the function takes
a n-element one-dimension array, a scalar (symbolically denoted by the empty tuple ()) and returns a n-element
one-dimension array;

* the list of supported concrete signatures as per @vectorize; here, as in the above example, we demonstrate
int64 arrays.

Note: 1D array type can also receive scalar arguments (those with shape ()). In the above example, the second
argument also could be declared as int64[:]. In that case, the value must be read by y[0].

We can now check what the compiled ufunc does, over a simple example:

>>> a = np.arange(5)

>>> a
array([0, 1, 2, 3, 4])
>>> g(a, 2)

array([2, 3, 4, 5, 6])

The nice thing is that NumPy will automatically dispatch over more complicated inputs, depending on their shapes:

>>> a = np.arange(6) .reshape(2, 3)

>>> a

array([[0, 1, 2],
[3, 4, 51D

>>> g(a, 10)

array([[10, 11, 127,

(continues on next page)
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(continued from previous page)

[13, 14, 151D
>>> g(a, np.array([10, 20]))
array([[10, 11, 127,

[23, 24, 25]1)

Note: Both vectorize() and guvectorize () support passing nopython=True as in the @jit decorator. Use it to
ensure the generated code does not fallback to object mode.

Overwriting input values

In most cases, writing to inputs may also appear to work - however, this behaviour cannot be relied on. Consider the
following example function:

@guvectorize([(float64[:], float64[:1)]1, 'O->0O")
def init_values(invals, outvals):

invals[0] = 6.5

outvals[0] = 4.2

Calling the init_values function with an array of float64 type results in visible changes to the input:

>>> invals = np.zeros(shape=(3, 3), dtype=np.float64)
>>> outvals = init_values(invals)
>>> invals
array([[6.5, 6.5, 6.
[6.5, 6.5, 6.5],
[6.5, 6.5, 6.
>>> outvals
array([[4.2, 4.2, 4.2],
[4.2, 4.2, 4.2],
[4.2, 4.2, 4.2]1])

This works because NumPy can pass the input data directly into the init_values function as the data dtype matches that
of the declared argument. However, it may also create and pass in a temporary array, in which case changes to the input
are lost. For example, this can occur when casting is required. To demonstrate, we can use an array of float32 with the
init_values function:

>>> invals = np.zeros(shape=(3, 3), dtype=np.float32)
>>> outvals = init_values(invals)
>>> invals

array([[0., 0., 0.],
[60., 0., 0.7,
[0., 0., 0.]], dtype=float32)

In this case, there is no change to the invals array because the temporary casted array was mutated instead.
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1.6.3 Dynamic universal functions

As described above, if you do not pass any signatures to the vectorize () decorator, your Python function will be
used to build a dynamic universal function, or DUFunc. For example:

from numba import vectorize

@vectorize
def f(x, y):
return x * vy

The resulting £() is a DUFunc instance that starts with no supported input types. As you make calls to £(), Numba
generates new kernels whenever you pass a previously unsupported input type. Given the example above, the following
set of interpreter interactions illustrate how dynamic compilation works:

>>> f
<numba._DUFunc 'f'>
>>> f.ufunc

<ufunc 'f'>

>>> f.ufunc.types

(]

The example above shows that DUFunc instances are not ufuncs. Rather than subclass ufunc’s, DUFunc instances work
by keeping a ufunc member, and then delegating ufunc property reads and method calls to this member (also known
as type aggregation). When we look at the initial types supported by the ufunc, we can verify there are none.

Let’s try to make a call to £():

>>> £(3,4)

12

>>> f.types # shorthand for f.ufunc.types
['11->1"]

If this was a normal Numpy ufunc, we would have seen an exception complaining that the ufunc couldn’t handle the
input types. When we call £() with integer arguments, not only do we receive an answer, but we can verify that Numba
created a loop supporting C long integers.

We can add additional loops by calling £() with different inputs:

>>> £(1.,2.)
2.0
>>> f.types

['11->1", 'dd->d']

We can now verify that Numba added a second loop for dealing with floating-point inputs, "dd->d".

If we mix input types to £(), we can verify that Numpy ufunc casting rules are still in effect:

>>> £(1,2.)

2.0

>>> f.types
['11->1", 'dd->d']

This example demonstrates that calling £() with mixed types caused Numpy to select the floating-point loop, and cast
the integer argument to a floating-point value. Thus, Numba did not create a special "d1->d" kernel.
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This DUFunc behavior leads us to a point similar to the warning given above in “The @vectorize decorator” subsec-
tion, but instead of signature declaration order in the decorator, call order matters. If we had passed in floating-point
arguments first, any calls with integer arguments would be cast to double-precision floating-point values. For example:

>>> @vectorize
. def g(a, b): return a / b

>>> g(2.,3.)
0.66666666666666663
>>> g(2,3)
0.66666666666666663
>>> g.types
['dd->d']

If you require precise support for various type signatures, you should specify them in the vectorize () decorator, and
not rely on dynamic compilation.

1.6.4 Dynamic generalized universal functions

Similar to a dynamic universal function, if you do not specify any types to the guvectorize () decorator, your Python
function will be used to build a dynamic generalized universal function, or GUFunc. For example:

from numba import guvectorize

@guvectorize('(n),O->Mm)")
def g(x, y, res):
for i in range(x.shape[0]):
res[i] = x[i] + y

We can verify the resulting function g() is a GUFunc instance that starts with no supported input types. For instance:

>>> ¢
<numba._GUFunc 'g'>
>>> g.ufunc

<ufunc 'g'>

>>> g.ufunc. types

(]

Similar to a DUFunc, as one make calls to g(), numba generates new kernels for previously unsupported input types.
The following set of interpreter interactions will illustrate how dynamic compilation works for a GUFunc:

>>> x = np.arange(5, dtype=np.int64)
>>>y = 10

>>> res = np.zeros_like(x)

>>> g(x, y, res)

>>> res

array([5, 6, 7, 8, 9])

>>> ¢g.types

['11->1"]

If this was a normal guvectorize () function, we would have seen an exception complaining that the ufunc could not
handle the given input types. When we call g() with the input arguments, numba creates a new loop for the input types.

We can add additional loops by calling g() with new arguments:
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>>> x = np.arange(5, dtype=np.double)
>>> y = 2.2

>>> res = np.zeros_like(x)

>>> g(x, y, res)

We can now verify that Numba added a second loop for dealing with floating-point inputs, "dd->d".

>>> g.types # shorthand for g.ufunc.types
['11->1", 'dd->d']

One can also verify that Numpy ufunc casting rules are working as expected:

>>> X = np.arange(5, dtype=np.int64)
>>>y = 2.2

>>> res = np.zeros_like(x)

>>> g(x, y, res)

>>> res

If you need precise support for various type signatures, you should not rely on dynamic compilation and instead, specify
the types them as first argument in the guvectorize () decorator.

1.7 Compiling Python classes with @jitclass

Note: This is a early version of jitclass support. Not all compiling features are exposed or implemented, yet.

Numba supports code generation for classes via the numba. experimental. jitclass() decorator. A class can be
marked for optimization using this decorator along with a specification of the types of each field. We call the resulting
class object a jitclass. All methods of a jitclass are compiled into nopython functions. The data of a jitclass instance is
allocated on the heap as a C-compatible structure so that any compiled functions can have direct access to the underlying
data, bypassing the interpreter.

1.7.1 Basic usage

Here’s an example of a jitclass:

import numpy as np
from numba import int32, float32 # import the types
from numba.experimental import jitclass

spec = [
('value', int32), # a simple scalar field
('array', float32[:1), # an array field

]

@jitclass(spec)

class Bag(object):
def __init__(self, value):
self.value = value
self.array = np.zeros(value, dtype=np.float32)

(continues on next page)
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(continued from previous page)

@property
def size(self):
return self.array.size

def increment(self, val):
for i in range(self.size):
self.array[i] += val
return self.array

@staticmethod
def add(x, y):
return x + y

n = 21
mybag = Bag(n)

In the above example, a spec is provided as a list of 2-tuples. The tuples contain the name of the field and the Numba
type of the field. Alternatively, user can use a dictionary (an OrderedDict preferably for stable field ordering), which
maps field names to types.

The definition of the class requires at least a __init__ method for initializing each defined fields. Uninitialized fields
contains garbage data. Methods and properties (getters and setters only) can be defined. They will be automatically
compiled.

1.7.2 Inferred class member types from type annotations with as_numba_type

Fields of a jitclass can also be inferred from Python type annotations.

from typing import List
from numba.experimental import jitclass
from numba.typed import List as NumbalList

@jitclass
class Counter:
value: int

def __init__(self):
self.value = 0

def get(self) -> int:
ret = self.value
self.value += 1
return ret

@jitclass

class ListLoopIterator:
counter: Counter
items: List[float]

def __init__(self, items: List[float]):
self.items = items

(continues on next page)
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(continued from previous page)

self.counter = Counter()

def get(self) -> float:
idx = self.counter.get() % len(self.items)
return self.items[idx]

items = NumbalList([3.14, 2.718, 0.123, -4.])
loop_itr = ListLoopIterator(items)

Any type annotations on the class will be used to extend the spec if that field is not already present. The Numba type
corresponding to the given Python type is inferred using as_numba_type. For example, if we have the class

@jitclass([("w", int32), ("y", float64[:1D]1)

class Foo:
w: int
x: float
y: np.ndarray
z: SomeOtherType

def __init__(self, w: int, x: float, y: np.ndarray, z: SomeOtherType):

then the full spec used for Foo will be:

e "w": 1int32 (specified in the spec)

e "x": float64 (added from type annotation)

n_n

e "y": array(float64, 1d, A) (specified in the spec)

e "z": numba.as_numba_type(SomeOtherType) (added from type annotation)

Here SomeOtherType could be any supported Python type (e.g. bool, typing.Dict[int, typing.Tuple[float,
float]], or another jitclass).

Note that only type annotations on the class will be used to infer spec elements. Method type annotations (e.g. those
of __init__ above) are ignored.

Numba requires knowing the dtype and rank of numpy arrays, which cannot currently be expressed with type annota-
tions. Because of this, numpy arrays need to be included in the spec explicitly.

1.7.3 Specifying numba.typed containers as class members explicitly

The following patterns demonstrate how to specify a numba.typed.Dict or numba.typed.List explicitly as part of
the spec passed to jitclass.

First, using explicit Numba types and explicit construction.

from numba import jitclass, types, typed

# key and value types
kv_ty = (types.int64, types.unicode_type)

# A container class with:
# * member 'd' holding a typed dictionary of int64 -> unicode string (kv_ty)

(continues on next page)
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(continued from previous page)

# * member '1' holding a typed list of float64
@jitclass([('d', types.DictType(*kv_ty)),
('1l", types.ListType(types.float64))])
class ContainerHolder(object):
def __init__(self):

# initialize the containers

self.d = typed.Dict.empty(*kv_ty)

self.]l = typed.List.empty_list(types.float64)

container = ContainerHolder()
container.d[1] = "apple"

container.d[2] = "orange"
container.l.append(123.)
container.l.append(456.)
print(container.d) # {1: apple, 2: orange}
print(container.1) # [123.0, 456.0]

Another useful pattern is to use the numba. typed container attribute _numba_type_ to find the type of a container,
this can be accessed directly from an instance of the container in the Python interpreter. The same information can be
obtained by calling numba. typeof () on the instance. For example:

from numba import jitclass, typed, typeof

d = typed.Dict()
d[1] = "apple"
d[2] = "orange"
1 = typed.List()
1.append(123.)
1.append(456.)

@jitclass([('d', typeof(d)), ('1', typeof(1))]1)
class ContainerInstHolder(object):
def __init__(self, dict_inst, list_inst):
self.d = dict_inst
self.1 = list_inst

container = ContainerInstHolder(d, 1)
print(container.d) # {1: apple, 2: orange}
print(container.l) # [123.0, 456.0]

It is worth noting that the instance of the container in a jitclass must be initialized before use, for example, this will
cause an invalid memory access as self.d is written to without d being initialized as a type.Dict instance of the
type specified.

from numba import jitclass, types
dict_ty = types.DictType(types.int64, types.unicode_type)
@jitclass([('d', dict_ty)])

class NotInitialisingContainer(object):
def __init__(self):

(continues on next page)
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self.d[10] = "apple" # this is invalid, 'd’ is not initialized

NotInitialisingContainer() # segmentation fault/memory access violation

1.7.4 Support operations

The following operations of jitclasses work in both the interpreter and Numba compiled functions:
* calling the jitclass class object to construct a new instance (e.g. mybag = Bag(123));
* read/write access to attributes and properties (e.g. mybag.value);
* calling methods (e.g. mybag.increment (3));
* calling static methods as instance attributes (e.g. mybag.add(1, 1));
* calling static methods as class attributes (e.g. Bag.add(1, 2));

Using jitclasses in Numba compiled function is more efficient. Short methods can be inlined (at the discretion of LLVM
inliner). Attributes access are simply reading from a C structure. Using jitclasses from the interpreter has the same
overhead of calling any Numba compiled function from the interpreter. Arguments and return values must be unboxed
or boxed between Python objects and native representation. Values encapsulated by a jitclass does not get boxed into
Python object when the jitclass instance is handed to the interpreter. It is during attribute access to the field values that
they are boxed. Calling static methods as class attributes is only supported outside of the class definition (i.e. code
cannot call Bag.add() from within another method of Bag).

1.7.5 Limitations

* A jitclass class object is treated as a function (the constructor) inside a Numba compiled function.
* isinstance() only works in the interpreter.
* Manipulating jitclass instances in the interpreter is not optimized, yet.

* Support for jitclasses are available on CPU only. (Note: Support for GPU devices is planned for a future release.)

1.7.6 The decorator: @jitclass

numba. experimental. jitclass(cls_or_spec=None, spec=None)
A function for creating a jitclass. Can be used as a decorator or function.

Different use cases will cause different arguments to be set.

If specified, spec gives the types of class fields. It must be a dictionary or sequence. With a dictionary, use
collections.OrderedDict for stable ordering. With a sequence, it must contain 2-tuples of (fieldname, fieldtype).

Any class annotations for field names not listed in spec will be added. For class annotation x: T we will append
("x", as_numba_type(T)) to the spec if x is not already a key in spec.

Returns
If used as a decorator, returns a callable that takes a class object and
returns a compiled version.
If used as a function, returns the compiled class (an instance of

JitClassType).
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Examples

1) cls_or_spec = None, spec = None

>>> @jitclass()
. class Foo:

2) cls_or_spec = None, spec spec

>>> @jitclass(spec=spec)
. class Foo:

3) cls_or_spec = Foo, spec = None

>>> @jitclass
. class Foo:

4) cls_or_spec = spec, spec = None In this case we update cls_or_spec, spec = None,
cls_or_spec

>>> @jitclass(spec)
. class Foo:

5) cls_or_spec = Foo, spec = spec

>>> JitFoo = jitclass(Foo, spec)

1.8 Creating C callbacks with @cfunc

Interfacing with some native libraries (for example written in C or C++) can necessitate writing native callbacks to
provide business logic to the library. The numba. cfunc () decorator creates a compiled function callable from foreign
C code, using the signature of your choice.

1.8.1 Basic usage

The @cfunc decorator has a similar usage to @jit, but with an important difference: passing a single signature is
mandatory. It determines the visible signature of the C callback:

from numba import cfunc

@cfunc("float64(float64, float64)")
def add(x, y):
return x + y
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The C function object exposes the address of the compiled C callback as the address attribute, so that you can pass it
to any foreign C or C++ library. It also exposes a ctypes callback object pointing to that callback; that object is also
callable from Python, making it easy to check the compiled code:

@cfunc("float64(float64, float64)")
def add(x, y):
return x +y

print(add.ctypes(4.0, 5.0)) # prints "9.0"

1.8.2 Example

In this example, we are going to be using the scipy.integrate.quad function. That function accepts either a regular
Python callback or a C callback wrapped in a ctypes callback object.

Let’s define a pure Python integrand and compile it as a C callback:

>>> import numpy as np
>>> from numba import cfunc
>>> def integrand(t):
return np.exp(-t) / t**2

>>> nb_integrand = cfunc("float64(float64)") (integrand)

We can pass the nb_integrand object’s ctypes callback to scipy.integrate.quad and check that the results are
the same as with the pure Python function:

>>> import scipy.integrate as si
>>> def do_integrate(func):

non

Integrate the given function from 1.0 to +inf.

nmon

return si.quad(func, 1, np.inf)

>>> do_integrate(integrand)
(0.14849550677592208, 3.8736750296130505e-10)
>>> do_integrate(nb_integrand.ctypes)
(0.14849550677592208, 3.8736750296130505e-10)

Using the compiled callback, the integration function does not invoke the Python interpreter each time it evaluates the
integrand. In our case, the integration is made 18 times faster:

>>> %timeit do_integrate(integrand)

1000 loops, best of 3: 242 us per loop

>>> %timeit do_integrate(nb_integrand.ctypes)
100000 loops, best of 3: 13.5 us per loop
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1.8.3 Dealing with pointers and array memory

A less trivial use case of C callbacks involves doing operation on some array of data passed by the caller. As C doesn’t
have a high-level abstraction similar to Numpy arrays, the C callback’s signature will pass low-level pointer and size
arguments. Nevertheless, the Python code for the callback will expect to exploit the power and expressiveness of Numpy
arrays.

In the following example, the C callback is expected to operate on 2-d arrays, with the signature void(double
*input, double *output, int m, int n). You can implement such a callback thusly:

from numba import cfunc, types, carray

c_sig = types.void(types.CPointer(types.double),
types.CPointer(types.double),
types.intc, types.intc)

@cfunc(c_sig)
def my_callback(in_, out, m, n):
in_array = carray(in_, (m, n))
out_array = carray(out, (m, n))
for i in range(m):
for j in range(n):
out_array[i, j] = 2 * in_array[i, j]

The numba. carray () function takes as input a data pointer and a shape and returns an array view of the given shape
over that data. The data is assumed to be laid out in C order. If the data is laid out in Fortran order, numba. farray ()
should be used instead.

1.8.4 Handling C structures

With CFFI

For applications that have a lot of state, it is useful to pass data in C structures. To simplify the interoperability
with C code, numba can convert a cf£fi type into a numba Record type using numba.core.typing.cffi_utils.
map_type:

from numba.core.typing import cffi_utils

nbtype = cffi_utils.map_type(cffi_type, use_record_dtype=True)

Note: use_record_dtype=True is needed otherwise pointers to C structures are returned as void pointers.

Note: From v0.49 the numba.cffi_support module has been phased out in favour of numba.core.typing.
cffi_utils

For example:

from cffi import FFI

Src =

(continues on next page)
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/* Define the C struct */
typedef struct my_struct {

int il;
float £2;
double d3;

float af4[7]; // arrays are supported
} my_struct;

/* Define a callback function */
typedef double (*my_func) (my_struct®, size_t);

ffi = FFIQ
ffi.cdef(src)

# Get the function signature from *my_func¥*
sig = cffi_utils.map_type(ffi.typeof('my_func'), use_record_dtype=True)

# Make the cfunc
from numba import cfunc, carray

@cfunc(sig)
def foo(ptr, n):
base = carray(ptr, n) # view pointer as an array of my_struct
tmp = 0
for i in range(n):
tmp += base[i].il * base[i].f2 / base[i].d3
tmp += base[i].af4.sum() # nested arrays are like normal numpy array
return tmp

With numba. types.Record.make_c_struct

The numba. types.Record type can be created manually to follow a C-structure’s layout. To do that, use Record.
make_c_struct, for example:

my_struct = types.Record.make_c_struct([
# Provides a sequence of 2-tuples i.e. (name:str, type:Type)
('il'", types.int32),
('f2', types.float32),
('d3'", types.float64),
('af4', types.NestedArray(dtype=types.float32, shape=(7,))),
D

Due to ABI limitations, structures should be passed as pointers using types.CPointer (my_struct) as the argument
type. Inside the cfunc body, the my_struct* can be accessed with carray.
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Full example

See full example in examples/notebooks/Accessing C Struct Data.ipynb.

1.8.5 Signature specification

The explicit @cfunc signature can use any Numba types, but only a subset of them make sense for a C callback. You
should generally limit yourself to scalar types (such as int8 or float64) ,pointers to them (for example types.
CPointer(types.int8)), or pointers to Record type.

1.8.6 Compilation options

A number of keyword-only arguments can be passed to the @cfunc decorator: nopython and cache. Their meaning
is similar to those in the @jit decorator.

1.9 Compiling code ahead of time

While Numba’s main use case is Just-in-Time compilation, it also provides a facility for Ahead-of-Time compilation
(AOT).

1.9.1 Overview

Benefits
1. AOT compilation produces a compiled extension module which does not depend on Numba: you can distribute
the module on machines which do not have Numba installed (but Numpy is required).

2. There is no compilation overhead at runtime (but see the @jit cache option), nor any overhead of importing
Numba.

See also:

Compiled extension modules are discussed in the Python packaging user guide.

Limitations

1. AOT compilation only allows for regular functions, not ufuncs.
2. You have to specify function signatures explicitly.

3. Each exported function can have only one signature (but you can export several different signatures under different
names).

4. AOT compilation produces generic code for your CPU’s architectural family (for example “x86-64"), while JIT
compilation produces code optimized for your particular CPU model.
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1.9.2 Usage

Standalone example

from numba.pycc import CC

cc = CC("'my_module')
# Uncomment the following line to print out the compilation steps
#cc.verbose = True

@cc.export('multf', 'f8(f8, f8)')
@cc.export('multi', 'i4(i4, i4)")
def mult(a, b):

return a * b

@cc.export('square', "£8(£8)')
def square(a):
return a ** 2

if __name__ == "__main__":
cc.compile()

If you run this Python script, it will generate an extension module named my_module. Depending on your platform,
the actual filename may be my_module. so, my_module.pyd, my_module.cpython-34m. so, etc.

The generated module has three functions: multf, multi and square. multi operates on 32-bit integers (i4), while
multf and square operate on double-precision floats (£8):

>>> import my_module

>>> my_module.multi(3, 4)
12

>>> my_module.square(1.414)
1.9993959999999997

Distutils integration

You can also integrate the compilation step for your extension modules in your setup.py script, using distutils or
setuptools:

from distutils.core import setup
from source_module import cc

setup(...,
ext_modules=[cc.distutils_extension()])

The source_module above is the module defining the cc object. Extensions compiled like this will be automatically
included in the build files for your Python project, so you can distribute them inside binary packages such as wheels or
Conda packages. Note that in the case of using conda, the compilers used for AOT need to be those that are available
in the Anaconda distribution.
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Signature syntax

The syntax for exported signatures is the same as in the @jit decorator. You can read more about it in the rypes
reference.

Here is an example of exporting an implementation of the second-order centered difference on a 1d array:

@cc.export('centdiff_1d"', "£8[:]1(£8[:1, £8)")
def centdiff_1d(u, dx):
D = np.empty_like(u)
D[O] = O
D[-1] = O
for i in range(l, len(D) - 1):
D[i] = (u[i+1] - 2 * ul[i] + u[i-1]1) / dx**2
return D

You can also omit the return type, which will then be inferred by Numba:

@cc.export('centdiff_1d"', '(£8[:]1, £8)")
def centdiff_1d(u, dx):
# Same code as above

1.10 Automatic parallelization with @jit

Setting the parallel option for jit () enables a Numba transformation pass that attempts to automatically parallelize
and perform other optimizations on (part of) a function. At the moment, this feature only works on CPUs.

Some operations inside a user defined function, e.g. adding a scalar value to an array, are known to have parallel
semantics. A user program may contain many such operations and while each operation could be parallelized individ-
ually, such an approach often has lackluster performance due to poor cache behavior. Instead, with auto-parallelization,
Numba attempts to identify such operations in a user program, and fuse adjacent ones together, to form one or more
kernels that are automatically run in parallel. The process is fully automated without modifications to the user pro-
gram, which is in contrast to Numba’s vectorize () or guvectorize () mechanism, where manual effort is required
to create parallel kernels.

1.10.1 Supported Operations
In this section, we give a list of all the array operations that have parallel semantics and for which we attempt to
parallelize.

1. All numba array operations that are supported by Case study: Array Expressions, which include common arith-
metic functions between Numpy arrays, and between arrays and scalars, as well as Numpy ufuncs. They are often
called element-wise or point-wise array operations:

* unary operators: + - ~

* binary operators: + - * / /? % | >> A << &** //

e comparison operators: == =< <=>>=

e Numpy ufuncs that are supported in nopython mode.

 User defined DUFunc through vectorize().
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2. Numpy reduction functions sum, prod, min, max, argmin, and argmax. Also, array math functions mean, var,
and std.

3. Numpy array creation functions zeros, ones, arange, linspace, and several random functions (rand, randn,
ranf, random_sample, sample, random, standard_normal, chisquare, weibull, power, geometric, exponential,
poisson, rayleigh, normal, uniform, beta, binomial, f, gamma, lognormal, laplace, randint, triangular).

4. Numpy dot function between a matrix and a vector, or two vectors. In all other cases, Numba’s default imple-
mentation is used.

5. Multi-dimensional arrays are also supported for the above operations when operands have matching dimension
and size. The full semantics of Numpy broadcast between arrays with mixed dimensionality or size is not sup-
ported, nor is the reduction across a selected dimension.

6. Array assignment in which the target is an array selection using a slice or a boolean array, and the value being
assigned is either a scalar or another selection where the slice range or bitarray are inferred to be compatible.

7. The reduce operator of functools is supported for specifying parallel reductions on 1D Numpy arrays but the
initial value argument is mandatory.

1.10.2 Explicit Parallel Loops

Another feature of the code transformation pass (when parallel=True) is support for explicit parallel loops. One can
use Numba’s prange instead of range to specify that a loop can be parallelized. The user is required to make sure
that the loop does not have cross iteration dependencies except for supported reductions.

A reduction is inferred automatically if a variable is updated by a binary function/operator using its previous value in
the loop body. The initial value of the reduction is inferred automatically for the +=, -=, *=, and /= operators. For
other functions/operators, the reduction variable should hold the identity value right before entering the prange loop.
Reductions in this manner are supported for scalars and for arrays of arbitrary dimensions.

The example below demonstrates a parallel loop with a reduction (A is a one-dimensional Numpy array):

from numba import njit, prange

@njit(parallel=True)
def prange_test(A):
s =0
# Without "parallel=True" in the jit-decorator
# the prange statement is equivalent to range
for i in prange(A.shape[0]):
s += A[i]
return s

The following example demonstrates a product reduction on a two-dimensional array:

from numba import njit, prange
import numpy as np

@Gnjit(parallel=True)

def two_d_array_reduction_prod(n):
shp = (13, 17)
resultl = 2 * np.ones(shp, np.int_)
tmp = 2 * np.ones_like(resultl)

for i in prange(n):

(continues on next page)
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resultl *= tmp

return resultl

Care should be taken, however, when reducing into slices or elements of an array if the elements specified by the slice
or index are written to simultaneously by multiple parallel threads. The compiler may not detect such cases and then a
race condition would occur.

The following example demonstrates such a case where a race condition in the execution of the parallel for-loop results
in an incorrect return value:

from numba import njit, prange
import numpy as np

@njit(parallel=True)
def prange_wrong_result(x):
n = x.shape[0]
y = np.zeros(4)
for i in prange(n):
# accumulating into the same element of 'y  from different
# parallel iterations of the loop results in a race condition
y[:1 += x[i]

return y

as does the following example where the accumulating element is explicitly specified:

from numba import njit, prange
import numpy as np

@njit(parallel=True)
def prange_wrong_result(x):
n = x.shape[0]
y = np.zeros(4)
for i in prange(n):
# accumulating into the same element of 'y  from different
# parallel iterations of the loop results in a race condition
y[i % 4] += x[i]

return y

whereas performing a whole array reduction is fine:

from numba import njit, prange
import numpy as np

@njit(parallel=True)
def prange_ok_result_whole_arr(x):
n = x.shape[0]
y = np.zeros(4)
for i in prange(n):
y += x[i]
return y
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as is creating a slice reference outside of the parallel reduction loop:

from numba import njit, prange
import numpy as np

@Gnjit(parallel=True)
def prange_ok_result_outer_slice(x):
n = x.shape[0]
y = np.zeros(4)
z = yl[:]
for i in prange(n):
z += x[1]
return y

1.10.3 Examples

In this section, we give an example of how this feature helps parallelize Logistic Regression:

@numba. jit (nopython=True, parallel=True)
def logistic_regression(Y, X, w, iterations):
for i in range(iterations):
w -= np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X)
return w

We will not discuss details of the algorithm, but instead focus on how this program behaves with auto-parallelization:
1. Input Y is a vector of size N, X is an N x D matrix, and w is a vector of size D.

2. The function body is an iterative loop that updates variable w. The loop body consists of a sequence of vector
and matrix operations.

3. The inner dot operation produces a vector of size N, followed by a sequence of arithmetic operations either
between a scalar and vector of size N, or two vectors both of size N.

4. The outer dot produces a vector of size D, followed by an inplace array subtraction on variable w.

5. With auto-parallelization, all operations that produce array of size N are fused together to become a single parallel
kernel. This includes the inner dot operation and all point-wise array operations following it.

6. The outer dot operation produces a result array of different dimension, and is not fused with the above kernel.

Here, the only thing required to take advantage of parallel hardware is to set the parallel option for jit (), with no
modifications to the logistic_regression function itself. If we were to give an equivalence parallel implementation
using guvectorize(), it would require a pervasive change that rewrites the code to extract kernel computation that
can be parallelized, which was both tedious and challenging.
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1.10.4 Unsupported Operations

This section contains a non-exhaustive list of commonly encountered but currently unsupported features:

1. Mutating a list is not threadsafe

Concurrent write operations on container types (i.e. lists, sets and dictionaries) in a prange parallel region are
not threadsafe e.g.:

@Gnjit(parallel=True)
def invalidQ:
z = []
for i in prange(10000):
z.append (i)
return z

It is highly likely that the above will result in corruption or an access violation as containers require thread-safety
under mutation but this feature is not implemented.

. Induction variables are not associated with thread ID

The use of the induction variable induced by a prange based loop in conjunction with get_num_threads as a
method of ensuring safe writes into a pre-sized container is not valid e.g.:

@Gnjit(parallel=True)
def invalidQ:
n = get_num_threads()
z = [0 for _ in range(n)]
for i in prange(100):
z[i1 % n] += 1
return z

The above can on occasion appear to work, but it does so by luck. There’s no guarantee about which indexes are
assigned to which executing threads or the order in which the loop iterations execute.

1.10.5 Diagnostics

Note: At present not all parallel transforms and functions can be tracked through the code generation process. Occa-
sionally diagnostics about some loops or transforms may be missing.

The parallel option for jit () can produce diagnostic information about the transforms undertaken in automatically
parallelizing the decorated code. This information can be accessed in two ways, the first is by setting the environment
variable NUMBA_PARALLEL_DIAGNOSTICS, the second is by calling parallel_diagnostics (), both methods give
the same information and print to STDOUT. The level of verbosity in the diagnostic information is controlled by an
integer argument of value between 1 and 4 inclusive, 1 being the least verbose and 4 the most. For example:

@njit(parallel=True)
def test(x):

n = x.shape[0]

a = np.sin(x)
b = np.cos(a * a)
acc = 0

for i in prange(n - 2):

(continues on next page)
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for j in prange(n - 1):
acc += b[i] + b[j + 1]
return acc

test(np.arange(10))

test.parallel_diagnostics(level=4)

produces:

======= Parallel Accelerator Optimizing: Function test, example.py (4) =======

Parallel loop listing for Function test, example.py (4)

—————————————————————————————————————— | loop #ID
@njit(parallel=True)
def test(x): |

n = x.shape[0]

a =np.sin(X)--------------------- | #0

b = np.cos(a * a)----------------- | #1

acc = 0 |

for i in prange(n - 2):----------—- | #3

for j in prange(n - 1):----———- | #2

acc += b[i] + b[j + 1] |

return acc |
————————————————————————————————— Fusing loops --------——--—-—---commm——
Attempting fusion of parallel loops (combines loops with similar properties)...
Trying to fuse loops #0 and #1:

- fusion succeeded: parallel for-loop #1 is fused into for-loop #0.
Trying to fuse loops #0 and #3:

- fusion failed: loop dimension mismatched in axis 0. slice(®, x_size0.1, 1)
= slice(0, $40.4, 1)

Parallel region 0:

+--0 (parallel)
+--1 (parallel)

Parallel region 1:
+--3 (parallel)
+--2 (parallel)

Parallel region 0:
+--0 (parallel, fused with loop(s): 1)

Parallel region 1:

(continues on next page)
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+--3 (parallel)
+--2 (serial)

Parallel region 0 (loop #0) had 1 loop(s) fused.

Parallel region 1 (loop #3) had O loop(s) fused and 1 loop(s) serialized as part
of the larger parallel loop (#3).

Instruction hoisting:
loop #0:
Failed to hoist the following:
dependency: $arg_out_var.1® = getitem(value=x, index=$parfor__index_5.99)
dependency: $0.6.11 = getattr(value=$0.5, attr=sin)
dependency: $expr_out_var.9 = call $0.6.11($arg_out_var.10, func=$0.6.11, args=[Var(
—$arg_out_var.10, example.py (7))], kws=(), vararg=None)
dependency: $arg_out_var.17 = $expr_out_var.9 * $expr_out_var.9
dependency: $0.10.20 = getattr(value=$0.9, attr=cos)
dependency: $expr_out_var.16 = call $0.10.20($arg_out_var.17, func=$0.10.20,.
—args=[Var($arg_out_var.17, example.py (8))], kws=(), vararg=None)
loop #3:
Has the following hoisted:
$const58.3 = const(int, 1)
$58.4 = _n_23 - $const58.3

To aid users unfamiliar with the transforms undertaken when the parallel option is used, and to assist in the under-
standing of the subsequent sections, the following definitions are provided:

* Loop fusion Loop fusion is a technique whereby loops with equivalent bounds may be combined under certain
conditions to produce a loop with a larger body (aiming to improve data locality).

* Loop serialization Loop serialization occurs when any number of prange driven loops are present inside an-
other prange driven loop. In this case the outermost of all the prange loops executes in parallel and any
inner prange loops (nested or otherwise) are treated as standard range based loops. Essentially, nested
parallelism does not occur.

* Loop invariant code motion Loop invariant code motion is an optimization technique that analyses a loop to
look for statements that can be moved outside the loop body without changing the result of executing the
loop, these statements are then “hoisted” out of the loop to save repeated computation.

* Allocation hoisting Allocation hoisting is a specialized case of loop invariant code motion that is possible due
to the design of some common NumPy allocation methods. Explanation of this technique is best driven by
an example:

@njit(parallel=True)
def test(n):
for i in prange(n):
temp = np.zeros((50, 50)) # <--- Allocate a temporary array with np.

£ 105>

(continues on next page)
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for j in range(50):
temp[j, jl =1

# ...do something with temp

internally, this is transformed to approximately the following:

@njit(parallel=True)
def test(n):
for i in prange(n):
temp = np.empty((50, 50)) # <--- np.zeros() is rewritten as np.empty()
temp[:] = 0 # <--- and then a zero initialisation
for j in range(50):
temp[j, jl =1

# ...do something with temp

then after hoisting:

@njit(parallel=True)
def test(n):
temp = np.empty((50, 50)) # <--- allocation is hoisted as a loop invariant.
—as ‘np.empty" is considered pure
for i in prange(n):
temp[:] = 0 # <--- this remains as assignment is a side effect
for j in range(50):
temp[j, j] =1

# ...do something with temp

it can be seen that the np.zeros allocation is split into an allocation and an assignment, and then the
allocation is hoisted out of the loop in i, this producing more efficient code as the allocation only occurs
once.

The parallel diagnostics report sections

The report is split into the following sections:

1. Code annotation This is the first section and contains the source code of the decorated function with loops that
have parallel semantics identified and enumerated. The 1oop #ID column on the right of the source code
lines up with identified parallel loops. From the example, #0 is np.sin, #1 is np.cos and #2 and #3 are
prange():

Parallel loop listing for Function test, example.py (4)
—————————————————————————————————————— |loop #ID
@njit(parallel=True) |

def test(x): [

x.shape[0]

a =np.sinx)--————-—-—--—------—--———- | #0

b =np.cos(a * a)-———------—--———- | #1

acc = 0 |

for i in prange(n - 2):--—-————-—--——- | #3

=]
1l

(continues on next page)
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for j in prange(n - 1):------- | #2
acc += b[i] + b[j + 1] |
return acc |

It is worth noting that the loop IDs are enumerated in the order they are discovered which is not necessarily
the same order as present in the source. Further, it should also be noted that the parallel transforms use a
static counter for loop ID indexing. As a consequence it is possible for the loop ID index to not start at 0
due to use of the same counter for internal optimizations/transforms taking place that are invisible to the
user.

2. Fusing loops This section describes the attempts made at fusing discovered loops noting which succeeded and
which failed. In the case of failure to fuse a reason is given (e.g. dependency on other data). From the
example:

————————————————————————————————— Fusing loops ----------------------
Attempting fusion of parallel loops (combines loops with similar properties)...
Trying to fuse loops #0 and #1:

- fusion succeeded: parallel for-loop #1 is fused into for-loop #0.
Trying to fuse loops #0 and #3:

- fusion failed: loop dimension mismatched in axis 0. slice(®, x_size0.1, 1)
= slice(®, $40.4, 1)

It can be seen that fusion of loops #0 and #1 was attempted and this succeeded (both are based on the same
dimensions of x). Following the successful fusion of #0 and #1, fusion was attempted between #0 (now
including the fused #1 loop) and #3. This fusion failed because there is a loop dimension mismatch, #0 is
size x.shape whereas #3 is size x.shape[0] - 2.

3. Before Optimization This section shows the structure of the parallel regions in the code before any optimiza-
tion has taken place, but with loops associated with their final parallel region (this is to make before/after
optimization output directly comparable). Multiple parallel regions may exist if there are loops which can-
not be fused, in this case code within each region will execute in parallel, but each parallel region will run
sequentially. From the example:

Parallel region 0:
+--0 (parallel)
+--1 (parallel)

Parallel region 1:
+--3 (parallel)
+--2 (parallel)

As alluded to by the Fusing loops section, there are necessarily two parallel regions in the code. The first
contains loops #0 and #1, the second contains #3 and #2, all loops are marked parallel as no optimization
has taken place yet.

4. After Optimization This section shows the structure of the parallel regions in the code after optimization has
taken place. Again, parallel regions are enumerated with their corresponding loops but this time loops
which are fused or serialized are noted and a summary is presented. From the example:

Parallel region 0:
+--0 (parallel, fused with loop(s): 1)

(continues on next page)
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Parallel region 1:
+--3 (parallel)
+--2 (serial)

Parallel region 0 (loop #0) had 1 loop(s) fused.

Parallel region 1 (loop #3) had ® loop(s) fused and 1 loop(s) serialized as part
of the larger parallel loop (#3).

It can be noted that parallel region O contains loop #0 and, as seen in the fusing loops section, loop #1 is
fused into loop #0. It can also be noted that parallel region 1 contains loop #3 and that loop #2 (the inner
prange()) has been serialized for execution in the body of loop #3.

5. Loop invariant code motion This section shows for each loop, after optimization has occurred:
* the instructions that failed to be hoisted and the reason for failure (dependency/impure).
* the instructions that were hoisted.
* any allocation hoisting that may have occurred.

From the example:

Instruction hoisting:
loop #0:
Failed to hoist the following:
dependency: $arg_out_var.1l® = getitem(value=x, index=$parfor__index_5.99)
dependency: $0.6.11 = getattr(value=$0.5, attr=sin)
dependency: $expr_out_var.9 = call $0.6.11($arg_out_var.10, func=$0.6.11,._
—.args=[Var($arg_out_var.10, example.py (7))]1, kws=(), vararg=None)
dependency: $arg_out_var.1l7 = $expr_out_var.9 * $expr_out_var.9
dependency: $0.10.20 = getattr(value=$0.9, attr=cos)
dependency: $expr_out_var.16 = call $0.10.20($arg_out_var.17, func=$0.10.20,
-, args=[Var($arg_out_var.17, example.py (8))], kws=(), vararg=None)
loop #3:
Has the following hoisted:
$const58.3 = const(int, 1)
$58.4 = _n_23 - $const58.3

The first thing to note is that this information is for advanced users as it refers to the Numba IR of the
function being transformed. As an example, the expression a * a in the example source partly translates
to the expression $arg_out_var.17 = $expr_out_var.9 * $expr_out_var.9 in the IR, this clearly
cannot be hoisted out of loop #0 because it is not loop invariant! Whereas in 1loop #3, the expression
$const58.3 = const(int, 1) comes from the source b[j + 1], the number 1 is clearly a constant

and so can be hoisted out of the loop.
See also:

parallel, Parallel FAQs
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1.11 Using the @stencil decorator

Stencils are a common computational pattern in which array elements are updated according to some fixed pattern
called the stencil kernel. Numba provides the @stencil decorator so that users may easily specify a stencil kernel and
Numba then generates the looping code necessary to apply that kernel to some input array. Thus, the stencil decorator
allows clearer, more concise code and in conjunction with the parallel jit option enables higher performance through
parallelization of the stencil execution.

1.11.1 Basic usage

An example use of the @stencil decorator:

from numba import stencil

@stencil
def kernell(a):
return 0.25 * (a[0, 1] + a[l, O] + a[®, -1] + a[-1, 0O])

The stencil kernel is specified by what looks like a standard Python function definition but there are different semantics
with respect to array indexing. Stencils produce an output array of the same size and shape as the input array although
depending on the kernel definition may have a different type. Conceptually, the stencil kernel is run once for each
element in the output array. The return value from the stencil kernel is the value written into the output array for that
particular element.

The parameter a represents the input array over which the kernel is applied. Indexing into this array takes place with
respect to the current element of the output array being processed. For example, if element (x, y) is being processed
then a[0®, O] in the stencil kernel corresponds to a[x + 0, y + 0] in the input array. Similarly, a[-1, 1] in the
stencil kernel corresponds to a[x - 1, y + 1] in the input array.

Depending on the specified kernel, the kernel may not be applicable to the borders of the output array as this may cause
the input array to be accessed out-of-bounds. The way in which the stencil decorator handles this situation is dependent
upon which func_or_mode is selected. The default mode is for the stencil decorator to set the border elements of the
output array to zero.

To invoke a stencil on an input array, call the stencil as if it were a regular function and pass the input array as the
argument. For example, using the kernel defined above:

>>> import numpy as np

>>> input_arr = np.arange(100) .reshape((10, 10))

array([[ ®, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[16, 11, 12, 13, 14, 15, 16, 17, 18, 19],
[20, 21, 22, 23, 24, 25, 26, 27, 28, 29],
[30, 31, 32, 33, 34, 35, 36, 37, 38, 39],
[40, 41, 42, 43, 44, 45, 46, 47, 48, 49],
[50, 51, 52, 53, 54, 55, 56, 57, 58, 59],
[60, 61, 62, 63, 64, 65, 66, 67, 68, 69],
[7e, 71, 72, 73, 74, 75, 76, 77, 78, 79],
[80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
[90, 91, 92, 93, 94, 95, 96, 97, 98, 991D

>>> output_arr = kernell(input_arr)

array([[ 6., 6., ©0., ©6., 0., 0., 0., 0., 0., 0.7,
[ e., 11., 12., 13., 14., 15., 16., 17., 18., 0.1,
[ o., 21., 22., 23., 24., 25., 26., 27., 28., 0.1,
[ o., 31., 32., 33., 34., 35., 36., 37., 38., 0.7,

(continues on next page)
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[ 0., 41., 42., 43., 44., 45., 46., 47., 48., 0.1,
[ 6., 51., 52., 53., 54., 55., 56., 57., 58., 0.1,
[ 6., 61., 62., 63., 64., 65., 66., 67., 68., 0.1,
[ 6., 71., 72., 73., 74., 75., 76., 77., 78., 0.1,
[ 6., 81., 82., 83., 84., 85., 86., 87., 88., 0.1,
[ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.1D

>>> input_arr.dtype
dtype('int64"')

>>> output_arr.dtype
dtype('float64"')

Note that the stencil decorator has determined that the output type of the specified stencil kernel is float64 and has
thus created the output array as float64 while the input array is of type int64.

1.11.2 Stencil Parameters

Stencil kernel definitions may take any number of arguments with the following provisions. The first argument must
be an array. The size and shape of the output array will be the same as that of the first argument. Additional arguments
may either be scalars or arrays. For array arguments, those arrays must be at least as large as the first argument (array)
in each dimension. Array indexing is relative for all such input array arguments.

1.11.3 Kernel shape inference and border handling

In the above example and in most cases, the array indexing in the stencil kernel will exclusively use Integer literals.
In such cases, the stencil decorator is able to analyze the stencil kernel to determine its size. In the above example, the
stencil decorator determines that the kernel is 3 x 3 in shape since indices -1 to 1 are used for both the first and second
dimensions. Note that the stencil decorator also correctly handles non-symmetric and non-square stencil kernels.

Based on the size of the stencil kernel, the stencil decorator is able to compute the size of the border in the output
array. If applying the kernel to some element of input array would cause an index to be out-of-bounds then that element
belongs to the border of the output array. In the above example, points -1 and +1 are accessed in each dimension and
thus the output array has a border of size one in all dimensions.

The parallel mode is able to infer kernel indices as constants from simple expressions if possible. For example:

@njit(parallel=True)
def stencil_test(A):
c=2
B = stencil(
lambda a, c: 0.3 * (a[-c+1] + a[0] + a[c-11))(A, ©)
return B
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1.11.4 Stencil decorator options

Note: The stencil decorator may be augmented in the future to provide additional mechanisms for border handling.
At present, only one behaviour is implemented, "constant" (see func_or_mode below for details).

neighborhood

Sometimes it may be inconvenient to write the stencil kernel exclusively with Integer literals. For example, let
us say we would like to compute the trailing 30-day moving average of a time series of data. One could write
(a[-29] + a[-28] + ... + a[-1] + a[0]) / 30 but the stencil decorator offers a more concise form using
the neighborhood option:

@stencil (neighborhood = ((-29, 0),))
def kernel2(a):
cumul = 0
for i in range(-29, 1):
cumul += a[i]
return cumul / 30

The neighborhood option is a tuple of tuples. The outer tuple’s length is equal to the number of dimensions of the input
array. The inner tuple’s lengths are always two because each element of the outer tuple corresponds to minimum and
maximum index offsets used in the corresponding dimension.

If a user specifies a neighborhood but the kernel accesses elements outside the specified neighborhood, the behavior
is undefined.

func_or_mode

The optional func_or_mode parameter controls how the border of the output array is handled. Currently, there is only
one supported value, "constant". In constant mode, the stencil kernel is not applied in cases where the kernel
would access elements outside the valid range of the input array. In such cases, those elements in the output array are
assigned to a constant value, as specified by the cval parameter.

cval

The optional cval parameter defaults to zero but can be set to any desired value, which is then used for the border of
the output array if the func_or_mode parameter is set to constant. The cval parameter is ignored in all other modes.
The type of the cval parameter must match the return type of the stencil kernel. If the user wishes the output array to
be constructed from a particular type then they should ensure that the stencil kernel returns that type.

standard_indexing

By default, all array accesses in a stencil kernel are processed as relative indices as described above. However, some-
times it may be advantageous to pass an auxiliary array (e.g. an array of weights) to a stencil kernel and have that
array use standard Python indexing rather than relative indexing. For this purpose, there is the stencil decorator op-
tion standard_indexing whose value is a collection of strings whose names match those parameters to the stencil
function that are to be accessed with standard Python indexing rather than relative indexing:
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@stencil (standard_indexing=("b",))
def kernel3(a, b):
return a[-1] * b[0] + a[0®] + b[1]

1.11.5 StencilFunc

The stencil decorator returns a callable object of type StencilFunc. StencilFunc objects contains a number of
attributes but the only one of potential interest to users is the neighborhood attribute. If the neighborhood option
was passed to the stencil decorator then the provided neighborhood is stored in this attribute. Else, upon first execution
or compilation, the system calculates the neighborhood as described above and then stores the computed neighborhood
into this attribute. A user may then inspect the attribute if they wish to verify that the calculated neighborhood is
correct.

1.11.6 Stencil invocation options

Internally, the stencil decorator transforms the specified stencil kernel into a regular Python function. This function
will have the same parameters as specified in the stencil kernel definition but will also include the following optional
parameter.

out

The optional out parameter is added to every stencil function generated by Numba. If specified, the out parameter
tells Numba that the user is providing their own pre-allocated array to be used for the output of the stencil. In this case,
the stencil function will not allocate its own output array. Users should assure that the return type of the stencil kernel
can be safely cast to the element-type of the user-specified output array following the Numpy ufunc casting rules.

An example usage is shown below:

>>> import numpy as np

>>> input_arr = np.arange(100) .reshape((10, 10))
>>> output_arr = np.full(input_arr.shape, 0.0)
>>> kernell(input_arr, out=output_arr)

1.12 Callback into the Python Interpreter from within JIT’ed code

There are rare but real cases when a nopython-mode function needs to callback into the Python interpreter to invoke
code that cannot be compiled by Numba. Such cases include:

* logging progress for long running JIT ed functions;
* use data structures that are not currently supported by Numba;
* debugging inside JIT ed code using the Python debugger.
When Numba callbacks into the Python interpreter, the following has to happen:
* acquire the GIL;
* convert values in native representation back into Python objects;
* call-back into the Python interpreter;

* convert returned values from the Python-code into native representation;
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* release the GIL.

These steps can be expensive. Users should not rely on the feature described here on performance-critical paths.

1.12.1 The objmode context-manager

Warning: This feature can be easily mis-used. Users should first consider alternative approaches to achieve their
intended goal before using this feature.

numba.objmode (*args, **kwargs)
Creates a contextmanager to be used inside jitted functions to enter object-mode for using interpreter features.
The body of the with-context is lifted into a function that is compiled in object-mode. This transformation process
is limited and cannot process all possible Python code. However, users can wrap complicated logic in another
Python function, which will then be executed by the interpreter.

Use this as a function that takes keyword arguments only. The argument names must correspond to the output
variables from the with-block. Their respective values can be:

1. strings representing the expected types; i.e. "float32".

2. compile-time bound global or nonlocal variables referring to the expected type. The variables are read at
compile time.

When exiting the with-context, the output variables are converted to the expected nopython types according to
the annotation. This process is the same as passing Python objects into arguments of a nopython function.

Example:

import numpy as np
from numba import njit, objmode, types

def bar(x):
# This code is executed by the interpreter.
return np.asarray(list(reversed(x.tolist())))

# Output type as global variable
out_ty = types.intp[:]

@Gnjit
def foo():
X = np.arange(5)
y = np.zeros_like(x)
with objmode(y="intp[:]', z=out_ty): # annotate return type
# this region is executed by object-mode.
y += bar(x)
z=y
return y, z

Note: Known limitations:
» with-block cannot use incoming list objects.

» with-block cannot use incoming function objects.
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¢ with-block cannot yield, break, return or raise such that the execution will leave the with-block im-
mediately.

¢ with-block cannot contain with statements.

» random number generator states do not synchronize; i.e. nopython-mode and object-mode uses different
RNG states.

Note: When used outside of no-python mode, the context-manager has no effect.

Warning: This feature is experimental. The supported features may change with or without notice.

1.13 Automatic module jitting with jit_module

A common usage pattern is to have an entire module containing user-defined functions that all need to be jitted. One
option to accomplish this is to manually apply the @jit decorator to each function definition. This approach works and
is great in many cases. However, for large modules with many functions, manually jit-wrapping each function defini-
tion can be tedious. For these situations, Numba provides another option, the jit_module function, to automatically
replace functions declared in a module with their jit-wrapped equivalents.

It’s important to note the conditions under which jit_module will nor impact a function:

1. Functions which have already been wrapped with a Numba decorator (e.g. jit, vectorize, cfunc, etc.) are
not impacted by jit_module.

2. Functions which are declared outside the module from which jit_module is called are not automatically jit-
wrapped.

3. Function declarations which occur logically after calling jit_module are not impacted.

All other functions in a module will have the @jit decorator automatically applied to them. See the following section
for an example use case.

Note: This feature is for use by module authors. jit_module should not be called outside the context of a module
containing functions to be jitted.

1.13.1 Example usage

Let’s assume we have a Python module we’ve created, mymodule. py (shown below), which contains several functions.
Some of these functions are defined in mymodule . py while others are imported from other modules. We wish to have
all the functions which are defined in mymodule. py jitted using jit_module.

# mymodule.py
from numba import jit, jit_module

def inc(x):
return x + 1

(continues on next page)
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(continued from previous page)

def add(x, y):
return x + y

import numpy as np
# Use NumPy's mean function
mean = np.mean

@jit(nogil=True)
def mul(a, b):
return a * b

jit_module (nopython=True, error_model="numpy")

def div(a, b):
return a / b

There are several things to note in the above example:

* Both the inc and add functions will be replaced with their jit-wrapped equivalents with compilation options
nopython=True and error_model="numpy".

¢ The mean function, because it’s defined outside of mymodule.py in NumPy, will not be modified.
* mul will not be modified because it has been manually decorated with jit.
e div will not be automatically jit-wrapped because it is declared after jit_module is called.

When the above module is imported, we have:

>>> import mymodule

>>> mymodule.inc

CPUDispatcher(<function inc at 0x1032f86a8>)
>>> mymodule.mean

<function mean at 0x1096b8950>

1.13.2 API

Warning: This feature is experimental. The supported features may change with or without notice.

numba. jit_module (**kwargs)
Automatically jit-wraps functions defined in a Python module

Note that jit_module should only be called at the end of the module to be jitted. In addition, only functions
which are defined in the module jit_module is called from are considered for automatic jit-wrapping. See the
Numba documentation for more information about what can/cannot be jitted.

Parameters kwargs — Keyword arguments to pass to jit such as nopython or error_model.
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1.14 Performance Tips

This is a short guide to features present in Numba that can help with obtaining the best performance from code. Two
examples are used, both are entirely contrived and exist purely for pedagogical reasons to motivate discussion. The first
is the computation of the trigonometric identity cos(x)42 + sin(x)*2, the second is a simple element wise square
root of a vector with reduction over summation. All performance numbers are indicative only and unless otherwise
stated were taken from running on an Intel 17-4790 CPU (4 hardware threads) with an input of np.arange(1l.e7).

Note: A reasonably effective approach to achieving high performance code is to profile the code running with real
data and use that to guide performance tuning. The information presented here is to demonstrate features, not to act as
canonical guidance!

1.14.1 No Python mode vs Object mode

A common pattern is to decorate functions with @jit as this is the most flexible decorator offered by Numba. @jit
essentially encompasses two modes of compilation, first it will try and compile the decorated function in no Python
mode, if this fails it will try again to compile the function using object mode. Whilst the use of looplifting in object
mode can enable some performance increase, getting functions to compile under no python mode is really the key to
good performance. To make it such that only no python mode is used and if compilation fails an exception is raised the
decorators @njit and @jit (nopython=True) can be used (the first is an alias of the second for convenience).

1.14.2 Loops

Whilst NumPy has developed a strong idiom around the use of vector operations, Numba is perfectly happy with loops
too. For users familiar with C or Fortran, writing Python in this style will work fine in Numba (after all, LLVM gets a
lot of use in compiling C lineage languages). For example:

OGnjit
def ident_np(x):

return np.cos(x) ** 2 + np.sin(x) ** 2
Gnjit

def ident_loops(x):
r = np.empty_like(x)
n = len(x)
for i in range(n):
r[i] = np.cos(x[i]) ** 2 + np.sin(x[i]) ** 2
return r

The above run at almost identical speeds when decorated with @njit, without the decorator the vectorized function is
a couple of orders of magnitude faster.

Function Name | @nijit | Execution time
ident_np No 0.581s
ident_np Yes 0.659s
ident_loops No 25.2s
ident_loops Yes 0.670s
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1.14.3 Fastmath

In certain classes of applications strict IEEE 754 compliance is less important. As a result it is possible to relax some
numerical rigour with view of gaining additional performance. The way to achieve this behaviour in Numba is through
the use of the fastmath keyword argument:

@njit(fastmath=False)
def do_sum(A):
acc = 0.
# without fastmath, this loop must accumulate in strict order
for x in A:
acc += np.sqrt(x)
return acc

@njit(fastmath=True)
def do_sum_fast(A):
acc = 0.
# with fastmath, the reduction can be vectorized as floating point
# reassociation is permitted.
for x in A:
acc += np.sqrt(x)
return acc

Function Name | Execution time
do_sum 35.2 ms
do_sum_fast 17.8 ms

In some cases you may wish to opt-in to only a subset of possible fast-math optimizations. This can be done by supplying
a set of LLVM fast-math flags to fastmath.:

def add_assoc(x, y):
return (x - y) +y

print(njit(fastmath=False) (add_assoc) (0, np.inf)) # nan
print(njit(fastmath=True) (add_assoc) (0, np.inf)) # 0.0
print(njit(fastmath={'reassoc', 'nsz'})(add_assoc) (0, np.inf)) # 0.0
print(njit(fastmath={'reassoc'}) (add_assoc) (0, np.inf)) # nan
print(njit(fastmath={'nsz'}) (add_assoc) (0, np.inf)) # nan

1.14.4 Parallel=True

If code contains operations that are parallelisable (and supported) Numba can compile a version that will run in parallel
on multiple native threads (no GIL!). This parallelisation is performed automatically and is enabled by simply adding
the parallel keyword argument:

@njit(parallel=True)
def ident_parallel(x):
return np.cos(x) ** 2 + np.sin(x) ** 2

Executions times are as follows:
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Function Name Execution time
ident_parallel | 112 ms

The execution speed of this function with parallel=True present is approximately 5x that of the NumPy equivalent
and 6x that of standard @njit.

Numba parallel execution also has support for explicit parallel loop declaration similar to that in OpenMP. To indicate
that a loop should be executed in parallel the numba . prange function should be used, this function behaves like Python
range and if parallel=True is not set it acts simply as an alias of range. Loops induced with prange can be used
for embarrassingly parallel computation and also reductions.

Revisiting the reduce over sum example, assuming it is safe for the sum to be accumulated out of order, the loop in n
can be parallelised through the use of prange. Further, the fastmath=True keyword argument can be added without
concern in this case as the assumption that out of order execution is valid has already been made through the use of
parallel=True (as each thread computes a partial sum).

@njit(parallel=True)
def do_sum_parallel(A):
# each thread can accumulate its own partial sum, and then a cross
# thread reduction is performed to obtain the result to return
n = len(A)
acc = 0.
for i in prange(n):
acc += np.sqrt(A[i])
return acc

@Gnjit(parallel=True, fastmath=True)
def do_sum_parallel_fast(A):
n = len(A)
acc = 0.
for i in prange(n):
acc += np.sqrt(A[i])
return acc

Execution times are as follows, fastmath again improves performance.

Function Name Execution time
do_sum_parallel 9.81 ms
do_sum_parallel_fast | 5.37 ms

1.14.5 Intel SVML

Intel provides a short vector math library (SVML) that contains a large number of optimised transcendental functions
available for use as compiler intrinsics. If the icc_rt package is present in the environment (or the SVML libraries
are simply locatable!) then Numba automatically configures the LLVM back end to use the SVML intrinsic functions
where ever possible. SVML provides both high and low accuracy versions of each intrinsic and the version that is
used is determined through the use of the fastmath keyword. The default is to use high accuracy which is accurate to
within 1 ULP, however if fastmath is set to True then the lower accuracy versions of the intrinsics are used (answers
to within 4 ULP).

First obtain SVML, using conda for example:
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conda install -c numba icc_rt

Rerunning the identity function example ident_np from above with various combinations of options to @njit and
with/without SVML yields the following performance results (input size np.arange(1.e8)). For reference, with just
NumPy the function executed in 5. 84s:

@njit kwargs SVML | Execution time
None No 5.95s

None Yes 2.26s
fastmath=True No 5.97s
fastmath=True Yes 1.8s
parallel=True No 1.36s
parallel=True Yes 0.624s
parallel=True, fastmath=True | No 1.32s
parallel=True, fastmath=True | Yes 0.576s

It is evident that SVML significantly increases the performance of this function. The impact of fastmath in the case
of SVML not being present is zero, this is expected as there is nothing in the original function that would benefit from
relaxing numerical strictness.

1.14.6 Linear algebra

Numba supports most of numpy.1linalg in no Python mode. The internal implementation relies on a LAPACK and
BLAS library to do the numerical work and it obtains the bindings for the necessary functions from SciPy. Therefore,
to achieve good performance in numpy.linalg functions with Numba it is necessary to use a SciPy built against a
well optimised LAPACK/BLAS library. In the case of the Anaconda distribution SciPy is built against Intel’s MKL
which is highly optimised and as a result Numba makes use of this performance.

1.15 The Threading Layers

This section is about the Numba threading layer, this is the library that is used internally to perform the parallel execution
that occurs through the use of the parallel targets for CPUs, namely:

* The use of the parallel=True kwarg in @jit and @njit.

e The use of the target="parallel' kwarg in @vectorize and @guvectorize.

Note: If a code base does not use the threading or multiprocessing modules (or any other sort of parallelism)
the defaults for the threading layer that ship with Numba will work well, no further action is required!
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1.15.1 Which threading layers are available?

There are three threading layers available and they are named as follows:
* tbb - A threading layer backed by Intel TBB.
* omp - A threading layer backed by OpenMP.
» workqueue -A simple built-in work-sharing task scheduler.

In practice, the only threading layer guaranteed to be present is workqueue. The omp layer requires the presence of a
suitable OpenMP runtime library. The tbb layer requires the presence of Intel’s TBB libraries, these can be obtained
via the conda command:

$ conda install tbb

If you installed Numba with pip, TBB can be enabled by running:

$ pip install tbb

Due to compatibility issues with manylinux1 and other portability concerns, the OpenMP threading layer is disabled
in the Numba binary wheels on PyPI.

Note: The default manner in which Numba searches for and loads a threading layer is tolerant of missing libraries,
incompatible runtimes etc.

1.15.2 Setting the threading layer

The threading layer is set via the environment variable NUMBA_THREADING_LAYER or through assignment to numba.
config.THREADING_LAYER. If the programmatic approach to setting the threading layer is used it must occur logically
before any Numba based compilation for a parallel target has occurred. There are two approaches to choosing a thread-
ing layer, the first is by selecting a threading layer that is safe under various forms of parallel execution, the second is
through explicit selection via the threading layer name (e.g. tbb).

Selecting a threading layer for safe parallel execution
Parallel execution is fundamentally derived from core Python libraries in four forms (the first three also apply to code
using parallel execution via other means!):

¢ threads from the threading module.

* spawn ing processes from the multiprocessing module via spawn (default on Windows, only available in
Python 3.4+ on Unix)

» fork ing processes from the multiprocessing module via fork (default on Unix).

e fork ing processes from the multiprocessing module through the use of a forkserver (only available in
Python 3 on Unix). Essentially a new process is spawned and then forks are made from this new process on
request.

Any library in use with these forms of parallelism must exhibit safe behaviour under the given paradigm. As a result,
the threading layer selection methods are designed to provide a way to choose a threading layer library that is safe for
a given paradigm in an easy, cross platform and environment tolerant manner. The options that can be supplied to the
setting mechanisms are as follows:

» default provides no specific safety guarantee and is the default.
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 safe is both fork and thread safe, this requires the tbb package (Intel TBB libraries) to be installed.
» forksafe provides a fork safe library.
* threadsafe provides a thread safe library.

To discover the threading layer that was selected, the function numba . threading_layer () may be called after parallel
execution. For example, on a Linux machine with no TBB installed:

from numba import config, njit, threading_layer
import numpy as np

# set the threading layer before any parallel target compilation
config.THREADING_LAYER = 'threadsafe'

@njit(parallel=True)
def foo(a, b):
return a + b

X
y

np.arange(10.)
x.copy O

# this will force the compilation of the function, select a threading layer
# and then execute in parallel
foo(x, y)

# demonstrate the threading layer chosen
print("Threading layer chosen: " % threading_layer())

which produces:

Threading layer chosen: omp

and this makes sense as GNU OpenMP, as present on Linux, is thread safe.

Selecting a named threading layer

Advanced users may wish to select a specific threading layer for their use case, this is done by directly supplying the
threading layer name to the serting mechanisms. The options and requirements are as follows:

Thread- Platform | Requirements

ing Layer

Name

tbb All The tbb package ($ conda install tbb)

omp Linux GNU OpenMP libraries (very likely this will already exist)
Windows | MS OpenMP libraries (very likely this will already exist)
OSX The intel-openmp package ($ conda install intel-openmp)

workqueue | All None

Should the threading layer not load correctly Numba will detect this and provide a hint about how to resolve the prob-
lem. It should also be noted that the Numba diagnostic command numba -s has a section __Threading Layer
Information__ that reports on the availability of threading layers in the current environment.
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1.15.3 Extra notes

The threading layers have fairly complex interactions with CPython internals and system level libraries, some additional
things to note:

* The installation of Intel’s TBB libraries vastly widens the options available in the threading layer selection pro-
cess.

* On Linux, the omp threading layer is not fork safe due to the GNU OpenMP runtime library (1ibgomp) not being
fork safe. If a fork occurs in a program that is using the omp threading layer, a detection mechanism is present
that will try and gracefully terminate the forked child and print an error message to STDERR.

* On systems with the fork(2) system call available, if the TBB backed threading layer is in use and a fork call
is made from a thread other than the thread that launched TBB (typically the main thread) then this results in
undefined behaviour and a warning will be displayed on STDERR. As spawn is essentially fork followed by exec
it is safe to spawn from a non-main thread, but as this cannot be differentiated from just a fork call the warning
message will still be displayed.

* On OSX, the intel-openmp package is required to enable the OpenMP based threading layer.

1.15.4 Setting the Number of Threads

The number of threads used by numba is based on the number of CPU cores available (see numba.config.
NUMBA_DEFAULT_NUM_THREADS), but it can be overridden with the NUMBA_NUM_THREADS environment variable.

The total number of threads that numba launches is in the variable numba. config. NUMBA_NUM_THREADS.

For some use cases, it may be desirable to set the number of threads to a lower value, so that numba can be used with
higher level parallelism.

The number of threads can be set dynamically at runtime using numba.set_num_threads(). Note that
set_num_threads () only allows setting the number of threads to a smaller value than NUMBA_NUM_THREADS. Numba
always launches numba. config. NUMBA_NUM_THREADS threads, but set_num_threads () causes it to mask out un-
used threads so they aren’t used in computations.

The current number of threads used by numba can be accessed with numba. get_num_threads (). Both functions
work inside of a jitted function.

Example of Limiting the Number of Threads

In this example, suppose the machine we are running on has 8 cores (so numba. config. NUMBA_NUM_THREADS would
be 8). Suppose we want to run some code with @njit (parallel=True), but we also want to run our code concurrently
in 4 different processes. With the default number of threads, each Python process would run 8 threads, for a total in
4*8 = 32 threads, which is oversubscription for our 8 cores. We should rather limit each process to 2 threads, so that
the total will be 4*2 = 8, which matches our number of physical cores.

There are two ways to do this. One is to set the NUMBA_NUM_THREADS environment variable to 2.

§ NUMBA_NUM_THREADS=2 python ourcode.py

However, there are two downsides to this approach:

1. NUMBA_NUM_THREADS must be set before Numba is imported, and ideally before Python is launched. As soon
as Numba is imported the environment variable is read and that number of threads is locked in as the number of
threads Numba launches.
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2. If we want to later increase the number of threads used by the process, we cannot. NUMBA_NUM_THREADS sets the
maximum number of threads that are launched for a process. Calling set_num_threads () with a value greater
than numba. config. NUMBA_NUM_THREADS results in an error.

The advantage of this approach is that we can do it from outside of the process without changing the code.

Another approach is to use the numba. set_num_threads () function in our code

from numba import njit, set_num_threads
@njit(parallel=True)
def func(Q):

set_num_threads(2)
func()

If we call set_num_threads(2) before executing our parallel code, it has the same effect as calling the process
with NUMBA_NUM_THREADS=2, in that the parallel code will only execute on 2 threads. However, we can later call
set_num_threads(8) to increase the number of threads back to the default size. And we do not have to worry about
setting it before Numba gets imported. It only needs to be called before the parallel function is run.

API Reference
numba.config.NUMBA_NUM_THREADS
The total (maximum) number of threads launched by numba.

Defaults to numba.config.NUMBA_DEFAULT_NUM_THREADS, but can be overridden with the
NUMBA_NUM_THREADS environment variable.

numba.config.NUMBA_DEFAULT_NUM_THREADS
The number of usable CPU cores on the system (as determined by len(os.sched_getaffinity(0)), if sup-
ported by the OS, or multiprocessing.cpu_count() if not). This is the default value for numba. config.
NUMBA_NUM_THREADS unless the NUMBA_NUM_THREADS environment variable is set.

numba.set_num_threads (n)
Set the number of threads to use for parallel execution.

By default, all numba.config. NUMBA_NUM_THREADS threads are used.

This functionality works by masking out threads that are not used. Therefore, the number of threads n must be
less than or equal to NUMBA_NUM_THREADS, the total number of threads that are launched. See its documentation
for more details.

This function can be used inside of a jitted function.
Parameters
n: The number of threads. Must be between 1 and NUMBA_NUM_THREADS.

See also:

get_num_threads, numba.config.NUMBA_NUM_THREADS

numba. config.NUMBA_DEFAULT_NUM_THREADS, NUMBA_NUM_THREADS
numba.get_num_threads()

Get the number of threads used for parallel execution.

By default (if set_num_threads () is never called), all numba . config. NUMBA_NUM_THREADS threads are used.
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This number is less than or equal to the total number of threads that are launched, numba.config.
NUMBA_NUM_THREADS.

This function can be used inside of a jitted function.
Returns
The number of threads.

See also:

set_num_threads, numba. config.NUMBA_NUM_THREADS
numba.config.NUMBA_DEFAULT_NUM_THREADS, NUMBA_NUM_THREADS

1.16 Command line interface

Numba is a Python package, usually you import numba from Python and use the Python application programming
interface (API). However, Numba also ships with a command line interface (CLI), i.e. a tool numba that is installed
when you install Numba.

Currently, the only purpose of the CLI is to allow you to quickly show some information about your system and instal-
lation, or to quickly get some debugging information for a Python script using Numba.

1.16.1 Usage

To use the Numba CLI from the terminal, use numba followed by the options and arguments like --help or -s, as
explained below.

Sometimes it can happen that you get a “command not found” error when you type numba, because your PATH isn’t
configured properly. In that case you can use the equivalent command python -m numba. If that still gives “command
not found”, try to import numba as suggested here: Dependency List.

The two versions numba and python -m numba are the same. The first is shorter to type, but if you get a “command not
found” error because your PATH doesn’t contain the location where numba is installed, having the python -m numba
variant is useful.

To use the Numba CLI from IPython or Jupyter, use !numba, i.e. prefix the command with an exclamation mark. This
is a general [Python/Jupyter feature to execute shell commands, it is not available in the regular python terminal.

1.16.2 Help

To see all available options, use numba --help:

$ numba --help

usage: numba [-h] [--annotate] [--dump-1llvm] [--dump-optimized]
[--dump-assembly] [--dump-cfg] [--dump-ast]
[--annotate-html ANNOTATE_HTML] [-s]
[filename]

positional arguments:
filename Python source filename

optional arguments:

(continues on next page)
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(continued from previous page)

-h, --help show this help message and exit
--annotate Annotate source

--dump-11lvm Print generated llvm assembly
--dump-optimized Dump the optimized llvm assembly
--dump-assembly Dump the LLVM generated assembly
--dump-cfg [Deprecated] Dump the control flow graph
--dump-ast [Deprecated] Dump the AST

--annotate-html ANNOTATE_HTML
Output source annotation as html
-s, --sysinfo Output system information for bug reporting

1.16.3 System information

The numba -s (or the equivalent numba --sysinfo) command prints a lot of information about your system and your
Numba installation and relevant dependencies.

Remember: you can use !'numba -s with an exclamation mark to see this information from IPython or Jupyter.

Example output:

$ numba -s

System info:

__Time Stamp__
2019-05-07 14:15:39.733994

__Hardware Information__

Machine . x86_64
CPU Name : haswell

CPU count : 8
CPU Features :

aes avx avx2 bmi bmi2 cmov cx16 fl6c fma fsgsbase invpcid lzcnt mmx movbe pclmul
popcnt rdrnd sahf sse sse2 sse3 ssed4.l sse4.2 ssse3 xsave xsaveopt

__0S Information__

Platform : Darwin-18.5.0-x86_64-1386-64bit

Release : 18.5.0

System Name : Darwin

Version : Darwin Kernel Version 18.5.0: Mon Mar 11.
>20:40:32 PDT 2019; root:xnu-4903.251.3~3/RELEASE_X86_64

0S specific info : 10.14.4  x86_64

__Python Information__

Python Compiler : Clang 4.0.1 (tags/RELEASE_401/final)
Python Implementation : CPython

Python Version : 3.7.3

Python Locale : en_US UTF-8

__LLVM information__
LLVM version 1 7.0.0

(continues on next page)
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__CUDA Information__
CUDA driver library cannot be found or no CUDA enabled devices are present.
Error class: <class 'numba.cuda.cudadrv.error.CudaSupportError'>

__SVML Information__

SVML state, config.USING_SVML : False
SVML library found and loaded : False
llvmlite using SVML patched LLVM : True
SVML operational : False

__Threading Layer Information__

TBB Threading layer available : False
+--> Disabled due to : Unknown import problem.
OpenMP Threading layer available : False
+--> Disabled due to : Unknown import problem.
Workqueue Threading layer available : True

__Numba Environment Variable Information__
None set.

__Conda Information__

conda_build_version : 3.17.8
conda_env_version :4.6.14
platform : 0osx-64
python_version : 3.7.3.final.o®
root_writable : True

__Current Conda Env__
(output truncated due to length)

1.16.4 Debugging

As shown in the help output above, the numba command includes options that can help you to debug Numba compiled
code.

To try it out, create an example script called myscript.py:

import numba
@numba. jit
def f(x):

return 2 * x

£(42)

and then execute one of the following commands:

numba myscript.py --annotate

numba myscript.py --annotate-html myscript.html
numba myscript.py --dump-1llvm

numba myscript.py --dump-optimized

numba myscript.py --dump-assembly

@ A A A A
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1.17 Troubleshooting and tips

1.17.1 What to compile

The general recommendation is that you should only try to compile the critical paths in your code. If you have a piece of
performance-critical computational code amongst some higher-level code, you may factor out the performance-critical
code in a separate function and compile the separate function with Numba. Letting Numba focus on that small piece
of performance-critical code has several advantages:

* it reduces the risk of hitting unsupported features;
* it reduces the compilation times;

« it allows you to evolve the higher-level code which is outside of the compiled function much easier.

1.17.2 My code doesn’t compile

There can be various reasons why Numba cannot compile your code, and raises an error instead. One common reason
is that your code relies on an unsupported Python feature, especially in nopython mode. Please see the list of Supported
Python features. If you find something that is listed there and still fails compiling, please report a bug.

When Numba tries to compile your code it first tries to work out the types of all the variables in use, this is so it can
generate a type specific implementation of your code that can be compiled down to machine code. A common reason
for Numba failing to compile (especially in nopython mode) is a type inference failure, essentially Numba cannot work
out what the type of all the variables in your code should be.

For example, let’s consider this trivial function:

@jit(nopython=True)
def f(x, y):
return x + y

If you call it with two numbers, Numba is able to infer the types properly:

>>> £(1, 2)
3

If however you call it with a tuple and a number, Numba is unable to say what the result of adding a tuple and number
is, and therefore compilation errors out:

>>> £(1, (2,))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<path>/numba/numba/dispatcher.py", line 339, in _compile_for_args
reraise(type(e), e, None)

File "<path>/numba/numba/six.py", line 658, in reraise
raise value.with_traceback(tb)

numba.errors.TypingError: Failed at nopython (nopython frontend)

Invalid use of + with parameters (int64, tuple(int64 x 1))

Known signatures:

* (int64, int64) -> int64

* (int64, uint64) -> int64

* (uint64, int64) -> int64

* (uint64, uint64) -> uint64

(continues on next page)
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* (float32, float32) -> float32

* (float64, float64) -> floatb64

* (complex64, complex64) -> complex64

* (complex128, complex128) -> complex128
* (uintl6,) -> uint64

* (uint8,) -> uint64

* (uint64,) -> uint64

* (uint32,) -> uint64

* (intl6,) -> int64

* (int64,) -> int64

* (int8,) -> int64

* (int32,) -> int64

* (float32,) -> float32

* (float64,) -> float64

* (complex64,) -> complex64

* (complex128,) -> complex128

* parameterized

[1] During: typing of intrinsic-call at <stdin> (3)

File "<stdin>", line 3:

The error message helps you find out what went wrong: “Invalid use of + with parameters (int64, tuple(int64 x 1))” is
to be interpreted as “Numba encountered an addition of variables typed as integer and 1-tuple of integer, respectively,
and doesn’t know about any such operation”.

Note that if you allow object mode:

@jit
def g(x, y):
return x + y

compilation will succeed and the compiled function will raise at runtime as Python would do:

>>> g(1, (2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'tuple'

1.17.3 My code has a type unification problem

Another common reason for Numba not being able to compile your code is that it cannot statically determine the return
type of a function. The most likely cause of this is the return type depending on a value that is available only at runtime.
Again, this is most often problematic when using nopython mode. The concept of type unification is simply trying to
find a type in which two variables could safely be represented. For example a 64 bit float and a 64 bit complex number
could both be represented in a 128 bit complex number.

As an example of type unification failure, this function has a return type that is determined at runtime based on the
value of x:

In [1]: from numba import jit

In [2]: @jit(nopython=True)

(continues on next page)
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: def £(x):
if x > 10:
return (1,)
else:
return 1

In [3]: £(10)

Trying to execute this function, errors out as follows:

TypingError: Failed at nopython (nopython frontend)

Can't unify return type from the following types: tuple(int64 x 1), int64
Return of: IR name '$8.2', type '(int64 x 1)', location:

File "<ipython-input-2-5leflcc64bea>", line 4:

def f(x):
<source elided>
if x > 10:

return (1,)
A
Return of: IR name '$12.2', type 'int64', location:
File "<ipython-input-2-5leflcc64bea>", line 6:
def f(x):
<source elided>
else:
return 1

The error message “Can’t unify return type from the following types: tuple(int64 x 1), int64” should be read as “Numba
cannot find a type that can safely represent a 1-tuple of integer and an integer”.

1.17.4 My code has an untyped list problem

As noted previously the first part of Numba compiling your code involves working out what the types of all the variables
are. In the case of lists, a list must contain items that are of the same type or can be empty if the type can be inferred
from some later operation. What is not possible is to have a list which is defined as empty and has no inferable type
(i.e. an untyped list).

For example, this is using a list of a known type:

from numba import jit
@jit(nopython=True)
def £(Q:
return [1, 2, 3] # this list is defined on construction with ‘int" type

This is using an empty list, but the type can be inferred:

from numba import jit
@jit(nopython=True)
def f(x):
tmp = [] # defined empty
for i in range(x):
tmp.append(i) # list type can be inferred from the type of 'i°
return tmp
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This is using an empty list and the type cannot be inferred:

from numba import jit
@jit(nopython=True)
def f(x):
tmp = [] # defined empty
return (tmp, x) # ERROR: the type of ‘tmp" is unknown

Whilst slightly contrived, if you need an empty list and the type cannot be inferred but you know what type you want
the list to be, this “trick” can be used to instruct the typing mechanism:

from numba import jit

import numpy as np

@jit(nopython=True)

def f(x):
# define empty list, but instruct that the type is np.complex64
tmp = [np.complex64(x) for x in range(0)]
return (tmp, x) # the type of “tmp is known, but it is still empty

1.17.5 The compiled code is too slow

The most common reason for slowness of a compiled JIT function is that compiling in nopython mode has failed and
the Numba compiler has fallen back to object mode. object mode currently provides little to no speedup compared
to regular Python interpretation, and its main point is to allow an internal optimization known as loop-lifting: this
optimization will allow to compile inner loops in nopython mode regardless of what code surrounds those inner loops.

To find out if type inference succeeded on your function, you can use the inspect_types () method on the compiled
function.

For example, let’s take the following function:

@jit

def f(a, b):
s = a + float(b)
return s

When called with numbers, this function should be fast as Numba is able to convert number types to floating-point
numbers. Let’s see:

>>> £(1, 2)

3.0

>>> f.inspect_types()
f (int64, int64)

b LINE 7 ———
ejit

# --- LINE 8 ---

def f(a, b):

# --- LINE 9 ---
# label O

(continues on next page)
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# a.l = a :: int64

# del a

# Db.1 =Db :: int64

# del b

# $0.2 = global(float: <class 'float'>) :: Function(<class 'float'>)
# $0.4 = call $0.2(b.1, ) :: (int64,) -> float64
# del b.1

# del $0.2

# $0.5 =a.1 + $0.4 :: float64

# del a.l

# del $0.4

# s = $0.5 :: float64

# del $0.5

s = a + float(b)

# --- LINE 10 ---

# $0.7 = cast(value=s) :: float64

# del s

# return $0.7

return s

Without trying to understand too much of the Numba intermediate representation, it is still visible that all variables and
temporary values have had their types inferred properly: for example a has the type int64, $0.5 has the type float64,
etc.

However, if b is passed as a string, compilation will fall back on object mode as the float() constructor with a string is
currently not supported by Numba:

>>> £(1, "2")

3.0
>>> f.inspect_types()
[... snip annotations for other signatures, see above ...]

f (int64, str)

# --- LINE 7 ---
@jit
# --- LINE 8 ---
def f(a, b):
# --- LINE 9 ---
# label 0
# a.1 =a :: pyobject
# del a
# b.1 =Db :: pyobject
# del b
# $0.2 = global(float: <class 'float'>) :: pyobject
# $0.4 = call $0.2(b.1, ) :: pyobject

(continues on next page)
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del b.1

del $0.2

$0.5 = a.1 + $0.4 :: pyobject
del a.l

del $0.4

s = $0.5 :: pyobject

del $0.5

FHFoH OH OH W W W

0

= a + float(b)

# --- LINE 10 ---

# $0.7 = cast(value=s) :: pyobject
# del s

# return $0.7

return s

Here we see that all variables end up typed as pyobject. This means that the function was compiled in object mode
and values are passed around as generic Python objects, without Numba trying to look into them to reason about their
raw values. This is a situation you want to avoid when caring about the speed of your code.

If a function fails to compile in nopython mode warnings will be emitted with explanation as to why compilation
failed. For example with the £() function above (slightly edited for documentation purposes):

>>> £(1, 2)
3.0
>>> £(1, "2")
example.py:7: NumbaWarning:
Compilation is falling back to object mode WITH looplifting enabled because Function "f".
—.failed type inference due to: Invalid use of Function(<class 'float'>) with.
—argument (s) of type(s): (unicode_type)
* parameterized
In definition 0:
TypeError: float() only support for numbers
raised from <path>/numba/typing/builtins.py:880
In definition 1:
TypeError: float() only support for numbers
raised from <path>/numba/typing/builtins.py:880
This error is usually caused by passing an argument of a type that is unsupported by the.
—named function.
[1] During: resolving callee type: Function(<class 'float'>)
[2] During: typing of call at example.py (9)

File "example.py", line 9:
def f(a, b):
s = a + float(b)

A

<path>/numba/compiler.py:722: NumbaWarning: Function "f" was compiled in object mode.
—without forceobj=True.

File "example.py", line 8:

(continues on next page)
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@jit
def f(a, b):
A

3.0

1.17.6 Disabling JIT compilation

In order to debug code, it is possible to disable JIT compilation, which makes the jit decorator (and the njit decorator)
act as if they perform no operation, and the invocation of decorated functions calls the original Python function instead
of a compiled version. This can be toggled by setting the NUMBA_DISABLE_JIT enviroment variable to 1.

When this mode is enabled, the vectorize and guvectorize decorators will still result in compilation of a ufunc, as
there is no straightforward pure Python implementation of these functions.

1.17.7 Debugging JIT compiled code with GDB

Setting the debug keyword argument in the jit decorator (e.g. @jit (debug=True)) enables the emission of debug
info in the jitted code. To debug, GDB version 7.0 or above is required. Currently, the following debug info is available:

* Function name will be shown in the backtrace. But, no type information.

 Source location (filename and line number) is available. For example, user can set break point by the absolute
filename and line number; e.g. break /path/to/myfile.py:6.

¢ Local variables in the current function can be shown with info locals.
* Type of variable with whatis myvar.
¢ Value of variable with print myvar or display myvar.

— Simple numeric types, i.e. int, float and double, are shown in their native representation. But, integers are
assumed to be signed.

— Other types are shown as sequence of bytes.
Known issues:

» Stepping depends heavily on optimization level. At full optimization (equivalent to O3), most of the variables
are optimized out.

e Memory consumption increases significantly with debug info enabled. The compiler emits extra information
(DWARF) along with the instructions. The emitted object code can be 2x bigger with debug info.

Internal details:

¢ Since Python semantics allow variables to bind to value of different types, Numba internally creates multiple
versions of the variable for each type. So for code like:

x =1 # type int
X =2.3 # type float
x = (1, 2, 3) # type 3-tuple of int

Each assignments will store to a different variable name. In the debugger, the variables will be x, x$1 and x$2.
(In the Numba IR, they are x, x.1 and x.2.)

* When debug is enabled, inlining of the function is disabled.
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Example debug usage

The python source:

from numba import njit

@njit(debug=True)
def foo(a):
b=a+1
c=a%*2.34
d = (, b, ©
print(a, b, c, d)

r= foo(123)
print(r)

In the terminal:

$ NUMBA_OPT=1 gdb -q python

Reading symbols from python...done.

(gdb) break /home/user/chk_debug.py:5

No source file named /home/user/chk_debug.py.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (/home/user/chk_debug.py:5) pending.

(gdb) run chk_debug.py

Starting program: /home/user/miniconda/bin/python chk_debug.py
Breakpoint 1 main__::foo0$241(long long) () at chk_debug.py:5

5 b=a+1
(gdb) n

6 c=a%*2.34
(gdb) bt

#0 __main__::foo0%$241(long long) () at chk_debug.py:6
#1 0x00007ffff7fec4d7c in cpython::__main__::foo$241(long long) QO
#2 0x00007fffeb7976e2 in call_cfunc (locals=0x0, kws=0x0, args=0x7fffeb486198,

(gdb) info locals

a=2=0

d = <error reading variable d (DWARF-2 expression error: 'DW_OP_stack_value' operations.
—must be used either alone or in conjunction with DW_OP_piece or DW_OP_bit_piece.)>
c=0

b = 124

(gdb) whatis b

type = i64

(gdb) whatis d

type = {i64, i64, double}

(gdb) print b

$2 = 124
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Globally override debug setting

It is possible to enable debug for the full application by setting environment variable NUMBA_DEBUGINFO=1. This sets
the default value of the debug option in jit. Debug can be turned off on individual functions by setting debug=False.

Beware that enabling debug info significantly increases the memory consumption for each compiled function. For large
application, this may cause out-of-memory error.

1.17.8 Using Numba’s direct gdb bindings in nopython mode

Numba (version 0.42.0 and later) has some additional functions relating to gdb support for CPUs that make it easier
to debug programs. All the gdb related functions described in the following work in the same manner irrespective
of whether they are called from the standard CPython interpreter or code compiled in either nopython mode or object
mode.

Note: This feature is experimental!

Warning: This feature does unexpected things if used from Jupyter or alongside the pdb module. It’s behaviour
is harmless, just hard to predict!

Set up

Numba’s gdb related functions make use of a gdb binary, the location and name of this binary can be configured via
the NUMBA_GDB_BINARY environment variable if desired.

Note: Numba’s gdb support requires the ability for gdb to attach to another process. On some systems (notably Ubuntu
Linux) default security restrictions placed on ptrace prevent this from being possible. This restriction is enforced at
the system level by the Linux security module Yama. Documentation for this module and the security implications
of making changes to its behaviour can be found in the Linux Kernel documentation. The Ubuntu Linux security
documentation discusses how to adjust the behaviour of Yama on with regards to ptrace_scope so as to permit the
required behaviour.

Basic gdb support

Warning: Calling numba.gdb() and/or numba.gdb_init () more than once in the same program is not advis-
able, unexpected things may happen. If multiple breakpoints are desired within a program, launch gdb once via
numba.gdb() or numba.gdb_init() and then use numba.gdb_breakpoint () to register additional breakpoint
locations.

The most simple function for adding gdb support is numba.gdb (), which, at the call location, will:
¢ launch gdb and attach it to the running process.

* create a breakpoint at the site of the numba.gdb() function call, the attached gdb will pause execution here
awaiting user input.

use of this functionality is best motivated by example, continuing with the example used above:
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from numba import njit, gdb

@njit(debug=True)
def foo(a):
b=a+1
gdb() # instruct Numba to attach gdb at this location and pause execution
c=a*2.34
d=(, b, ©
print(a, b, c, d)

r= foo(123)
print(r)

In the terminal (... on a line by itself indicates output that is not presented for brevity):

$ NUMBA_OPT=0 python demo_gdb.py
Attaching to PID: 27157
GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7

Attaching to process 27157

Reading symbols from <elided for brevity> ...done.

0x00007£0380c31550 in __nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)

Breakpoint 1 at 0x7f036ac388f0: file numba/_helperlib.c, line 1090.

Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090

1090 }

(gdb) s

Single stepping until exit from function _ZN5numba7targets8gdb_hook8hook_gdbl2$3clocals
—.$3e8impl$242E5Tuple,

which has no line number information.

__main__::foo$241(long long) () at demo_gdb.py:7

7 c=a*®*2.34
(gdb) 1

2

3 @njit(debug=True)

4 def foo(a):

5 b=a+1

6 gdb() # instruct Numba to attach gdb at this location and pause execution
7 c=a?®*2.34

8 d=C(, b, 0

9 print(a, b, c, d)
10

11 r= foo(123)

(gdb) p a

$1 = 123

(gdb) p b

$2 = 124

(gdb) p c

$3 =0

(gdb) n

(continues on next page)
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8 d=(, b, @
(gdb) p c
$4 = 287.81999999999999

It can be seen in the above example that execution of the code is paused at the location of the gdb () function call at
end of the numba_gdb_breakpoint function (this is the Numba internal symbol registered as breakpoint with gdb).
Issuing a step at this point moves to the stack frame of the compiled Python source. From there, it can be seen that
the variables a and b have been evaluated but c has not, as demonstrated by printing their values, this is precisely
as expected given the location of the gdb() call. Issuing a next then evaluates line 7 and c is assigned a value as
demonstrated by the final print.

Running with gdb enabled

The functionality provided by numba. gdb () (launch and attach gdb to the executing process and pause on a breakpoint)
is also available as two separate functions:

e numba.gdb_init() this function injects code at the call site to launch and attach gdb to the executing process
but does not pause execution.

e numba.gdb_breakpoint() this function injects code at the call site that will call the special
numba_gdb_breakpoint function that is registered as a breakpoint in Numba’s gdb support. This is
demonstrated in the next section.

This functionality enables more complex debugging capabilities. Again, motivated by example, debugging a ‘segfault’
(memory access violation signalling SIGSEGV):

from numba import njit, gdb_init
import numpy as np

# NOTE debug=True switches bounds-checking on, but for the purposes of this
# example it is explicitly turned off so that the out of bounds index is
# not caught!
@njit(debug=True, boundscheck=False)
def foo(a, index):
gdb_init() # instruct Numba to attach gdb at this location, but not to pause.
—execution
b=a+1
c=a?%*2.34
d c[index] # access an address that is a) invalid b) out of the page
print(a, b, c, d)

bad_index = int(1e9) # this index is invalid
z = np.arange(10)

r = foo(z, bad_index)

print(r)

In the terminal (... on a line by itself indicates output that is not presented for brevity):

$ python demo_gdb_segfault.py
Attaching to PID: 5444
GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7

Attaching to process 5444

(continues on next page)
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Reading symbols from <elided for brevity> ...done.

0x00007£8d8010a550 in __nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)

Breakpoint 1 at 0x7f8d6al1118f0: file numba/_helperlib.c, line 1090.

Continuing.

0x00007fa7b810a41f in __main__::foo$241(Array<long long, 1, C, mutable, aligned>, long.
—long) () at demo_gdb_segfault.py:9

9 d = c[index] # access an address that is a) invalid b) out of the page
(gdb) p index

$1 = 1000000000

(gdb) p c

$2 = "p\202\017\364\371U\000\000\000\000\000\000\000\000\000\000\n\000\000\000\000\000\
—000\000\b\000\000\000\000\000\000\000\240\202\017\364\371U\000\000\n\000\000\000\000\
—000\000\000\b\000\000\000\000\000\000"

(gdb) whatis c

type = {i8*, i8%, i64, i64, double*, [1 x i64], [1 x i64]}

(gdb) x /32xb c

0x7££d56195068: 0x70 0x82 0x0f 0xf4 0xf9 0x55 0x00 0x00
0x7££d56195070: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7££d56195078: 0x0a 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7££d56195080: 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00

In the gdb output it can be noted that the numba_gdb_breakpoint function was registered as a breakpoint (its symbol
is in numba/_helperlib.c), that a SIGSEGV signal was caught, and the line in which the access violation occurred
is printed.

Continuing the example as a debugging session demonstration, first index can be printed, and it is evidently 1e9.
Printing c gives a lot of bytes, so the type needs looking up. The type of c shows the layout for the array c based on
its DataModel (look in the Numba source numba.datamodel .models for the layouts, the ArrayModel is presented
below for ease).

class ArraylModel (StructModel):
def __init__(self, dmm, fe_type):

ndim = fe_type.ndim

members = [
('meminfo', types.MemInfoPointer(fe_type.dtype)),
('parent', types.pyobject),
('nitems', types.intp),
('"itemsize', types.intp),
('data', types.CPointer(fe_type.dtype)),
('shape', types.UniTuple(types.intp, ndim)),
('strides', types.UniTuple(types.intp, ndim)),

The type inspected from gdb (type = {i8*, i8*, i64, i64, double*, [1 x i64], [1 x i64]}) corre-
sponds directly to the members of the ArrayModel. Given the segfault came from an invalid access it would be
informative to check the number of items in the array and compare that to the index requested.

Examining the memory of ¢, (x /32xb c), the first 16 bytes are the two 18* corresponding to the meminfo pointer and
the parent pyobject. The next two groups of 8 bytes are 164/intp types corresponding to nitems and itemsize
respectively. Evidently their values are 0x0a and 0x08, this makes sense as the input array a has 10 elements and
is of type int64 which is 8 bytes wide. It’s therefore clear that the segfault comes from an invalid access of index
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1000000000 in an array containing 10 items.

Adding breakpoints to code

The next example demonstrates using multiple breakpoints that are defined through the invocation of the numba.
gdb_breakpoint () function:

from numba import njit, gdb_init, gdb_breakpoint

@njit(debug=True)

def foo(a):
gdb_init() # instruct Numba to attach gdb at this location
b=a+1
gdb_breakpoint() # instruct gdb to break at this location
c=a*2.34
d=(, b, ©

gdb_breakpoint() # and to break again at this location
print(a, b, c, d)

r= foo(123)
print(r)

In the terminal (... on a line by itself indicates output that is not presented for brevity):

$ NUMBA_OPT=0 python demo_gdb_breakpoints.py
Attaching to PID: 20366
GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7

Attaching to process 20366

Reading symbols from <elided for brevity> ...done.

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib64/libthread_db.so.1".

Reading symbols from /1ib64/libc.so.6...Reading symbols from /usr/lib/debug/usr/1ib64/
—1libc-2.17.s0.debug. . .done.

0x00007£631db5e550 in __nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81

81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
Breakpoint 1 at 0x7£f6307b658f0: file numba/_helperlib.c, line 1090.
Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090

1090 }

(gdb) step

__main__::foo$241(long long) () at demo_gdb_breakpoints.py:8

8 c=a?*2.34

(gdb) 1

3 Onjit(debug=True)

4 def foo(a):

5 gdb_init() # instruct Numba to attach gdb at this location
6 b=a+1

7 gdb_breakpoint() # instruct gdb to break at this location
8 c=a?®*2.34

9 d=(a, b, ©

10 gdb_breakpoint() # and to break again at this location

(continues on next page)
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11 print(a, b, c, d)
12

(gdb) p b

$1 = 124

(gdb) p c

$2 =0

(gdb) continue

Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) step

11 print(a, b, c, d)

(gdb) p c

$3 = 287.81999999999999

From the gdb output it can be seen that execution paused at line 8 as a breakpoint was hit, and after a continue was
issued, it broke again at line 11 where the next breakpoint was hit.

Debugging in parallel regions

The follow example is quite involved, it executes with gdb instrumentation from the outset as per the example above,
but it also uses threads and makes use of the breakpoint functionality. Further, the last iteration of the parallel section
calls the function work, which is actually just a binding to glibc’s free(3) in this case, but could equally be some
involved function that is presenting a segfault for unknown reasons.

from numba import njit, prange, gdb_init, gdb_breakpoint
import ctypes

def get_free():
lib = ctypes.cdll.LoadLibrary('libc.so0.6")
free_binding = lib.free
free_binding.argtypes = [ctypes.c_void_p,]
free_binding.restype = None
return free_binding

work = get_free()

@njit(debug=True, parallel=True)
def foo():
gdb_init() # instruct Numba to attach gdb at this location, but not to pause.
—execution
counter = 0
n-=29
for i in prange(n):
if i >3 and i < 8: # iterations 4, 5, 6, 7 will break here
gdb_breakpoint ()

if i == 8: # last iteration segfaults
work (9xBADADD)

(continues on next page)
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counter += 1
return counter

r = foo()
print(r)

In the terminal (... on a line by itself indicates output that is not presented for brevity), note the setting of
NUMBA_NUM_THREADS to 4 to ensure that there are 4 threads running in the parallel section:

$ NUMBA_NUM_THREADS=4 NUMBA_OPT=0 python demo_gdb_threads.py
Attaching to PID: 21462

Attaching to process 21462

[New LWP 21467]

[New LWP 21468]

[New LWP 21469]

[New LWP 21470]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib64/libthread_db.so.1".
0x00007£59ec31756d in nanosleep () at ../sysdeps/unix/syscall-template.S:81

81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
Breakpoint 1 at 0x7£59d631e8f0: file numba/_helperlib.c, line 1090.
Continuing.

[Switching to Thread 0x7£59d1£d1700 (LWP 21470)]

Thread 5 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }
(gdb) info threads
Id Target Id Frame
1 Thread 0x7£59eca2f740 (LWP 21462) "python" pthread_cond_wait@@GLIBC_2.3.2 ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
2 Thread 0x7£59d37d4700 (LWP 21467) "python" pthread_cond_wait@@GLIBC_2.3.2 (O
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
3 Thread 0x7£59d2£d3700 (LWP 21468) "python" pthread_cond_wait@@GLIBC_2.3.2 ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
4 Thread 0x7£59d27d2700 (LWP 21469) "python" numba_gdb_breakpoint () at numba/_
—helperlib.c:1090
* 5 Thread 0x7£59d1£fd1700 (LWP 21470) "python" numba_gdb_breakpoint () at numba/_
—helperlib.c:1090
(gdb) thread apply 2-5 info locals

Thread 2 (Thread 0x7£59d37d4700 (LWP 21467)):
No locals.

Thread 3 (Thread 0x7£59d2£fd3700 (LWP 21468)):
No locals.

Thread 4 (Thread 0x7£59d27d2700 (LWP 21469)):
No locals.

Thread 5 (Thread 0x7£59d1£fd1700 (LWP 21470)):
sched$35 = '\000' <repeats 55 times>

(continues on next page)
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counter__arr = '\000' <repeats 16 times>, "\001\000\000\000\000\000\000\000\b\0OO\000\
—000\000\000\000\000\370B]\"hU\OOO\000\001", '\000' <repeats 14 times>

counter = 0

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d27d2700 (LWP 21469)]

Thread 4 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d1f£d1700 (LWP 21470)]

Thread 5 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d27d2700 (LWP 21469)]

Thread 4 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) continue

Continuing.

Thread 5 "python" received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0x7£59d1£d1700 (LWP 21470)]
__GI___libc_free (mem=0xbadadd) at malloc.c:2935

2935 if (chunk_is_mmapped(p)) /% release mmapped memory. */
(gdb) bt
#0 __GI___libc_free (mem=0xbadadd) at malloc.c:2935

#1 0x00007£59d37ded84 in $3cdynamic$3e::__numba_parfor_gufunc__0x7ffff80a6lae3e3l

-.$244 (Array<unsigned long long, 1, C, mutable, aligned>, Array<long long, 1, C, mutable,
— aligned>) () at <string>:24

#2 0x00007£59d17ce326 in __gufunc__._ZN13$3cdynamic$3e45__numba_parfor_gufunc__
—0x7ffff80a6lae3e31$244E5ArraylyLilE1C7mutable7alignedE5ArrayIxLi1E1C7mutable7alignedE.
=0

#3 0x00007£59d37d7320 in thread_worker ()

from <path>/numba/numba/npyufunc/workqueue.cpython-37m-x86_64-1linux-gnu.so

#4 0x00007f59ec626e25 in start_thread (arg=0x7£59d1fd1700) at pthread_create.c:308

#5 0x00007f59ec350bad in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:113

In the output it can be seen that there are 4 threads launched and that they all break at the breakpoint, further that
Thread 5 receives a signal SIGSEGV and that back tracing shows that it came from __GI___libc_free with the
invalid address in mem, as expected.
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Using the gdb command language

Both the numba.gdb() and numba.gdb_init() functions accept unlimited string arguments which will be passed
directly to gdb as command line arguments when it initializes, this makes it easy to set breakpoints on other functions
and perform repeated debugging tasks without having to manually type them every time. For example, this code runs
with gdb attached and sets a breakpoint on _dgesdd (say for example the arguments passed to the LAPACK’s double
precision divide and conqueror SVD function need debugging).

from numba import njit, gdb
import numpy as np

@njit(debug=True)
def foo(a):
# instruct Numba to attach gdb at this location and on launch, switch
# breakpoint pending on , and then set a breakpoint on the function
# _dgesdd, continue execution, and once the breakpoint is hit, backtrace
gdb('-ex', 'set breakpoint pending on',
'-ex', 'b dgesdd_',

_exl’lcly
l_exl’lbtl)
b=a+ 10

u, s, vh = np.linalg.svd(b)
return s # just return singular values

z = np.arange(70.) .reshape(10, 7)
r = foo(z)
print(r)

In the terminal (... on a line by itself indicates output that is not presented for brevity), note that no interaction is
required to break and backtrace:

$ NUMBA_OPT=0 python demo_gdb_args.py
Attaching to PID: 22300
GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7

Attaching to process 22300
Reading symbols from <py_env>/bin/python3.7...done.
0x00007£652305a550 in __nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81

81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
Breakpoint 1 at 0x7£f650d0618f0: file numba/_helperlib.c, line 1090.
Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

Breakpoint 2 at 0x7£65102322e® (2 locations)

Continuing.

Breakpoint 2, 0x00007f65182be5f0 in mkl_lapack.dgesdd_ ()
from <py_env>/1lib/python3.7/site-packages/numpy/core/../../../../1libmkl_rt.so
#0 0x00007£65182be5f0 in mkl_lapack.dgesdd_ ()
from <py_env>/lib/python3.7/site-packages/numpy/core/../../../../1libmkl_rt.so
#1 0x00007£650d065b71 in numba_raw_rgesdd (kind=kind@entry=100 'd', jobz=<optimized out>
<, jobz@entry=65 'A', m=m@entry=10,
n=n@entry=7, a=a@entry=0x561c6fbb20c0®, lda=lda@entry=10, s=0x561c6facf3a0,..

~u=0x561c6fb680e0, 1ldu=10, vt=0x561c6£d375c0, (continues on next page)
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ldvt=7, work=0x7f£ff4c926c30, lwork=-1, iwork=0x7fff4c926c40, info=0x7fff4c926c20) at.
—numba/_lapack.c:1277
#2 0x00007£650d06768f in numba_ez_rgesdd (ldvt=7, vt=0x561c6£fd375c®, 1ldu=10,.
—u=0x561c6fb680ed, s=0x561c6facf3a®d, lda=10,

a=0x561c6fbb20c®, n=7, m=10, jobz=65 'A', kind=<optimized out>) at numba/_lapack.
—c:1307
#3 numba_ez_gesdd (kind=<optimized out>, jobz=<optimized out>, m=10, n=7,.
—a=0x561c6fbb20c®, 1da=10, s=0x56lc6facf3ald,

u=0x561c6fb680e®, 1ldu=10, vt=0x561c6£d375c®, ldvt=7) at numba/_lapack.c:1477
#4 0x00007£f650a3147a3 in numba::targets::linalg::svd_impl::$3clocals$3e::svd_impl
—.$243(Array<double, 2, C, mutable, aligned>, omitted$28default$3di1$29) (O
#5 0x00007£650a1c0489 in __main__::foo$241(Array<double, 2, C, mutable, aligned>) () at.
—demo_gdb_args.py:15
#6 0x00007£650a1c2110 in cpython::__main__::foo$241(Array<double, 2, C, mutable,.
—aligned>) QO
#7 0x00007£650cd®96a4 in call_cfunc (O
from <path>/numba/numba/_dispatcher.cpython-37m-x86_64-1linux-gnu.so

How does the gdb binding work?

For advanced users and debuggers of Numba applications it’s important to know some of the internal implementation
details of the outlined gdb bindings. The numba.gdb() and numba.gdb_init() functions work by injecting the
following into the function’s LLVM IR:

* At the call site of the function first inject a call to getpid(3) to get the PID of the executing process and store
this for use later, then inject a fork(3) call:

— In the parent:

% Inject a call sleep(3) (hence the pause whilst gdb loads).

% Inject a call to the numba_gdb_breakpoint function (only numba.gdb() does this).
— In the child:

% Injectacallto execl (3) with the arguments numba.config.GDB_BINARY, the attach command and
the PID recorded earlier. Numba has a special gdb command file that contains instructions to break
on the symbol numba_gdb_breakpoint and then £inish, this is to make sure that the program stops
on the breakpoint but the frame it stops in is the compiled Python frame (or one step away from,
depending on optimisation). This command file is also added to the arguments and finally and any
user specified arguments are added.

At the call site of a numba.gdb_breakpoint() a call is injected to the special numba_gdb_breakpoint symbol,
which is already registered and instrumented as a place to break and £inish immediately.

As a result of this, a e.g. numba.gdb() call will cause a fork in the program, the parent will sleep whilst the
child launches gdb and attaches it to the parent and tells the parent to continue. The launched gdb has the
numba_gdb_breakpoint symbol registered as a breakpoint and when the parent continues and stops sleeping it will
immediately call numba_gdb_breakpoint on which the child will break. Additional numba.gdb_breakpoint ()
calls create calls to the registered breakpoint hence the program will also break at these locations.
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1.17.9 Debugging CUDA Python code

Using the simulator

CUDA Python code can be run in the Python interpreter using the CUDA Simulator, allowing it to be debugged
with the Python debugger or with print statements. To enable the CUDA simulator, set the environment variable
NUMBA_ENABLE_CUDASIM to 1. For more information on the CUDA Simulator, see the CUDA Simulator documenta-
tion.

Debug Info

By setting the debug argument to cuda. jit to True (@cuda. jit(debug=True)), Numba will emit source location
in the compiled CUDA code. Unlike the CPU target, only filename and line information are available, but no variable
type information is emitted. The information is sufficient to debug memory error with cuda-memcheck.

For example, given the following cuda python code:

import numpy as np
from numba import cuda

@cuda. jit (debug=True)
def foo(arr):
arr[cuda.threadIdx.x] = 1

arr = np.arange(30)
foo[1l, 32](arr) # more threads than array elements

We can use cuda-memcheck to find the memory error:

$ cuda-memcheck python chk_cuda_debug.py

========= (CUDA-MEMCHECK

========= Invalid __global__ write of size 8

========= at 0x00000148 in /home/user/chk_cuda_debug.py:6:cudapy::__main__::foo
. $241(Array<__int64, int=1, C, mutable, aligned>)

========= by thread (31,0,0) in block (0,0,0)

========= Address 0x500a600f8 is out of bounds

========= Invalid __global__ write of size 8

========= at 0x00000148 in /home/user/chk_cuda_debug.py:6:cudapy::__main__::foo
—$241(Array<__int64, int=1, C, mutable, aligned>)

by thread (30,0,0) in block (0,0,0)

Address 0x500a600f0 is out of bounds
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1.18 Frequently Asked Questions

1.18.1 Programming

Can | pass a function as an argument to a jitted function?

As of Numba 0.39, you can, so long as the function argument has also been JIT-compiled:

@jit(nopython=True)
def f(g, x):
return g(x) + g(-x)

result = f(jitted_g_function, 1)

However, dispatching with arguments that are functions has extra overhead. If this matters for your application, you
can also use a factory function to capture the function argument in a closure:

def make_f(g):
# Note: a new f() is created each time make_f() is called!
@jit(nopython=True)
def £f(x):
return g(x) + g(-x)
return f

f = make_f(jitted_g_function)
result = £(1)

Improving the dispatch performance of functions in Numba is an ongoing task.

Numba doesn’t seem to care when | modify a global variable

Numba considers global variables as compile-time constants. If you want your jitted function to update itself when
you have modified a global variable’s value, one solution is to recompile it using the recompile () method. This is a
relatively slow operation, though, so you may instead decide to rearchitect your code and turn the global variable into
a function argument.

Can | debug a jitted function?

Calling into pdb or other such high-level facilities is currently not supported from Numba-compiled code. However,
you can temporarily disable compilation by setting the NUMBA_DISABLE_JIT environment variable.

How can | create a Fortran-ordered array?

Numba currently doesn’t support the order argument to most Numpy functions such as numpy . empty () (because of
limitations in the fype inference algorithm). You can work around this issue by creating a C-ordered array and then
transposing it. For example:

np.empty((3, 5), order='F')
np.zeros(some_shape, order='F')

a
b

can be rewritten as:
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np.empty((5, 3)).T
b = np.zeros(some_shape[::-1]).T

oY)
Il

How can | increase integer width?
By default, Numba will generally use machine integer width for integer variables. On a 32-bit machine, you may

sometimes need the magnitude of 64-bit integers instead. You can simply initialize relevant variables as np . int64 (for
example np.int64(0) instead of 0). It will propagate to all computations involving those variables.

How can I tell if parallel=True worked?

If the parallel=True transformations failed for a function decorated as such, a warning will be displayed. See also
Diagnostics for information about parallel diagnostics.

1.18.2 Performance

Does Numba inline functions?

Numba gives enough information to LLVM so that functions short enough can be inlined. This only works in nopython
mode.

Does Numba vectorize array computations (SIMD)?

Numba doesn’t implement such optimizations by itself, but it lets LLVM apply them.

Why has my loop not vectorized?

Numba enables the loop-vectorize optimization in LLVM by default. While it is a powerful optimization, not all
loops are applicable. Sometimes, loop-vectorization may fail due to subtle details like memory access pattern. To see
additional diagnostic information from LLVM, add the following lines:

import llvmlite.binding as 1llvm
llvm.set_option('', '--debug-only=loop-vectorize')

This tells LLVM to print debug information from the loop-vectorize pass to stderr. Each function entry looks like:

LV: Checking a loop in "<low-level symbol name>" from <function name>
LV: Loop hints: force=? width=0 unroll=0

LV: Vectorization is possible but not beneficial.
LV: Interleaving is not beneficial.

Each function entry is separated by an empty line. The reason for rejecting the vectorization is usually at the end of the
entry. In the example above, LLVM rejected the vectorization because doing so will not speedup the loop. In this case,
it can be due to memory access pattern. For instance, the array being looped over may not be in contiguous layout.

When memory access pattern is non-trivial such that it cannot determine the access memory region, LLVM may reject
with the following message:
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LV: Can't vectorize due to memory conflicts

Another common reason is:

LV: Not vectorizing: loop did not meet vectorization requirements.

In this case, vectorization is rejected because the vectorized code may behave differently. This is a case to try turning
on fastmath=True to allow fastmath instructions.

Why are the typed containers slower when used from the interpreter?

The Numba typed containers found in numba. typed e.g. numba.typed.List store their data in an efficient form for
access from JIT compiled code. When these containers are used from the CPython interpreter, the data involved has
to be converted from/to the container format. This process is relatively costly and as a result impacts performance. In
JIT compiled code no such penalty exists and so operations on the containers are much quicker and often faster than
the pure Python equivalent.

Does Numba automatically parallelize code?

It can, in some cases:
» Ufuncs and gufuncs with the target="parallel" option will run on multiple threads.

e The parallel=True option to @jit will attempt to optimize array operations and run them in parallel. It also
adds support for prange () to explicitly parallelize a loop.

You can also manually run computations on multiple threads yourself and use the nogil=True option (see releasing
the GIL). Numba can also target parallel execution on GPU architectures using its CUDA and HSA backends.

Can Numba speed up short-running functions?

Not significantly. New users sometimes expect to JIT-compile such functions:

def f(x, y):
return x + y

and get a significant speedup over the Python interpreter. But there isn’t much Numba can improve here: most of the
time is probably spent in CPython’s function call mechanism, rather than the function itself. As a rule of thumb, if a
function takes less than 10 ps to execute: leave it.

The exception is that you should JIT-compile that function if it is called from another jitted function.
There is a delay when JIT-compiling a complicated function, how can | improve it?

Try to pass cache=True to the @jit decorator. It will keep the compiled version on disk for later use.

A more radical alternative is ahead-of-time compilation.
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1.18.3 GPU Programming

How do | work around the CUDA intialized before forking error?

On Linux, the multiprocessing module in the Python standard library defaults to using the fork method for creating
new processes. Because of the way process forking duplicates state between the parent and child processes, CUDA
will not work correctly in the child process if the CUDA runtime was initialized prior to the fork. Numba detects this
and raises a CudaDriverError with the message CUDA initialized before forking.

One approach to avoid this error is to make all calls to numba. cuda functions inside the child processes or after the
process pool is created. However, this is not always possible, as you might want to query the number of available
GPUs before starting the process pool. In Python 3, you can change the process start method, as described in the
multiprocessing documentation. Switching from fork to spawn or forkserver will avoid the CUDA initalization
issue, although the child processes will not inherit any global variables from their parent.

1.18.4 Integration with other utilities

Can | “freeze” an application which uses Numba?

If you’re using Pylnstaller or a similar utility to freeze an application, you may encounter issues with llvmlite. llvmlite
needs a non-Python DLL for its working, but it won’t be automatically detected by freezing utilities. You have to
inform the freezing utility of the DLL’s location: it will usually be named 11lvmlite/binding/libllvmlite.so or
llvmlite/binding/11lvmlite.dll, depending on your system.

| get errors when running a script twice under Spyder

When you run a script in a console under Spyder, Spyder first tries to reload existing modules. This doesn’t work well
with Numba, and can produce errors like TypeError: No matching definition for argument type(s).

There is a fix in the Spyder preferences. Open the “Preferences” window, select “Console”, then “Advanced Settings”,
click the “Set UMR excluded modules” button, and add numba inside the text box that pops up.

To see the setting take effect, be sure to restart the IPython console or kernel.

Why does Numba complain about the current locale?

If you get an error message such as the following:

RuntimeError: Failed at nopython (nopython mode backend)
LLVM will produce incorrect floating-point code in the current locale

it means you have hit a LLVM bug which causes incorrect handling of floating-point constants. This is known to happen
with certain third-party libraries such as the Qt backend to matplotlib.

To work around the bug, you need to force back the locale to its default value, for example:

import locale
locale.setlocale(locale.LC_NUMERIC, 'C")
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How do | get Numba development builds?

Pre-release versions of Numba can be installed with conda:

$ conda install -c numba/label/dev numba

1.18.5 Miscellaneous

Where does the project name “Numba” come from?

“Numba” is a combination of “NumPy” and “Mamba”. Mambas are some of the fastest snakes in the world, and Numba
makes your Python code fast.

How do | reference/cite/acknowledge Numba in other work?

For academic use, the best option is to cite our ACM Proceedings: Numba: a LLVM-based Python JIT compiler. You
can also find the sources on github, including a pre-print pdf, in case you don’t have access to the ACM site but would
like to read the paper.

Other related papers

A paper describing Parallel Accelerator technology, that is activated when the parallel=True jit option is used, can
be found here.

How do | write a minimal working reproducer for a problem with Numba?

A minimal working reproducer for Numba should include:
1. The source code of the function(s) that reproduce the problem.

2. Some example data and a demonstration of calling the reproducing code with that data. As Numba compiles
based on type information, unless your problem is numerical, it’s fine to just provide dummy data of the right
type, e.g. use numpy . ones of the correct dtype/size/shape for arrays.

3. Ideally put 1. and 2. into a script with all the correct imports. Make sure your script actually executes and
reproduces the problem before submitting it! The target is to make it so that the script can just be copied directly
from the issue tracker and run by someone else such that they can see the same problem as you are having.

Having made a reproducer, now remove every part of the code that does not contribute directly to reproducing the
problem to create a “minimal” reproducer. This means removing imports that aren’t used, removing variables that
aren’t used or have no effect, removing lines of code which have no effect, reducing the complexity of expressions, and
shrinking input data to the minimal amount required to trigger the problem.

Doing the above really helps out the Numba issue triage process and will enable a faster response to your problem!

Suggested further reading on writing minimal working reproducers.
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1.19 Examples

1.19.1 Mandelbrot

Listing 1: from test_mandelbrot of numba/tests/doc_examples/
test_examples.py

from timeit import default_timer as timer
try:
from matplotlib.pylab import imshow, show
have_mpl = True
except ImportError:
have_mpl = False
import numpy as np
from numba import jit

@jit(nopython=True)

def mandel(x, y, max_iters):
Given the real and imaginary parts of a complex number,
determine if it is a candidate for membership in the Mandelbrot
set given a fixed number of iterations.

o

i=0
= complex(x,y)
z = 0.0j

for i in range(max_iters):
z=2z%z+cC
if (z.real * z.real + z.imag * z.imag) >= 4:
return i

return 255

@jit(nopython=True)

def create_fractal(min_x, max_x, min_y, max_y, image, iters):
height = image.shape[0]
width = image.shape[1]

pixel_size_x = (max_x - min_x) / width
pixel_size_y = (max_y - min_y) / height
for x in range(width):
real = min_x + x * pixel_size_x
for y in range(height):
imag = min_y + y * pixel_size_y
color = mandel(real, imag, iters)
imagel[y, x] = color

return image
image = np.zeros((500 * 2, 750 * 2), dtype=np.uint8)

s = timer()
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20)

(continues on next page)
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(continued from previous page)

e = timer()

print(e - s)

if have_mpl:
imshow(image)
show()

1.19.2 Moving average

Listing 2: from test_moving_average of numba/tests/
doc_examples/test_examples.py

import numpy as np
from numba import guvectorize

@guvectorize(['void(float64[:], intp[:], float64[:1)'],
"M, O0->m")
def move_mean(a, window_arr, out):
window_width = window_arr[0]
asum = 0.0
count = 0
for i in range(window_width):
asum += a[i]
count += 1
out[i] = asum / count
for i in range(window_width, len(a)):
asum += a[i] - a[i - window_width]
out[i] = asum / count

arr = np.arange(20, dtype=np.float64).reshape(2, 10)
print(arr)
print (move_mean(arr, 3))

1.19.3 Multi-threading

The code below showcases the potential performance improvement when using the nogil feature. For example, on a
4-core machine, the following results were printed:

numpy (1 thread) 145 ms
numba (1 thread) 128 ms
numba (4 threads) 35 ms

Note: If preferred it’s possible to use the standard concurrent.futures module rather than spawn threads and dispatch
tasks by hand.
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Listing 3: from test_no_gil of numba/tests/doc_examples/
test_examples.py

import math
import threading
from timeit import repeat

import numpy as np
from numba import jit

nthreads = 4
size = 10%%6

def func_np(a, b):

o

Control function using Numpy.

o

return np.exp(2.1 * a + 3.2 * b)

@jit('void(double[:], double[:], double[:])', nopython=True,
nogil=True)
def inner_func_nb(result, a, b):

o

Function under test.
for i in range(len(result)):
result[i] = math.exp(2.1 * a[i] + 3.2 * b[i])

def timefunc(correct, s, func, *args, **kwargs):

o

Benchmark *func* and print out its runtime.
print(s.ljust(20), end=" ")
# Make sure the function is compiled before the benchmark is
# started
res = func(*args, “*kwargs)
if correct is not None:

assert np.allclose(res, correct), (res, correct)
# time it
print('{:>5.0f} ms'.format(min(repeat(

lambda: func(*args, **kwargs), number=5, repeat=2)) * 1000))
return res

def make_singlethread(inner_func):

e

Run the given function inside a single thread.
def func(*args):
length = len(args([0])
result = np.empty(length, dtype=np.float64)
inner_func(result, *args)
return result

(continues on next page)
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(continued from previous page)

return func

def make_multithread(inner_func, numthreads):
Run the given function inside *numthreads* threads, splitting
its arguments into equal-sized chunks.
def func_mt(*args):
length = len(args([0])
result = np.empty(length, dtype=np.float64)
args = (result,) + args
chunklen = (length + numthreads - 1) // numthreads
# Create argument tuples for each input chunk
chunks = [[arg[i * chunklen:(i + 1) * chunklen] for arg in
args] for i in range(numthreads)]
# Spawn one thread per chunk
threads = [threading.Thread(target=inner_func, args=chunk)
for chunk in chunks]
for thread in threads:
thread.start()
for thread in threads:
thread. join()
return result
return func_mt

func_nb = make_singlethread(inner_func_nb)
func_nb_mt = make_multithread(inner_func_nb, nthreads)

a
b

np.random.rand(size)
np.random.rand(size)

correct = timefunc(None, "numpy (1 thread)", func_np, a, b)
timefunc(correct, "numba (1 thread)", func_nb, a, b)
timefunc(correct, "numba ( threads)" % nthreads, func_nb_mt, a, b)

1.20 Talks and Tutorials

Note: This is a selection of talks and tutorials that have been given by members of the Numba team as well as Numba
users. If you know of a Numba-related talk that should be included on this list, please open an issue.
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1.20.1 Talks on Numba

* AnacondaCON 2018 - Accelerating Scientific Workloads with Numba - Siu Kwan Lam (Video)
e DIANA-HEP Meeting, 23 April 2018 - Overview of Numba - Stan Seibert

1.20.2 Talks on Applications of Numba

GPU Technology Conference 2016 - Accelerating a Spectral Algorithm for Plasma Physics with Python/Numba
on GPU - Manuel Kirchen & Rémi Lehe (Slides)

DIANA-HEP Meeting, 23 April 2018 - Use of Numba in XENONNT - Chris Tunnell
DIANA-HEP Meeting, 23 April 2018 - Extending Numba for HEP data types - Jim Pivarski

STAC Summit, Nov 1 2017 - Scaling High-Performance Python with Minimal Effort - Ehsan Totoni (Video,
Slides)

SciPy 2018 - UMAP: Uniform Manifold Approximation and Projection for Dimensional Reduction - Leland
Mclnnes (Video, Github)

PyData Berlin 2018 - Extending Pandas using Apache Arrow and Numba - Uwe L. Korn (Video, Blog)
FOSDEM 2019 - Extending Numba - Joris Geessels (Video, Slides & Examples)

PyCon India 2019 - Real World Numba: Taking the Path of Least Resistance - Ankit Mahato (Video)

SciPy 2019 - How to Accelerate an Existing Codebase with Numba - Siu Kwan Lam & Stanley Seibert (Video)
SciPy 2019 - Real World Numba: Creating a Skeleton Analysis Library - Juan Nunez-Iglesias (Video)

SciPy 2019 - Fast Gradient Boosting Decision Trees with PyGBM and Numba - Nicholas Hug (Video)

PyCon Sweden 2020 - Accelerating Scientific Computing using Numba - Ankit Mahato (Video)

1.20.3 Tutorials

e SciPy 2017 - Numba: Tell those C++ Bullies to Get Lost - Gil Forsyth & Lorena Barba (Video, Notebooks)
* GPU Technology Conference 2018 - GPU Computing in Python with Numba - Stan Seibert (Notebooks)
* PyData Amsterdam 2019 - Create CUDA kernels from Python using Numba and CuPy - Valentin Haenel (Video)

90
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CHAPTER
TWO

REFERENCE MANUAL

2.1 Types and signatures

2.1.1 Rationale
As an optimizing compiler, Numba needs to decide on the type of each variable to generate efficient machine code.
Python’s standard types are not precise enough for that, so we had to develop our own fine-grained type system.

You will encounter Numba types mainly when trying to inspect the results of Numba’s type inference, for debugging
or educational purposes. However, you need to use types explicitly if compiling code ahead-of-time.

2.1.2 Signatures

A signature specifies the type of a function. Exactly which kind of signature is allowed depends on the context (AOT
or JIT compilation), but signatures always involve some representation of Numba types to specify the concrete types
for the function’s arguments and, if required, the function’s return type.

An example function signature would be the string "£8(i4, i4)" (or the equivalent "float64(int32, int32)")
which specifies a function taking two 32-bit integers and returning a double-precision float.

2.1.3 Basic types
The most basic types can be expressed through simple expressions. The symbols below refer to attributes of the main

numba module (so if you read “boolean”, it means that symbol can be accessed as numba.boolean). Many types are
available both as a canonical name and a shorthand alias, following Numpy’s conventions.

Numbers

The following table contains the elementary numeric types currently defined by Numba and their aliases.
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Type name(s) | Shorthand | Comments

boolean bl represented as a byte

uint8, byte ul 8-bit unsigned byte

uint16 u2 16-bit unsigned integer

uint32 u4 32-bit unsigned integer

uint64 ud 64-bit unsigned integer

int8, char il 8-bit signed byte

intl6 i2 16-bit signed integer

int32 i4 32-bit signed integer

int64 i8 64-bit signed integer

intc - C int-sized integer

uintc - C int-sized unsigned integer

intp - pointer-sized integer

uintp - pointer-sized unsigned integer

float32 f4 single-precision floating-point number
float64, double | 8 double-precision floating-point number
complex64 c8 single-precision complex number
complex128 clo6 double-precision complex number

Arrays

The easy way to declare Array types is to subscript an elementary type according to the number of dimensions. For
example a 1-dimension single-precision array:

>>> numba.float32[:]
array(float32, 1d, A)

or a 3-dimension array of the same underlying type:

>>> numba.float32[:, :, :]
array(float32, 3d, A)

This syntax defines array types with no particular layout (producing code that accepts both non-contiguous and con-
tiguous arrays), but you can specify a particular contiguity by using the : : 1 index either at the beginning or the end of
the index specification:

>>> numba.float32[::1]
array(float32, 1d, O

>>> numba.float32[:, :, ::1]
array(float32, 3d, O
>>> numba.float32[::1, :, :]

array(float32, 3d, F)
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Functions

Warning: The feature of considering functions as first-class type objects is under development.

Functions are often considered as certain transformations of input arguments to output values. Within Numba JIT
compiled functions, the functions can also be considered as objects, that is, functions can be passed around as arguments
or return values, or used as items in sequences, in addition to being callable.

First-class function support is enabled for all Numba JI/7T" compiled functions and Numba cfunc compiled functions
except when:

* using a non-CPU compiler,
* the compiled function is a Python generator,
* the compiled function has Omitted arguments,
* or the compiled function returns Optional value.
To disable first-class function support, use no_cfunc_wrapper=True decorator option.

For instance, consider an example where the Numba JIT compiled function applies user-specified functions as a com-
position to an input argument:

>>> @numba.njit
. def composition(funcs, x):

r =X

for f in funcs[::-1]:
r = £f(r)

return r

>>> @numba.cfunc('double(double)")
. def a(x):
return x + 1.0

>>> @numba.njit
. def b):
return x * x

>>> composition((a, b), 0.5), 0.5 ** 2 + 1

(1.25, 1.25)

>>> composition((b, a, b, b, a), 0.5), b(a(b(b(a(0.5)))))
(36.75390625, 36.75390625)

Here, cfunc compiled functions a and b are considered as first-class function objects because these are passed in to the
Numba JIT compiled function composition as arguments, that is, the composition is JI7 compiled independently
from its argument function objects (that are collected in the input argument funcs).

Currently, first-class function objects can be Numba cfunc compiled functions, JIT compiled functions, and objects
that implement the Wrapper Address Protocol (WAP, see below) with the following restrictions:
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Context JIT compiled | cfunc compiled | WAP objects
Can be used as arguments | yes yes yes
Can be called yes yes yes
Can be used as items yes* yes yes
Can be returned yes yes yes
Namespace scoping yes yes yes
Automatic overload yes no no

* at least one of the items in a sequence of first-class function objects must have a precise type.

Wrapper Address Protocol - WAP

Wrapper Address Protocol provides an API for making any Python object a first-class function for Numba JI/7 compiled
functions. This assumes that the Python object represents a compiled function that can be called via its memory address
(function pointer value) from Numba JIT compiled functions. The so-called WAP objects must define the following
two methods:

__wrapper_address__(self) — int
Return the memory address of a first-class function. This method is used when a Numba J/7" compiled function
tries to call the given WAP instance.

signature(self) — numba.typing.Signature
Return the signature of the given first-class function. This method is used when passing in the given WAP
instance to a Numba JIT compiled function.

In addition, the WAP object may implement the __call__ method. This is necessary when calling WAP objects from
Numba JIT compiled functions in object mode.

As an example, let us call the standard math library function cos within a Numba JI7 compiled function. The memory
address of cos can be established after loading the math library and using the ctypes package:

>>> import numba, ctypes, ctypes.util, math
>>> libm = ctypes.cdll.LoadLibrary(ctypes.util.find_library('m'))
>>> class LibMCos(numba.types.WrapperAddressProtocol):
def __wrapper_address__(self):
return ctypes.cast(libm.cos, ctypes.c_voidp).value
def signature(self):
return numba.float64 (numba.float64)

>>> @numba.njit
. def foo(f, x):
return f£(x)

>>> foo(LibMCos(), 0.0)

1.0

>>> foo(LibMCos(), 0.5), math.cos(0.5)
(0.8775825618903728, 0.8775825618903728)
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Miscellaneous Types

There are some non-numerical types that do not fit into the other categories.

Type name(s) | Comments
pyobject generic Python object
voidptr raw pointer, no operations can be performed on it

2.1.4 Advanced types

For more advanced declarations, you have to explicitly call helper functions or classes provided by Numba.

Warning: The APIs documented here are not guaranteed to be stable. Unless necessary, it is recommended to let
Numbea infer argument types by using the signature-less variant of @jit.

Inference

numba . typeof (value)
Create a Numba type accurately describing the given Python value. ValueError is raised if the value isn’t
supported in nopython mode.

>>> numba. typeof(np.empty(3))
array(float64, 1d, O

>>> numba.typeof((1, 2.0))
(int64, float64)

>>> numba.typeof([0])
reflected list(int64)

Numpy scalars

Instead of using typeof (), non-trivial scalars such as structured types can also be constructed programmatically.

numba . from_dtype (dtype)
Create a Numba type corresponding to the given Numpy drype:

>>> struct_dtype = np.dtype([('row', np.float64), ('col', np.float64)])
>>> ty = numba.from_dtype(struct_dtype)

>>> ty

Record([('row', '<£f8'), ('col', '<£f8')1)

>>> ty[:, :]

unaligned array(Record([('row', '<£f8'), ('col', '<£f8')]1), 2d, A)

class numba.types.NPDatetime (unit)
Create a Numba type for Numpy datetimes of the given unit. unit should be a string amongst the codes recognized
by Numpy (e.g. Y, M, D, etc.).

class numba.types.NPTimedelta (unir)
Create a Numba type for Numpy timedeltas of the given unit. unit should be a string amongst the codes recognized
by Numpy (e.g. Y, M, D, etc.).
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See also:

Numpy datetime units.

Arrays

class numba.types.Array(dtype, ndim, layout)
Create an array type. dtype should be a Numba type. ndim is the number of dimensions of the array (a positive
integer). layout is a string giving the layout of the array: A means any layout, C means C-contiguous and F means
Fortran-contiguous.

Optional types

class numba.optional (typ)
Create an optional type based on the underlying Numba type typ. The optional type will allow any value of either
typ or None.

>>> @jit((optional (intp),))
. def f(x):
return x is not None
>>> £(0)
True

>>> f(None)
False

Type annotations

numba.extending.as_numba_type(py_type)
Create a Numba type corresponding to the given Python fype annotation. TypingError is raised if the type
annotation can’t be mapped to a Numba type. This function is meant to be used at statically compile time to
evaluate Python type annotations. For runtime checking of Python objects see typeof above.

For any numba type, as_numba_type (nb_type) == nb_type.

>>> numba.extending.as_numba_type(int)

int64

>>> import typing # the Python library, not the Numba one
>>> numba.extending.as_numba_type(typing.List[float])
ListType[float64]

>>> numba.extending.as_numba_type(numba.int32)

int32

as_numba_type is automatically updated to include any @jitclass.

>>> @jitclass
. class Counter:
X: int

def __init__(self):
self.x = 0

(continues on next page)
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(continued from previous page)

def inc(self):
old_val = self.x
self.x += 1
return old_val

>>> numba.extending.as_numba_type(Counter)
instance. jitclass.Counter#l1bad4278<x:int64>

Currently as_numba_type is only used to infer fields for @jitclass.

2.2 Just-in-Time compilation

2.2.1 JIT functions

@numba . jit (signature=None, nopython=False, nogil=False, cache=False, forceobj=False, parallel=False,
error_model='python’, fastmath=False, locals={}, boundscheck=False)
Compile the decorated function on-the-fly to produce efficient machine code. All parameters are optional.

If present, the signature is either a single signature or a list of signatures representing the expected Types and
signatures of function arguments and return values. Each signature can be given in several forms:

* A tuple of Types and signatures arguments (for example (numba.int32, numba.double)) representing
the types of the function’s arguments; Numba will then infer an appropriate return type from the arguments.

* A call signature using Types and signatures, specifying both return type and argument types. This can be
given in intuitive form (for example numba.void(numba.int32, numba.double)).

A string representation of one of the above, for example "void(int32, double)". All type names used
in the string are assumed to be defined in the numba. types module.

nopython and nogil are boolean flags. locals is a mapping of local variable names to Types and signatures.
This decorator has several modes of operation:

 If one or more signatures are given in signature, a specialization is compiled for each of them. Calling
the decorated function will then try to choose the best matching signature, and raise a TypeError if no
appropriate conversion is available for the function arguments. If converting succeeds, the compiled ma-
chine code is executed with the converted arguments and the return value is converted back according to
the signature.

* If no signature is given, the decorated function implements lazy compilation. Each call to the decorated
function will try to re-use an existing specialization if it exists (for example, a call with two integer argu-
ments may re-use a specialization for argument types (numba.int64, numba.int64)). If no suitable
specialization exists, a new specialization is compiled on-the-fly, stored for later use, and executed with the
converted arguments.

If true, nopython forces the function to be compiled in nopython mode. If not possible, compilation will raise an
error.

If true, forceobj forces the function to be compiled in object mode. Since object mode is slower than nopython
mode, this is mostly useful for testing purposes.

If true, nogil tries to release the global interpreter lock inside the compiled function. The GIL will only be
released if Numba can compile the function in nopython mode, otherwise a compilation warning will be printed.

If true, cache enables a file-based cache to shorten compilation times when the function was already compiled in
a previous invocation. The cache is maintained in the __pycache__ subdirectory of the directory containing the
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source file; if the current user is not allowed to write to it, though, it falls back to a platform-specific user-wide
cache directory (such as $HOME/ . cache/numba on Unix platforms).

If true, parallel enables the automatic parallelization of a number of common Numpy constructs as well as the
fusion of adjacent parallel operations to maximize cache locality.

The error_model option controls the divide-by-zero behavior. Setting it to ‘python’ causes divide-by-zero to
raise exception like CPython. Setting it to ‘numpy’ causes divide-by-zero to set the result to +/-inf or nan.

Not all functions can be cached, since some functionality cannot be always persisted to disk. When a function
cannot be cached, a warning is emitted.

If true, fastmath enables the use of otherwise unsafe floating point transforms as described in the LLVM docu-
mentation. Further, if Intel SVML is installed faster but less accurate versions of some math intrinsics are used
(answers to within 4 ULP).

If True, boundscheck enables bounds checking for array indices. Out of bounds accesses will raise IndexError.
The default is to not do bounds checking. If bounds checking is disabled, out of bounds accesses can produce
garbage results or segfaults. However, enabling bounds checking will slow down typical functions, so it is rec-
ommended to only use this flag for debugging. You can also set the NUMBA_BOUNDSCHECK environment
variable to O or 1 to globally override this flag.

The locals dictionary may be used to force the Types and signatures of particular local variables, for example if
you want to force the use of single precision floats at some point. In general, we recommend you let Numba’s
compiler infer the types of local variables by itself.

Here is an example with two signatures:

@jit(["int32(int32)", "float32(float32)"], nopython=True)
def f(x):

Not putting any parentheses after the decorator is equivalent to calling the decorator without any arguments, i.e.:

@jit
def f(x):

is equivalent to:

@jitQ
def f(x):

The decorator returns a Dispatcher object.

Note: If no signature is given, compilation errors will be raised when the actual compilation occurs, i.e. when
the function is first called with some given argument types.

Note: Compilation can be influenced by some dedicated Environment variables.
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2.2.2 Generated JIT functions

@numba .generated_jit (nopython=False, nogil=False, cache=False, forceobj=False, locals={})
Like the jit () decorator, but calls the decorated function at compile-time, passing the fypes of the function’s ar-
guments. The decorated function must return a callable which will be compiled as the function’s implementation
for those types, allowing flexible kinds of specialization.

The generated_jit () decorator returns a Dispatcher object.

2.2.3 Dispatcher objects

class Dispatcher
The class of objects created by calling jit () or generated_jit(). You shouldn’t try to create such an object
in any other way. Calling a Dispatcher object calls the compiled specialization for the arguments with which it
is called, letting it act as an accelerated replacement for the Python function which was compiled.

In addition, Dispatcher objects have the following methods and attributes:

py_func
The pure Python function which was compiled.

inspect_types (file=None, pretty=False)
Print out a listing of the function source code annotated line-by-line with the corresponding Numba IR, and
the inferred types of the various variables. If file is specified, printing is done to that file object, otherwise
to sys.stdout. If pretty is set to True then colored ANSI will be produced in a terminal and HTML in a
notebook.

See also:
Numba architecture

inspect_llvm(signature=None)
Return a dictionary keying compiled function signatures to the human readable LLVM IR generated for
the function. If the signature keyword is specified a string corresponding to that individual signature is
returned.

inspect_asm(signature=None)
Return a dictionary keying compiled function signatures to the human-readable native assembly code for
the function. If the signature keyword is specified a string corresponding to that individual signature is
returned.

inspect_cfg(signature=None, show_wrapped)
Return a dictionary keying compiled function signatures to the control-flow graph objects for the function.
If the signature keyword is specified a string corresponding to that individual signature is returned.

The control-flow graph objects can be stringified (str or repr) to get the textual representation of the
graph in DOT format. Or, use its .display(filename=None, view=False) method to plot the graph.
The filename option can be set to a specific path for the rendered output to write to. If view option is True,
the plot is opened by the system default application for the image format (PDF). In IPython notebook, the
returned object can be plot inlined.

Usage:

@jit
def foo(Q):

(continues on next page)
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(continued from previous page)

# opens the CFG in system default application
foo.inspect_cfg(foo.signatures[0]) .display(view=True)

inspect_disasm_cfg(signature=None)

Return a dictionary keying compiled function signatures to the control-flow graph of the disassembly of the
underlying compiled ELF object. If the signature keyword is specified a control-flow graph corresponding
to that individual signature is returned. This function is execution environment aware and will produce
SVG output in Jupyter notebooks and ASCII in terminals.

Example:

@Gnjit
def foo(x):
if x < 3:
return x + 1
return x + 2

foo(10)

print(foo.inspect_disasm_cfg(signature=foo.signatures[0]))

Gives:

[0x08000040]> # method.__main__.foo_241_long_long (int64_t argl, int64_t arg3);

0x8000040
; arg3 ; [02] -r-x section size 279 named .text
;-- section..text:
;-- .text:
;-— __main__::foo$241(long long):
;-- rip:
25: method.__main__.foo_241_long_long (int64_t argl, int64_t arg3);
; arg int64_t argl @ rdi
; arg int64_t arg3 @ rdx
;2
cmp rdx, 2
jg 0x800004f

ft
L |
| |

0x8000046 0x8300004f

; arg3 ; arg3

inc rdx add rdx, 2

; arg3 ; arg3
mov gword [rdi], rdx mov gword [rdi], rdx
XOr eax, eax XOr eax, eax
ret ret

|
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recompile()
Recompile all existing signatures. This can be useful for example if a global or closure variable was frozen
by your function and its value in Python has changed. Since compiling isn’t cheap, this is mainly for testing
and interactive use.

parallel_diagnostics(signature=None, level=1)
Print parallel diagnostic information for the given signature. If no signature is present it is printed for all
known signatures. level is used to adjust the verbosity, level=1 (default) is minimum verbosity, levels
2, 3, and 4 provide increasing levels of verbosity.

get_metadata(signature=None)
Obtain the compilation metadata for a given signature. This is useful for developers of Numba and Numba
extensions.

2.2.4 Vectorized functions (ufuncs and DUFuncs)

@numba .vectorize (*, signatures=[], identity=None, nopython=True, target='cpu', forceobj=False, cache=Faulse,
locals={})
Compile the decorated function and wrap it either as a Numpy ufunc or a Numba DUFunc. The optional nopython,
forceobj and locals arguments have the same meaning as in numba. jit ().

signatures is an optional list of signatures expressed in the same form as in the numba. jit () signature argument.
If signatures is non-empty, then the decorator will compile the user Python function into a Numpy ufunc. If no
signatures are given, then the decorator will wrap the user Python function in a DUFunc instance, which will
compile the user function at call time whenever Numpy can not find a matching loop for the input arguments.
signatures is required if rarget is "parallel”.

identity is the identity (or unit) value of the function being implemented. Possible values are 0, 1, None, and
the string "reorderable". The default is None. Both None and "reorderable" mean the function has no
identity value; "reorderable" additionally specifies that reductions along multiple axes can be reordered.

If there are several signatures, they must be ordered from the more specific to the least specific. Otherwise,
Numpy’s type-based dispatching may not work as expected. For example, the following is wrong:

@vectorize(["float64(float64)", "float32(float32)"])
def f(x):

as running it over a single-precision array will choose the float64 version of the compiled function, leading to
much less efficient execution. The correct invocation is:

@vectorize(["float32(float32)", "float64(float64)"])
def f(x):

9

target is a string for backend target; Available values are “cpu”, “parallel”, and “cuda”. To use a multithreaded
version, change the target to “parallel” (which requires signatures to be specified):

@vectorize(["float64(float64)", "float32(float32)"], target='parallel')
def f(x):

For the CUDA target, use “cuda”:

@vectorize(["float64(float64)", "float32(float32)"], target='cuda')
def f(x):

The compiled function can be cached to reduce future compilation time. It is enabled by setting cache to True.
Only the “cpu” and “parallel” targets support caching.
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@numba . guvectorize (signatures, layout, *, identity=None, nopython=True, target='cpu’, forceobj=False,

cache=Fualse, locals={})
Generalized version of numba. vectorize (). While numba. vectorize () will produce a simple ufunc whose
core functionality (the function you are decorating) operates on scalar operands and returns a scalar value,
numba.guvectorize() allows you to create a Numpy ufunc whose core function takes array arguments of
various dimensions.

The additional argument layout is a string specifying, in symbolic form, the dimensionality and size relationship
of the argument types and return types. For example, a matrix multiplication will have a layout string of " (m,
n), (n,p)->(m,p)". Its definition might be (function body omitted):

@guvectorize(["void(float64[:,:], float64[:,:], float64[:,:1)"],
"(m,n), (n,p)->@m,p)")
def f(a, b, result):
"""Fill-in *result® matrix such as result := a * b"""

If one of the arguments should be a scalar, the corresponding layout specification is () and the argument will
really be given to you as a zero-dimension array (you have to dereference it to get the scalar value). For example, a
one-dimension moving average with a parameterable window width may have a layout string of " (n) , QO ->(n)".

Note that any output will be given to you preallocated as an additional function argument: your code has to fill
it with the appropriate values for the function you are implementing.

If your function doesn’t take an output array, you should omit the “arrow” in the layout string (e.g. " (n), (n)").
When doing this, it is important to be aware that changes to the input arrays cannot always be relied on to be
visible outside the execution of the ufunc, as NumPy may pass in temporary arrays as inputs (for example, if a
cast is required).

See also:

Specification of the layout string as supported by Numpy. Note that Numpy uses the term “signature”, which we
unfortunately use for something else.

The compiled function can be cached to reduce future compilation time. It is enabled by setting cache to True.
Only the “cpu” and “parallel” targets support caching.

class numba.DUFunc

The class of objects created by calling numba. vectorize () with no signatures.

DUFunc instances should behave similarly to Numpy ufunc objects with one important difference: call-time
loop generation. When calling a ufunc, Numpy looks at the existing loops registered for that ufunc, and will
raise a TypeError if it cannot find a loop that it cannot safely cast the inputs to suit. When calling a DUFunc,
Numba delegates the call to Numpy. If the Numpy ufunc call fails, then Numba attempts to build a new loop for
the given input types, and calls the ufunc again. If this second call attempt fails or a compilation error occurs,
then DUFunc passes along the exception to the caller.

See also:

The “Dynamic universal functions” section in the user’s guide demonstrates the call-time behavior of DUFunc,
and discusses the impact of call order on how Numba generates the underlying ufunc.

ufunc
The actual Numpy ufunc object being built by the DUFunc instance. Note that the DUFunc object main-
tains several important data structures required for proper ufunc functionality (specifically the dynamically
compiled loops). Users should not pass the ufunc value around without ensuring the underlying DUFunc
will not be garbage collected.

nin
The number of DUFunc (ufunc) inputs. See ufunc.nin.
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nout
The number of DUFunc outputs. See ufunc.nout.

nargs

The total number of possible DUFunc arguments (should be nin + nout). See ufunc.nargs.

ntypes
The number of input types supported by the DUFunc. See ufunc.ntypes.

types
A list of the supported types given as strings. See ufunc.types.

identity
The identity value when using the ufunc as a reduction. See ufunc.identity.

reduce (A, *, axis, dtype, out, keepdims)

Reduces A's dimension by one by applying the DUFunc along one axis. See ufunc.reduce.

accumulate(A, *, axis, dtype, out)
Accumulate the result of applying the operator to all elements. See ufunc.accumulate.

reduceat (A, indices, *, axis, dtype, out)
Performs a (local) reduce with specified slices over a single axis. See ufunc.reduceat.

outer(A, B)
Apply the ufunc to all pairs (a, b) with a in A, and b in B. See ufunc.outer.

at(A, indices, *, B)

Performs unbuffered in place operation on operand A for elements specified by indices. If you are using

Numpy 1.7 or earlier, this method will not be present. See ufunc.at.

Note: Vectorized functions can, in rare circumstances, show unexpected warnings or errors.

2.2.5 C callbacks

@numba . cfunc (signature, nopython=False, cache=False, locals={})

Compile the decorated function on-the-fly to produce efficient machine code. The compiled code is wrapped in

a thin C callback that makes it callable using the natural C ABI.

The signature is a single signature representing the signature of the C callback. It must have the same form as in
jit (). The decorator does not check that the types in the signature have a well-defined representation in C.

nopython and cache are boolean flags. locals is a mapping of local variable names to Types and signatures. They

all have the same meaning as in jit ().

The decorator returns a CFunc object.

Note: C callbacks currently do not support object mode.

class CFunc

The class of objects created by cfunc (). CFunc objects expose the following attributes and methods:

address
The address of the compiled C callback, as an integer.

2.2. Just-in-Time compilation
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cffi
A cffi function pointer instance, to be passed as an argument to cffi-wrapped functions. The pointer’s type
is void *, so only minimal type checking will happen when passing it to cffi.

ctypes
A ctypes callback instance, as if it were created using ctypes.CFUNCTYPE().

native_name
The name of the compiled C callback.

inspect_llvm(Q)
Return the human-readable LLVM IR generated for the C callback. native_name is the name under which
this callback is defined in the IR.

2.3 Ahead-of-Time compilation

class numba.pycc.CC(extension_name, source_module=None)
An object used to generate compiled extensions from Numba-compiled Python functions. extension_name is the
name of the extension to be generated. source_module is the Python module containing the functions; if None,
it is inferred by examining the call stack.

CC instances have the following attributes and methods:

name
(read-only attribute) The name of the extension module to be generated.

output_dir
(read-write attribute) The directory the extension module will be written into. By default it is the directory
the source_module is located in.

output_file
(read-write attribute) The name of the file the extension module will be written to. By default this follows
the Python naming convention for the current platform.

target_cpu
(read-write attribute) The name of the CPU model to generate code for. This will select the appropriate
instruction set extensions. By default, a generic CPU is selected in order to produce portable code.

Recognized names for this attribute depend on the current architecture and LLVM version. If you
have LLVM installed, 11c -mcpu=help will give you a list. Examples on x86-64 are "ivybridge",
"haswell", "skylake" or "broadwell". You can also give the value "host" which will select the
current host CPU.

verbose
(read-write attribute) If true, print out information while compiling the extension. False by default.

@export (exported_name, sig)
Mark the decorated function for compilation with the signature sig. The compiled function will be exposed
as exported_name in the generated extension module.

All exported names within a given CC instance must be distinct, otherwise an exception is raised.

compile()
Compile all exported functions and generate the extension module as specified by output_dir and
output_file.

distutils_extension(**kwargs)
Returna distutils.core.Extension instance allowing to integrate generation of the extension module
in a conventional setup.py-driven build process. The optional kwargs let you pass optional parameters to
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the Extension constructor.

In this mode of operation, it is not necessary to call compile() yourself. Also, output_dir and
output_file will be ignored.

2.4 Utilities

2.4.1 Dealing with pointers

These functions can be called from pure Python as well as in nopython mode.

numba . carray (ptr, shape, dtype=None)
Return a Numpy array view over the data pointed to by ptr with the given shape, in C order. If dtype is given,
it is used as the array’s dtype, otherwise the array’s dtype is inferred from pzr’s type. As the returned array is a
view, not a copy, writing to it will modify the original data.

ptr should be a ctypes pointer object (either a typed pointer as created using POINTER(), or a c_void_p).
shape should be an integer or a tuple of integers.
dtype should be a Numpy dtype or scalar class (i.e. both np.dtype('int8') and np.int8 are accepted).

numba . farray (ptr, shape, dtype=None)
Same as carray(), but the data is assumed to be laid out in Fortran order, and the array view is constructed
accordingly.

2.5 Environment variables

Note: This section relates to environment variables that impact Numba’s runtime, for compile time environment
variables see Build time environment variables and configuration of optional components.

Numba allows its behaviour to be changed through the use of environment variables. Unless otherwise mentioned,
those variables have integer values and default to zero.

For convenience, Numba also supports the use of a configuration file to persist configuration settings. Note: To use
this feature pyyaml must be installed.

The configuration file must be named .numba_config.yaml and be present in the directory from which the Python
interpreter is invoked. The configuration file, if present, is read for configuration settings before the environment
variables are searched. This means that the environment variable settings will override the settings obtained from a
configuration file (the configuration file is for setting permanent preferences whereas the environment variables are for
ephemeral preferences).

The format of the configuration file is a dictionary in YAML format that maps the environment variables be-
low (without the NUMBA_ prefix) to a desired value. For example, to permanently switch on developer mode
(NUMBA_DEVELOPER_MODE environment variable) and control flow graph printing (NUMBA_DUMP_CFG environment
variable), create a configuration file with the contents:

developer_mode: 1
dump_cfg: 1

This can be especially useful in the case of wanting to use a set color scheme based on terminal background color. For
example, if the terminal background color is black, the dark_bg color scheme would be well suited and can be set for
permanent use by adding:
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color_scheme: dark_bg

2.5.1 Jit flags

These variables globally override flags to the jit () decorator.

NUMBA_BOUNDSCHECK
If set to 0 or 1, globally disable or enable bounds checking, respectively. The default if the variable is not set or
set to an empty string is to use the boundscheck flag passed to the jit () decorator for a given function. See
the documentation of @jir for more information.

Note, due to limitations in numba, the bounds checking currently produces exception messages that do not match
those from NumPy. If you set NUMBA_FULL_TRACEBACKS=1, the full exception message with the axis, index,
and shape information will be printed to the terminal.

2.5.2 Debugging

These variables influence what is printed out during compilation of JIT functions.

NUMBA_DEVELOPER_MODE
If set to non-zero, developer mode produces full tracebacks and disables help instructions. Default is zero.

NUMBA_FULL_TRACEBACKS
If set to non-zero, enable full tracebacks when an exception occurs. Defaults to the value set by
NUMBA_DEVELOPER_MODE.

NUMBA_SHOW_HELP
If set to non-zero, show resources for getting help. Default is zero.

NUMBA_DISABLE_ERROR_MESSAGE_HIGHLIGHTING
If set to non-zero error message highlighting is disabled. This is useful for running the test suite on CI systems.

NUMBA_COLOR_SCHEME
Alters the color scheme used in error reporting (requires the colorama package to be installed to work). Valid
values are:

* no_color No color added, just bold font weighting.

* dark_bg Suitable for terminals with a dark background.

¢ light_bg Suitable for terminals with a light background.

* blue_bg Suitable for terminals with a blue background.

* jupyter_nb Suitable for use in Jupyter Notebooks.
Default value: no_color. The type of the value is string.

NUMBA_HIGHLIGHT_DUMPS
If set to non-zero and pygments is installed, syntax highlighting is applied to Numba IR, LLVM IR and assembly
dumps. Default is zero.

NUMBA_DISABLE_PERFORMANCE_WARNINGS
If set to non-zero the issuing of performance warnings is disabled. Default is zero.

NUMBA_DEBUG
If set to non-zero, print out all possible debugging information during function compilation. Finer-grained control
can be obtained using other variables below.
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NUMBA_DEBUG_FRONTEND
If set to non-zero, print out debugging information during operation of the compiler frontend, up to and including
generation of the Numba Intermediate Representation.

NUMBA_DEBUGINFO
If set to non-zero, enable debug for the full application by setting the default value of the debug option in jit.
Beware that enabling debug info significantly increases the memory consumption for each compiled function.
Default value equals to the value of NUMBA_ENABLE_PROFILING.

NUMBA_GDB_BINARY
Set the gdb binary for use in Numba’s gdb support, this takes the form of a path and full name of the binary,
for example: /path/from/root/to/binary/name_of_gdb_binary This is to permit the use of a gdb from
a non-default location with a non-default name. If not set gdb is assumed to reside at /usr/bin/gdb.

NUMBA_DEBUG_TYPEINFER
If set to non-zero, print out debugging information about type inference.

NUMBA_ENABLE_PROFILING
Enables JIT events of LLVM in order to support profiling of jitted functions. This option is automatically enabled
under certain profilers.

NUMBA_TRACE
If set to non-zero, trace certain function calls (function entry and exit events, including arguments and return
values).

NUMBA_DUMP_BYTECODE
If set to non-zero, print out the Python bytecode of compiled functions.

NUMBA_DUMP_CFG
If set to non-zero, print out information about the Control Flow Graph of compiled functions.

NUMBA_DUMP_IR
If set to non-zero, print out the Numba Intermediate Representation of compiled functions.

NUMBA_DUMP_SSA
If set to non-zero, print out the Numba Intermediate Representation of compiled functions after conversion to
Static Single Assignment (SSA) form.

NUMBA_DEBUG_PRINT_AFTER
Dump the Numba IR after declared pass(es). This is useful for debugging IR changes made by given passes.
Accepted values are:

* Any pass name (as given by the .name () method on the class)
e Multiple pass names as a comma separated list, i.e. "foo_pass,bar_pass"
e The token "all", which will print after all passes.

The default value is "none" so as to prevent output.

NUMBA_DUMP_ANNOTATION
If set to non-zero, print out types annotations for compiled functions.

NUMBA_DUMP_LLVM
Dump the unoptimized LLVM assembly source of compiled functions. Unoptimized code is usually very ver-
bose; therefore, NUMBA_DUMP_OPTIMIZED is recommended instead.

NUMBA_DUMP_FUNC_OPT
Dump the LLVM assembly source after the LLVM “function optimization” pass, but before the “module opti-
mization” pass. This is useful mostly when developing Numba itself, otherwise use NUMBA_DUMP_OPTIMIZED.

NUMBA_DUMP_OPTIMIZED
Dump the LLVM assembly source of compiled functions after all optimization passes. The output includes the
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raw function as well as its CPython-compatible wrapper (whose name begins with wrapper.). Note that the
function is often inlined inside the wrapper, as well.

NUMBA_DEBUG_ARRAY_OPT
Dump debugging information related to the processing associated with the parallel=True jit decorator option.

NUMBA_DEBUG_ARRAY_OPT_RUNTIME
Dump debugging information related to the runtime scheduler associated with the parallel=True jit decorator
option.

NUMBA_DEBUG_ARRAY_OPT_STATS
Dump statistics about how many operators/calls are converted to parallel for-loops and how many are fused
together, which are associated with the parallel=True jit decorator option.

NUMBA_PARALLEL_DIAGNOSTICS
If set to an integer value between 1 and 4 (inclusive) diagnostic information about parallel transforms undertaken
by Numba will be written to STDOUT. The higher the value set the more detailed the information produced.

NUMBA_DUMP_ASSEMBLY
Dump the native assembly code of compiled functions.

NUMBA_LLVM_PASS_TIMINGS
Set to 1 to enable recording of pass timings in LLVM; e.g. NUMBA_LLVM_PASS_TIMINGS=1. See Notes on timing
LLVM.

Default value: 0 (Off)
See also:

Troubleshooting and tips and Numba architecture.

2.5.3 Compilation options

NUMBA_OPT
The optimization level; this option is passed straight to LLVM.

Default value: 3

NUMBA_LOOP_VECTORIZE
If set to non-zero, enable LLVM loop vectorization.

Default value: 1 (except on 32-bit Windows)

NUMBA_SLP_VECTORIZE
If set to non-zero, enable LLVM superword-level parallelism vectorization.

Default value: 1

NUMBA_ENABLE_AVX
If set to non-zero, enable AVX optimizations in LLVM. This is disabled by default on Sandy Bridge and Ivy
Bridge architectures as it can sometimes result in slower code on those platforms.

NUMBA_DISABLE_INTEL_SVML
If set to non-zero and Intel SVML is available, the use of SVML will be disabled.

NUMBA_DISABLE_JIT
Disable JIT compilation entirely. The jit () decorator acts as if it performs no operation, and the invocation of
decorated functions calls the original Python function instead of a compiled version. This can be useful if you
want to run the Python debugger over your code.

NUMBA_CPU_NAME
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NUMBA_CPU_FEATURES
Override CPU and CPU features detection. By setting NUMBA_CPU_NAME=generic, a generic CPU model is
picked for the CPU architecture and the feature list (NUMBA_CPU_FEATURES) defaults to empty. CPU features
must be listed with the format +featurel, -feature2 where + indicates enable and - indicates disable. For
example, +sse,+sse2, -avx, -avx2 enables SSE and SSE2, and disables AVX and AVX2.

These settings are passed to LLVM for configuring the compilation target. To get a list of available options, use
the 11c commandline tool from LLVM, for example:

llc -march=x86 -mattr=help

Tip: To force all caching functions (@jit(cache=True)) to emit portable code (portable within the same
architecture and OS), simply set NUMBA_CPU_NAME=generic.

NUMBA_FUNCTION_CACHE_SIZE
Override the size of the function cache for retaining recently deserialized functions in memory. In systems like
Dask, it is common for functions to be deserialized multiple times. Numba will cache functions as long as there
is a reference somewhere in the interpreter. This cache size variable controls how many functions that are no
longer referenced will also be retained, just in case they show up in the future. The implementation of this is not
a true LRU, but the large size of the cache should be sufficient for most situations.

Note: this is unrelated to the compilation cache.
Default value: 128

NUMBA_LLVM_REFPRUNE_PASS
Turns on the LLVM pass level reference-count pruning pass and disables the regex based implementation in
Numba.

Default value: 1 (On)

NUMBA_LLVM_REFPRUNE_FLAGS
When NUMBA_LLVM_REFPRUNE_PASS is on, this allows configuration of subpasses in the reference-count pruning
LLVM pass.

Valid values are any combinations of the below separated by, (case-insensitive):
* all: enable all subpasses.
* per_bb: enable per-basic-block level pruning, which is same as the old regex based implementation.

* diamond: enable inter-basic-block pruning that is a diamond shape pattern, i.e. a single-entry single-exit
CFG subgraph where has an incref in the entry and a corresponding decref in the exit.

e fanout: enable inter-basic-block pruning that has a fanout pattern, i.e. a single-entry multiple-exit CFG
subgraph where the entry has an incref and every exit has a corresponding decref.

» fanout_raise: same as fanout but allow subgraph exit nodes to be raising an exception and not have a
corresponding decref.

For example, all is the same as per_bb, diamond, fanout, fanout_raise

Default value: “all”
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2.5.4 Caching options

Options for the compilation cache.

NUMBA_DEBUG_CACHE
If set to non-zero, print out information about operation of the JIT compilation cache.

NUMBA_CACHE_DIR
Override the location of the cache directory. If defined, this should be a valid directory path.

If not defined, Numba picks the cache directory in the following order:

1. In-tree cache. Put the cache next to the corresponding source file under a __pycache__ directory following
how .pyc files are stored.

2. User-wide cache. Put the cache in the user’s application directory using appdirs.user_cache_dir from
the Appdirs package.

3. IPython cache. Put the cache in an IPython specific application directory. Stores are made under the
numba_cache in the directory returned by IPython.paths.get_ipython_cache_dir().

Also see docs on cache sharing and docs on cache clearing

2.5.5 GPU support

NUMBA_DISABLE_CUDA
If set to non-zero, disable CUDA support.

NUMBA_FORCE_CUDA_CC
If set, force the CUDA compute capability to the given version (a string of the type major.minor), regardless
of attached devices.

NUMBA_CUDA_DEFAULT_PTX_CC
The default compute capability (a string of the type major.minor) to target when compiling to PTX using
cuda.compile_ptx. The default is 5.2, which is the lowest non-deprecated compute capability in the most
recent version of the CUDA toolkit supported (10.2 at present).

NUMBA_ENABLE_CUDASIM
If set, don’t compile and execute code for the GPU, but use the CUDA Simulator instead. For debugging purposes.

NUMBA_CUDA_ARRAY_INTERFACE_SYNC
Whether to synchronize on streams provided by objects imported using the CUDA Array Interface. This defaults
to 1. If set to 0, then no synchronization takes place, and the user of Numba (and other CUDA libraries) is
responsible for ensuring correctness with respect to synchronization on streams.

NUMBA_CUDA_LOG_LEVEL
For debugging purposes. If no other logging is configured, the value of this variable is the logging level for
CUDA API calls. The default value is CRITICAL - to trace all API calls on standard error, set this to DEBUG.

NUMBA_CUDA_LOG_API_ARGS
By default the CUDA API call logs only give the names of functions called. Setting this variable to 1 also
includes the values of arguments to Driver API calls in the logs.

NUMBA_CUDA_DRIVER
Path of the directory in which the CUDA driver libraries are to be found. Normally this should not need to be
set as Numba can locate the driver in standard locations. However, this variable can be used if the driver is in a
non-standard location.

NUMBA_CUDA_LOG_SIZE
Buffer size for logs produced by CUDA driver API operations. This defaults to 1024 and should not normally
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need to be modified - however, if an error in an API call produces a large amount of output that appears to be
truncated (perhaps due to multiple long function names, for example) then this variable can be used to increase
the buffer size and view the full error message.

NUMBA_CUDA_VERBOSE_JIT_LOG
Whether the CUDA driver should produce verbose log messages. Defaults to 1, indicating that verbose messaging
is enabled. This should not need to be modified under normal circumstances.

NUMBA_CUDA_PER_THREAD_DEFAULT_STREAM
When set to 1, the default stream is the per-thread default stream. When set to 0, the default stream is the legacy
default stream. This defaults to O, for the legacy default stream. It may default to 1 in a future release of Numba.
See Stream Synchronization Behavior for an explanation of the legacy and per-thread default streams.

NUMBA_NPY_RELAXED_STRIDES_CHECKING
By default arrays that inherit from numba.misc.dummyarray.Array (e.g. CUDA device arrays) compute
their contiguity using relaxed strides checking, which is the default mechanism used by NumPy since version
1.12 (see NPY_RELAXED_STRIDES_CHECKING). Setting NUMBA_NPY_RELAXED_STRIDES_CHECKING=0
reverts back to strict strides checking. This option should not normally be needed, but is provided in case it is
needed to work around latent bugs related to strict strides checking.

Strict strides checking is deprecated and may be removed in future. See Deprecation of strict strides checking
when computing contiguity.

NUMBA_CUDA_LOW_OCCUPANCY_WARNINGS
Enable warnings if the grid size is too small relative to the number of streaming multiprocessors (SM). This
option is on by default (default value is 1).

The heuristic checked is whether gridsize < 2 * (number of SMs). NOTE: The absence of a warning
does not imply a good gridsize relative to the number of SMs. Disabling this warning will reduce the number of
CUDA API calls (during JIT compilation), as the heuristic needs to check the number of SMs available on the
device in the current context.

CUDA_WARN_ON_IMPLICIT_COPY
Enable warnings if a kernel is launched with host memory which forces a copy to and from the device. This
option is on by default (default value is 1).

2.5.6 Threading Control

NUMBA_NUM_THREADS
If set, the number of threads in the thread pool for the parallel CPU target will take this value. Must be greater
than zero. This value is independent of OMP_NUM_THREADS and MKL_NUM_THREADS.

Default value: The number of CPU cores on the system as determined at run time. This can be accessed via
numba. config. NUMBA_DEFAULT_NUM_THREADS.

See also the section on Setting the Number of Threads for information on how to set the number of threads at
runtime.

NUMBA_THREADING_LAYER
This environment variable controls the library used for concurrent execution for the CPU par-
allel  targets (@vectorize(target='parallel'), @Qguvectorize(target="parallel') and
@njit(parallel=True)). The variable type is string and by default is default which will select a
threading layer based on what is available in the runtime. The valid values are (for more information about these
see the threading layer documentation):

e default - select a threading layer based on what is available in the current runtime.

» safe - select a threading layer that is both fork and thread safe (requires the TBB package).
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» forksafe - select a threading layer that is fork safe.

e threadsafe - select a threading layer that is thread safe.
* tbb - A threading layer backed by Intel TBB.

e omp - A threading layer backed by OpenMP.

* workqueue - A simple built-in work-sharing task scheduler.

2.6 Supported Python features

Apart from the Language part below, which applies to both object mode and nopython mode, this page only lists the
features supported in nopython mode.

Warning: Numba behavior differs from Python semantics in some situations. We strongly advise reviewing
Deviations from Python Semantics to become familiar with these differences.

2.6.1 Language

Constructs
Numba strives to support as much of the Python language as possible, but some language features are not available
inside Numba-compiled functions. Below is a quick reference for the support level of Python constructs.
Supported constructs:

e conditional branch: if .. elif .. else

* loops: while, for .. in, break, continue

* basic generator: yield

* assertion: assert
Partially supported constructs:

e exceptions: try .. except, raise, else and finally (See details in this section)

* context manager: with (only support numba.objmode())

¢ list comprehension (see details in this section)
Unsupported constructs:

* async features: async with, async for and async def

* class definition: class (except for @jitclass)

* set, dict and generator comprehensions

 generator delegation: yield from
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Functions

Function calls

Numba supports function calls using positional and named arguments, as well as arguments with default values and
*args (note the argument for *args can only be a tuple, not a list). Explicit **kwargs are not supported.

Function calls to locally defined inner functions are supported as long as they can be fully inlined.

Functions as arguments

Functions can be passed as argument into another function. But, they cannot be returned. For example:

from numba import jit

@jit
def add1(x):
return x + 1

@jit
def bar(fn, x):
return fn(x)

@jit
def foo(x):
return bar(addl, x)

# Passing addl within numba compiled code.
print(foo(1))

# Passing addl into bar from interpreted code
print(bar(addl, 1))

Note: Numba does not handle function objects as real objects. Once a function is assigned to a variable, the variable
cannot be re-assigned to a different function.
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Inner function and closure

Numba now supports inner functions as long as they are non-recursive and only called locally, but not passed as argu-
ment or returned as result. The use of closure variables (variables defined in outer scopes) within an inner function is
also supported.

Recursive calls

Most recursive call patterns are supported. The only restriction is that the recursive callee must have a control-flow
path that returns without recursing. Numba is able to type-infer recursive functions without specifying the function
type signature (which is required in numba 0.28 and earlier). Recursive calls can even call into a different overload of
the function.

Generators
Numba supports generator functions and is able to compile them in object mode and nopython mode. The returned
generator can be used both from Numba-compiled code and from regular Python code.

Coroutine features of generators are not supported (i.e. the generator.send(), generator.throw(), generator.
close () methods).

Exception handling

raise statement

The raise statement is only supported in the following forms:
* raise SomeException

* raise SomeException(<arguments>): in nopython mode, constructor arguments must be compile-time con-
stants

It is currently unsupported to re-raise an exception created in compiled code.

try .. except

The try .. except construct is partially supported. The following forms of are supported:

* the bare except that captures all exceptions:

try:

except:

using exactly the Exception class in the except clause:

try:

except Exception:
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This will match any exception that is a subclass of Exception as expected. Currently, instances of Exception
and it’s subclasses are the only kind of exception that can be raised in compiled code.

Warning: Numba currently masks signals like KeyboardInterrupt and SystemExit. These signaling excep-
tions are ignored during the execution of Numba compiled code. The Python interpreter will handle them as soon
as the control is returned to it.

Currently, exception objects are not materialized inside compiled functions. As a result, it is not possible to store an
exception object into a user variable or to re-raise an exception. With this limitation, the only realistic use-case would
look like:

try:
do_work ()

except Exception:
handle_error_case()
return error_code

try .. except .. else .. finally

The else block and the finally block of a try .. except are supported:

>>> @jit(nopython=True)
. def foo(Q):
try:
print('main block')
except Exception:
print('handler block"')
else:
print('else block")
finally:
print('final block')
>>> foo()
main block
else block
final block

The try .. finally construct without the except clause is also supported.

2.6.2 Built-in types
int, bool

Arithmetic operations as well as truth values are supported.
The following attributes and methods are supported:

e .conjugate()

e .real

e .imag
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float, complex

Arithmetic operations as well as truth values are supported.

The following attributes and methods are supported:

str

.conjugate()
.real

.imag

Numba supports (Unicode) strings in Python 3. Strings can be passed into nopython mode as arguments, as well as
constructed and returned from nopython mode. As in Python, slices (even of length 1) return a new, reference counted
string. Optimized code paths for efficiently accessing single characters may be introduced in the future.

The in-memory representation is the same as was introduced in Python 3.4, with each string having a tag to indicate
whether the string is using a 1, 2, or 4 byte character width in memory. When strings of different encodings are combined
(as in concatenation), the resulting string automatically uses the larger character width of the two input strings. String
slices also use the same character width as the original string, even if the slice could be represented with a narrower

character width. (These details are invisible to the user, of course.)

The following constructors, functions, attributes and methods are currently supported:

str(int)
len()

+ (concatenation of strings)
* (repetition of strings)
in, .contains()

==, <, <=, >, >= (comparison)

.capitalize(Q)
.casefold()
.center()
.count()
.endswith()
.endswith()
.expandtabs()
.find O
.index()
.isalnum()
.isalpha()
.isdecimal O

.isdigit()

.isidentifier()

.islower()
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e .isnumeric()

e .isprintable()
e .isspace()

e .istitle()

e .isupper()

e .joinQ

e .1ljustQ
e . lower()
e .1strip(Q

e .partition()
e .replace()
e .rfindQ)

e .rindex()

e .rjust()

e .rpartition()

e .rsplit()
e .rstrip(Q)
e .split()

e .splitlines()
e .startswith()
e .strip(Q)

e .swapcase()

o .title(Q
* .upper()
o .zfillQ

Regular string literals (e.g. "ABC") as well as f-strings without format specs (e.g. "ABC_{a+1}") that only use string
and integer variables (types with str() overload) are supported in nopython mode.

Additional operations as well as support for Python 2 strings / Python 3 bytes will be added in a future version of
Numba. Python 2 Unicode objects will likely never be supported.

Warning: The performance of some operations is known to be slower than the CPython implementation. These
include substring search (in, . contains() and £ind()) and string creation (like . split()). Improving the string
performance is an ongoing task, but the speed of CPython is unlikely to be surpassed for basic string operation in
isolation. Numba is most successfully used for larger algorithms that happen to involve strings, where basic string
operations are not the bottleneck.
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tuple

Tuple support is categorised into two categories based on the contents of a tuple. The first category is homogeneous
tuples, these are tuples where the type of all the values in the tuple are the same, the second is heterogeneous tuples,
these are tuples where the types of the values are different.

Note: The tuple() constructor itself is NOT supported.

homogeneous tuples

An example of a homogeneous tuple:

homogeneous_tuple = (1, 2, 3, 4)

The following operations are supported on homogeneous tuples:
* Tuple construction.
* Tuple unpacking.
* Comparison between tuples.
* Iteration and indexing.
» Addition (concatenation) between tuples.
* Slicing tuples with a constant slice.

* The index method on tuples.

heterogeneous tuples

An example of a heterogeneous tuple:

heterogeneous_tuple = (1, 2j, 3.0, "a")

The following operations are supported on heterogeneous tuples:
» Comparison between tuples.
* Indexing using an index value that is a compile time constant e.g. mytuple[7], where 7 is evidently a constant.

* Iteration over a tuple (requires experimental literal_unroll() feature, see below).

Warning: The following feature (1iteral_unroll()) is experimental and was added in version 0.47.

To permit iteration over a heterogeneous tuple the special function numba.literal_unroll () must be used. This
function has no effect other than to act as a token to permit the use of this feature. Example use:

from numba import njit, literal_unroll

@njit
def foo(Q)
heterogeneous_tuple = (1, 2j, 3.0, "a")

(continues on next page)
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(continued from previous page)

for i in literal_unroll(heterogeneous_tuple):
print(i)

Warning: The following restrictions apply to the use of literal_unroll():

e literal_unroll() can only be used on tuples and constant lists of compile time constants, e.g. [1, 2j,
3, "a"] and the list not being mutated.

* The only supported use pattern for 1iteral_unroll () is loop iteration.

* Only one literal_unroll() call is permitted per loop nest (i.e. nested heterogeneous tuple iteration loops
are forbidden).

* The usual type inference/stability rules still apply.

A more involved use of 1iteral_unroll () might be type specific dispatch, recall that string and integer literal values
are considered their own type, for example:

from numba import njit, types, literal_unroll
from numba.extending import overload

def dt(x):
# dummy function to overload
pass

@overload(dt, inline='always')
def ol_dt(1i):
if isinstance(li, types.StringLiteral):
value = li.literal_value
if value == "apple":
def impl(li):
return 1
elif value == "orange":
def impl(li):
return 2
elif value == "banana":
def impl(li):
return 3
return impl
elif isinstance(li, types.IntegerLiteral):
value = li.literal_value
if value == Oxcallable:
def impl(li):
# capture the dispatcher literal value
return 0x5calable + value
return impl

@njit
def foo(Q):
acc = 0
for t in literal_unroll(('apple', 'orange', 'banana', 3390155550)):
acc += dt(t)

(continues on next page)
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(continued from previous page)

return acc

print(foo())

list

Warning: As of version 0.45.x the internal implementation for the list datatype in Numba is changing. Until
recently, only a single implementation of the list datatype was available, the so-called reflected-list (see below).
However, it was scheduled for deprecation from version 0.44.0 onwards due to its limitations. As of version 0.45.0
a new implementation, the so-called typed-list (see below), is available as an experimental feature. For more infor-
mation, please see: Deprecation Notices.

Creating and returning lists from JIT-compiled functions is supported, as well as all methods and operations. Lists
must be strictly homogeneous: Numba will reject any list containing objects of different types, even if the types are
compatible (for example, [1, 2.5] is rejected as it contains a int and a float).

For example, to create a list of arrays:

In [1]: from numba import njit
In [2]: import numpy as np

In [3]: @njit
...: def foo(x):
1st = []
for i in range(x):
1st.append(np.arange(i))
return lst

In [4]: foo(4)
Out[4]: [array([], dtype=int64), array([0]), array([0®, 1]1), array([0®, 1, 21)]

List Reflection

In nopython mode, Numba does not operate on Python objects. 1ist are compiled into an internal representation. Any
1ist arguments must be converted into this representation on the way in to nopython mode and their contained elements
must be restored in the original Python objects via a process called reflection. Reflection is required to maintain the
same semantics as found in regular Python code. However, the reflection process can be expensive for large lists and it
is not supported for lists that contain reflected data types. Users cannot use list-of-list as an argument because of this
limitation.

Note: When passing a list into a JIT-compiled function, any modifications made to the list will not be visible to the
Python interpreter until the function returns. (A limitation of the reflection process.)
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Warning: List sorting currently uses a quicksort algorithm, which has different performance characterics than the
algorithm used by Python.

Initial Values

Warning: This is an experimental feature!

Lists that:
* Are constructed using the square braces syntax
* Have values of a literal type

will have their initial value stored in the .initial_value property on the type so as to permit inspection of these
values at compile time. If required, to force value based dispatch the literally function will accept such a list.

Example:
Listing 1: from test_ex_initial_value_list_compile_time_consts

of numba/tests/doc_examples/test_literal_container_usage.
py

from numba import njit, literally
from numba.extending import overload

# overload this function
def specialize(x):
pass

@overload(specialize)
def ol_specialize(x):
iv = x.initial_value
if iv is None:
return lambda x: literally(x) # Force literal dispatch
assert iv == [1, 2, 3] # INITIAL VALUE
return lambda x: x

@njit
def foo(Q):
1=1[1, 2, 3]

1[2] = 20 # no impact on .initial_value
1.append(30) # no impact on .initial_value
return specialize(l)

result = foo()
print(result) # [1, 2, 20, 30] # NOT INITIAL VALUE!
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Typed List

Note: numba.typed.List is an experimental feature, if you encounter any bugs in functionality or suffer from
unexpectedly bad performance, please report this, ideally by opening an issue on the Numba issue tracker.

As of version 0.45.0 a new implementation of the list data type is available, the so-called typed-list. This is compiled
library backed, type-homogeneous list data type that is an improvement over the reflected-list mentioned above. Ad-
ditionally, lists can now be arbitrarily nested. Since the implementation is considered experimental, you will need to
import it explicitly from the numba.typed module:

In [1]: from numba.typed import List
In [2]: from numba import njit
In [3]: @Gnjit
: def foo(1l):
1.append(23)
return 1
In [4]: mylist = List(Q)

In [5]: mylist.append(l)

In [6]: foo(mylist)
Out[6]: ListTypel[int64]([1, 23])

Note: As the typed-list stabilizes it will fully replace the reflected-list and the constructors /] and /list() will create a
typed-list instead of a reflected one.

Here’s an example using List () to create numba.typed.List inside a jit-compiled function and letting the compiler
infer the item type:

Listing 2: from ex_inferred_list_jit of numba/tests/
doc_examples/test_typed_list_usage.py

from numba import njit
from numba.typed import List

@Gnjit
def foo(Q):
# Instantiate a typed-list
1 = List(Q
# Append a value to it, this will set the type to int32/int64
# (depending on platform)
1.append(42)
# The usual list operations, getitem, pop and length are
# supported
print(1[0]) # 42
1[0] = 23

(continues on next page)
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(continued from previous page)

print(1[0]) # 23
print(len(1)) # 1

1.pop(O
print(len(l)) # 0
return 1

foo()

Here’s an example of using List () to create a numba.typed.List outside of a jit-compiled function and then using
it as an argument to a jit-compiled function:

Listing  3: from ex_inferred_list of numba/tests/
doc_examples/test_typed_list_usage.py

from numba import njit
from numba.typed import List

@Gnjit
def foo(mylist):
for i in range(10, 20):
mylist.append(i)
return mylist

# Instantiate a typed-list, outside of a jit context

1 = ListQ

# Append a value to it, this will set the type to int32/int64
# (depending on platform)

1.append(42)

# The usual list operations, getitem, pop and length are supported
print(1[0]) # 42

170] = 23

print(1[0]) # 23

print(len(l)) # 1

1.pop(O

print(len(l)) # 0

# And you can use the typed-list as an argument for a jit compiled
# function

1 = foo(l)

print(len(l)) # 10

# You can also directly construct a typed-list from an existing
# Python list

py_list = [2, 3, 5]

numba_list = List(py_list)

print(len(numba_list)) # 3

Finally, here’s an example of using a nested List():
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Listing 4: from ex_nested_list of numba/tests/doc_examples/
test_typed_list_usage.py

from numba.typed import List

# typed-lists can be nested in typed-lists
mylist = List()
for i in range(10):

1 =ListQ

for i in range(10):

1.append(i)

mylist.append(1l)
# mylist is now a list of 10 lists, each containing 10 integers
print(mylist)

Literal List

Warning: This is an experimental feature!

Numba supports the use of literal lists containing any values, for example:

1=1r('a', 1, 2j, np.zeros(5,)]

the predominant use of these lists is for use as a configuration object. The lists appear as a LiteralList type which
inherits from Literal, as a result the literal values of the list items are available at compile time. For example:

Listing 5: from test_ex_literal_list of numba/tests/
doc_examples/test_literal_container_usage.py

from numba import njit
from numba.extending import overload

# overload this function
def specialize(x):
pass

@overload(specialize)
def ol_specialize(x):
1 = x.literal_value
const_expr = []
for v in 1:
const_expr.append(str(v))
const_strings = tuple(const_expr)

def impl(x):
return const_strings

return impl

@Gnjit

(continues on next page)
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(continued from previous page)

def foo():
const_list = ['a', 10, 1j, ['another', 'list']]
return specialize(const_list)

result = foo()
print(result) # (Literal[str](a)', 'Literal[int](10)', 'complex128', 'list(unicode_type)') #.
—noga E501

Important things to note about these kinds of lists:

1. They are immutable, use of mutating methods e.g. .pop() will result in compilation failure. Read-only static
access and read only methods are supported e.g. 1len().

2. Dynamic access of items is not possible, e.g. some_list[x], for a value x which is not a compile time constant.
This is because it’s impossible to statically determine the type of the item being accessed.

3. Inside the compiler, these lists are actually just tuples with some extra things added to make them look like they
are lists.

4. They cannot be returned to the interpreter from a compiled function.

List comprehension

Numba supports list comprehension. For example:

In [1]: from numba import njit

In [2]: @njit
: def foo(x):
return [[i for i in range(n)] for n in range(x)]

In [3]: foo(3)
Out[3]: [[1, [0]1, [0, 1]]

Note: Prior to version 0.39.0, Numba did not support the creation of nested lists.

Numba also supports “array comprehension” that is a list comprehension followed immediately by a call to numpy .
array (). The following is an example that produces a 2D Numpy array:

from numba import jit
import numpy as np

@jit(nopython=True)
def f(n):
return np.array([ [ x * y for x in range(n) ] for y in range(n) 1)

In this case, Numba is able to optimize the program to allocate and initialize the result array directly without allocating
intermediate list objects. Therefore, the nesting of list comprehension here is not a problem since a multi-dimensional
array is being created here instead of a nested list.

Additionally, Numba supports parallel array comprehension when combined with the parallel option on CPUs.
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set

All methods and operations on sets are supported in JIT-compiled functions.

Sets must be strictly homogeneous: Numba will reject any set containing objects of different types, even if the types
are compatible (for example, {1, 2.5} is rejected as it contains a int and a float). The use of reference counted
types, e.g. strings, in sets is unsupported.

Note: When passing a set into a JIT-compiled function, any modifications made to the set will not be visible to the
Python interpreter until the function returns.

Typed Dict

Warning: numba.typed.Dict is an experimental feature. The API may change in the future releases.

Note: dict() was not supported in versions prior to 0.44. Currently, calling dict () translates to calling numba.
typed.Dict().

Numba only supports the use of dict () without any arguments. Such use is semantically equivalent to {} and numba .
typed.Dict(). It will create an instance of numba.typed.Dict where the key-value types will be later inferred by
usage.

Numba does not fully support the Python dict because it is an untyped container that can have any Python types as
members. To generate efficient machine code, Numba needs the keys and the values of the dictionary to have fixed types,
declared in advance. To achieve this, Numba has a typed dictionary, numba. typed.Dict, for which the type-inference
mechanism must be able to infer the key-value types by use, or the user must explicitly declare the key-value type using
the Dict.empty () constructor method. This typed dictionary has the same API as the Python dict, it implements the
collections.MutableMapping interface and is usable in both interpreted Python code and JIT-compiled Numba
functions. Because the typed dictionary stores keys and values in Numba’s native, unboxed data layout, passing a
Numba dictionary into nopython mode has very low overhead. However, this means that using a typed dictionary from
the Python interpreter is slower than a regular dictionary because Numba has to box and unbox key and value objects
when getting or setting items.

An important difference of the typed dictionary in comparison to Python’s dict is that implicit casting occurs when
a key or value is stored. As a result the setitem operation may fail should the type-casting fail.

It should be noted that the Numba typed dictionary is implemented using the same algorithm as the CPython 3.7
dictionary. As a consequence, the typed dictionary is ordered and has the same collision resolution as the CPython
implementation.

Further to the above in relation to type specification, there are limitations placed on the types that can be used as
keys and/or values in the typed dictionary, most notably the Numba Set and List types are currently unsupported.
Acceptable key/value types include but are not limited to: unicode strings, arrays (value only), scalars, tuples. It is
expected that these limitations will be relaxed as Numba continues to improve.

Here’s an example of using dict () and {} to create numba. typed.Dict instances and letting the compiler infer the
key-value types:
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Listing 6: from test_ex_inferred_dict_njit of numba/tests/
doc_examples/test_typed_dict_usage.py

from numba import njit
import numpy as np

@njit
def foo():
d = dict(Q)

k = {1: np.arange(1l), 2: np.arange(2)}

# The following tells the compiler what the key type and the
# value

# type are for 'd.

d[3] = np.arange(3)

d[5] = np.arange(5)

return d, k

d, k = foo(
print(d) # {3: [0 12], 5: [0 12 3 4]}
print (k) # {1: [0], 2: [0 1]}

Here’s an example of creating a numba.typed.Dict instance from interpreted code and using the dictionary in jit
code:

Listing 7: from test_ex_typed_dict_from_cpython of numba/
tests/doc_examples/test_typed_dict_usage.py

import numpy as np

from numba import njit

from numba.core import types
from numba.typed import Dict

# The Dict.empty() constructs a typed dictionary.
# The key and value typed must be explicitly declared.
d = Dict.empty(
key_type=types.unicode_type,
value_type=types.float64[:],
)

# The typed-dict can be used from the interpreter.
d['posx'] = np.asarray([1l, 0.5, 2], dtype='£8")
d['posy'] = np.asarray([1l.5, 3.5, 2], dtype="£8")
d['velx'] np.asarray([0.5, 0, 0.7], dtype="£8")
d['vely'] np.asarray([0.2, -0.2, 0.1], dtype='£8")

# Here's a function that expects a typed-dict as the argument
@njit
def move(d):

# inplace operations on the arrays

d['posx'] += d['velx']

d['posy'] += d['vely']

print('posx: ', d['posx']) # Out: posx: [1. 0.5 2. ]

(continues on next page)
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(continued from previous page)

print('posy: ', d['posy']) # Out: posy: [1.5 3.5 2. ]

# Call move(d) to inplace update the arrays in the typed-dict.

move (d)
print('posx: ', d['posx']) # Out: posx: [1.5 0.5 2.7]
print('posy: ', d['posy']) # Out: posy: [1.7 3.3 2.1]

Here’s an example of creating a numba.typed.Dict instance from jit code and using the dictionary in interpreted
code:

Listing 8: from test_ex_typed_dict_njit of numba/tests/
doc_examples/test_typed_dict_usage.py

import numpy as np

from numba import njit

from numba.core import types
from numba.typed import Dict

# Make array type. Type-expression is not supported in jit
# functions.
float_array = types.float64[:]

@Gnjit
def foo():
# Make dictionary
d = Dict.empty(
key_type=types.unicode_type,
value_type=float_array,
)
# Fill the dictionary
d["posx"] = np.arange(3).astype(np.float64)
d["posy"] np.arange(3, 6).astype(np.float64)
return d

d = foo
# Print the dictionary
print(d) # Out: {posx: [0®. 1. 2.], posy: [3. 4. 5.]}

It should be noted that numba. typed.Dict is not thread-safe. Specifically, functions which modify a dictionary from
multiple threads will potentially corrupt memory, causing a range of possible failures. However, the dictionary can be
safely read from multiple threads as long as the contents of the dictionary do not change during the parallel access.
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Dictionary comprehension

Numba supports dictionary comprehension under the assumption that a numba. typed.Dict instance can be created
from the comprehension. For example:

In [1]: from numba import njit

In [2]: @njit
: def foo(n):
return {i: i**2 for i in range(n)}

In [3]: foo(3)
Out[3]: DictType[int64,int64]<iv=None>({0: O, 1: 1, 2: 43})

Initial Values

Warning: This is an experimental feature!

Typed dictionaries that:
* Are constructed using the curly braces syntax
* Have literal string keys
* Have values of a literal type

will have their initial value stored in the .initial_value property on the type so as to permit inspection of these
values at compile time. If required, to force value based dispatch the literally function will accept a typed dictionary.

Example:

Listing 9: from test_ex_initial_value_dict_compile_time_consts
of numba/tests/doc_examples/test_literal_container_usage.

py

from numba import njit, literally
from numba.extending import overload

# overload this function
def specialize(x):
pass

@overload(specialize)
def ol_specialize(x):
iv = x.initial_value
if iv is None:
return lambda x: literally(x) # Force literal dispatch
assert iv == {'a': 1, 'b': 2, 'c': 3} # INITIAL VALUE
return lambda x: literally(x)

OGnjit
def foo():

(continues on next page)
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(continued from previous page)

d={'a'": 1, 'b': 2, 'c': 3}

d['c'] = 20 # no impact on .initial_value
d['d'] = 30 # no impact on .initial_value
return specialize(d)

result = foo()
print(result) # {a: 1, b: 2, c: 20, d: 30} # NOT INITIAL VALUE!

Heterogeneous Literal String Key Dictionary

Warning: This is an experimental feature!

Numba supports the use of statically declared string key to any value dictionaries, for example:

d={'a': 1, 'b': 'data', 'c': 2j}

the predominant use of these dictionaries is to orchestrate advanced compilation dispatch or as a container for use as a
configuration object. The dictionaries appear as a LiteralStrKeyDict type which inherits from Literal, as a result
the literal values of the keys and the types of the items are available at compile time. For example:

Listing 10: from test_ex_literal_dict_compile_time_consts of
numba/tests/doc_examples/test_literal_container_usage.

py

import numpy as np
from numba import njit, types
from numba.extending import overload

# overload this function
def specialize(x):
pass

@overload(specialize)
def ol_specialize(x):
1d = x.literal_value
const_expr = []
for k, v in 1d.items(Q):
if isinstance(v, types.Literal):
lv = v.literal_value
if 1lv == 'cat':
const_expr.append(''Meow!")
elif 1v == 'dog"':
const_expr.append("'Woof!")
elif isinstance(lv, int):
const_expr.append(k.literal_value * 1v)
else: # it's an array
const_expr.append("Array(dim= ", format(dim=v.ndim))
const_strings = tuple(const_expr)

(continues on next page)
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(continued from previous page)

def impl(x):
return const_strings
return impl

@Gnjit
def foo(Q):
pets_ints_and_array = {'a': 1,
'b': 2,
'c': 'cat',
'd': 'dog',

e': np.ones(5,)}
return specialize(pets_ints_and_array)

result = foo()
print(result) # (‘a', 'bb', Meow!', 'Woof!', 'Array(dim=1")

Important things to note about these kinds of dictionaries:

1. They are immutable, use of mutating methods e.g. .pop() will result in compilation failure. Read-only static
access and read only methods are supported e.g. len().

2. Dynamic access of items is not possible, e.g. some_dictionary[x], for a value x which is not a compile time
constant. This is because it’s impossible statically determine the type of the item being accessed.

3. Inside the compiler, these dictionaries are actually just named tuples with some extra things added to make them
look like they are dictionaries.

4. They cannot be returned to the interpreter from a compiled function.

5. The .keys(), .values() and .items () methods all functionally operate but return tuples opposed to iterables.

None

The None value is supported for identity testing (when using an optional type).

bytes, bytearray, memoryview

The bytearray type and, on Python 3, the bytes type support indexing, iteration and retrieving the len().
The memoryview type supports indexing, slicing, iteration, retrieving the len(), and also the following attributes:
e contiguous
e c_contiguous
e f_contiguous
e itemsize
* nbytes
* ndim
e readonly
¢ shape

e strides
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2.6.3 Built-in functions

The following built-in functions are supported:
e abs()
* bool
e chr()
e complex
e divmod()
* enumerate()
e filter()
» float
e hash() (see Hashing below)
e int: only the one-argument form
e iter(): only the one-argument form
e len()
e min()
* map()
e max()
* next(): only the one-argument form
e ord()
e print(): only numbers and strings; no file or sep argument

e range: The only permitted use of range is as a callable function (cannot pass range as an argument to a jitted
function or return a range from a jitted function).

e round()

e sorted(): the key argument is not supported

e sum()

e type(): only the one-argument form, and only on some types (e.g. numbers and named tuples)

* zipQ

Hashing
The hash () built-in is supported and produces hash values for all supported hashable types with the following Python
version specific behavior:

Under Python 3, hash values computed by Numba will exactly match those computed in CPython under the condition
that the sys.hash_info.algorithmis siphash24 (default).

The PYTHONHASHSEED environment variable influences the hashing behavior in precisely the manner described in the
CPython documentation.
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2.6.4 Standard library modules

array

Limited support for the array.array type is provided through the buffer protocol. Indexing, iteration and taking the

len() is supported. All type codes are supported except for "u".

cmath

The following functions from the cmath module are supported:

cmath.acos()
cmath.acosh()
cmath.asin()
cmath.asinh()
cmath.atan()
cmath.atanh()
cmath.cos()
cmath.cosh()
cmath.exp()
cmath.isfinite()
cmath.isinf()
cmath.isnan()
cmath.log()
cmath.logl®()
cmath.phase()
cmath.polar()
cmath.rect()
cmath.sin()
cmath.sinh()
cmath.sqrt()
cmath.tan()

cmath.tanh()
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collections

Named tuple classes, as returned by collections.namedtuple (), are supported in the same way regular tuples are
supported. Attribute access and named parameters in the constructor are also supported.

Creating a named tuple class inside Numba code is not supported; the class must be created at the global level.

ctypes

Numbea is able to call ctypes-declared functions with the following argument and return types:

enum

Both enum. Enum and enum. IntEnum subclasses are supported.

math

The following functions from the math module are supported:

ctypes.c_int8

ctypes.c_int16

ctypes.c_int32

ctypes.c_int64

ctypes.c_uint8

ctypes.c_uintl6

ctypes.c_uint32

ctypes.c_uint64

ctypes.c_float

ctypes.c_double

ctypes.c_void_p

math

math.
math.

math.

math

math

math.
math.
math.
math.
math.

math.

.acos()
acosh()
asin()
asinh()
.atan(Q)
.atan2()
atanh()
ceil()
copysign()
cos()
cosh()

degrees()
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e math.
e math.
e math.
* math.
e math.
e math.
e math.
e math.
e math.
e math.
* math.
e math.
e math.
e math.
e math.
e math.
e math.
* math.
e math.
e math.
e math.
e math.
e math.
e math.
e math.

e math.

operator

The following functions from the operator module are supported:

erfQ)
erfc(Q)
exp()
expml )
fabs(Q
floor()
frexp()
gamma ()
gcdO
hypot O
isfinite()
isinf()
isnan()
ldexp ()
lgamma ()
log®
log100)
loglp(O
pow()
radians ()
sin()
sinh ()
sqrtQ
tan()
tanh()

trunc()

e operator.add()

e operator.and_()

e operator.eq()

* operator.

» operator.ge()

e operator.gt()

e operator.iadd()

floordiv()

2.6. Supported Python features

135


https://docs.python.org/3/library/math.html#math.erf
https://docs.python.org/3/library/math.html#math.erfc
https://docs.python.org/3/library/math.html#math.exp
https://docs.python.org/3/library/math.html#math.expm1
https://docs.python.org/3/library/math.html#math.fabs
https://docs.python.org/3/library/math.html#math.floor
https://docs.python.org/3/library/math.html#math.frexp
https://docs.python.org/3/library/math.html#math.gamma
https://docs.python.org/3/library/math.html#math.gcd
https://docs.python.org/3/library/math.html#math.hypot
https://docs.python.org/3/library/math.html#math.isfinite
https://docs.python.org/3/library/math.html#math.isinf
https://docs.python.org/3/library/math.html#math.isnan
https://docs.python.org/3/library/math.html#math.ldexp
https://docs.python.org/3/library/math.html#math.lgamma
https://docs.python.org/3/library/math.html#math.log
https://docs.python.org/3/library/math.html#math.log10
https://docs.python.org/3/library/math.html#math.log1p
https://docs.python.org/3/library/math.html#math.pow
https://docs.python.org/3/library/math.html#math.radians
https://docs.python.org/3/library/math.html#math.sin
https://docs.python.org/3/library/math.html#math.sinh
https://docs.python.org/3/library/math.html#math.sqrt
https://docs.python.org/3/library/math.html#math.tan
https://docs.python.org/3/library/math.html#math.tanh
https://docs.python.org/3/library/math.html#math.trunc
https://docs.python.org/3/library/operator.html#module-operator
https://docs.python.org/3/library/operator.html#operator.add
https://docs.python.org/3/library/operator.html#operator.and_
https://docs.python.org/3/library/operator.html#operator.eq
https://docs.python.org/3/library/operator.html#operator.floordiv
https://docs.python.org/3/library/operator.html#operator.ge
https://docs.python.org/3/library/operator.html#operator.gt
https://docs.python.org/3/library/operator.html#operator.iadd

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

e operator.
* operator.
e operator.
e operator.
e operator.
e operator.
e operator.
e operator.
* operator.
e operator.
e operator.
e operator.
e operator.
* operator.
e operator.
¢ operator.
e operator.
e operator.
e operator.
* operator.
e operator.
e operator.
¢ operator.
e operator.
e operator.
e operator.
* operator.
e operator.

* operator.

iandQ
ifloordiv()
ilshift ()
imatmul () (Python 3.5 and above)
imod )
imul O
invert()
ior()
ipow()
irshift()
isubQ
itruediv(Q)
ixor()

1leO
1shift ()
1t O

matmul () (Python 3.5 and above)
mod()

mul O

neQ)

negQ)
not_Q
or_Q)

pos ()

pow ()
rshift()
subQ)
truediv()

xor()
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functools

The functools.reduce() function is supported but the initializer argument is required.

random

Numba supports top-level functions from the random module, but does not allow you to create individual Random
instances. A Mersenne-Twister generator is used, with a dedicated internal state. It is initialized at startup with entropy
drawn from the operating system.

e random.betavariate()

random.
random.
random.
random.
random.
random.
random.

random.

random

random

random.

random.

(such as

random.
random.

random.

random

expovariate()

gammavariate()

gauss()

getrandbits(): number of bits must not be greater than 64
lognormvariate()

normalvariate()

paretovariate()

randint ()

.random()

.randrange ()

seed(): with an integer argument only

shuffle(): the sequence argument must be a one-dimension Numpy array or buffer-providing object
abytearray or array.array); the second (optional) argument is not supported

uniform()
triangular()

vonmisesvariate()

.weibullvariate()

Warning:
random generator, not the Numba random generator. To seed the Numba random generator, see the example below.

Calling random. seed() from non-Numba code (or from object mode code) will seed the Python

from numba import njit
import random

@njit
def seed(a):

@Gnjit
def rand(Q:

random. seed(a)

return random.random()

(continues on next page)
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(continued from previous page)

# Incorrect seeding
random.seed(1234)
print(rand())

random.seed(1234)
print(rand())

# Correct seeding
seed(1234)
print(rand())

seed(1234)
print(rand())

Note: Since version 0.28.0, the generator is thread-safe and fork-safe. Each thread and each process will produce
independent streams of random numbers.

See also:

Numba also supports most additional distributions from the Numpy random module.

heapq

The following functions from the heapg module are supported:
¢ heapq.heapify()
* heapq.heappop()
¢ heapq.heappush()
¢ heapq.heappushpop()
¢ heapq.heapreplace()
e heapq.nlargest() : first two arguments only
e heapqg.nsmallest() : first two arguments only

Note: the heap must be seeded with at least one value to allow its type to be inferred; heap items are assumed to be
homogeneous in type.

2.6.5 Third-party modules

cffi
Similarly to ctypes, Numba is able to call into cffi-declared external functions, using the following C types and any
derived pointer types:

e char

¢ short

e int
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* long

* long long

e unsigned char
* unsigned short
e unsigned int

e unsigned long
e unsigned long long
e int8_t

* uint8_t

* intl6_t

* uintl6_t

e int32_t

* uint32_t

* int64_t

* uint64_t

e float

* double

* ssize_t

e size_t

e void

The from_buffer() method of cf£fi.FFI and CompiledFFI objects is supported for passing Numpy arrays and
other buffer-like objects. Only contiguous arguments are accepted. The argument to from_buffer() is converted to
a raw pointer of the appropriate C type (for example a double * for a float64 array).

Additional type mappings for the conversion from a buffer to the appropriate C type may be registered with Numba.
This may include struct types, though it is only permitted to call functions that accept pointers to structs - passing a
struct by value is unsupported. For registering a mapping, use:

numba.core.typing.cffi_utils.register_type(cffi_type, numba_type)

Out-of-line cffi modules must be registered with Numba prior to the use of any of their functions from within Numba-
compiled functions:

numba.core.typing.cffi_utils.register_module (mod)
Register the cffi out-of-line module mod with Numba.

Inline cffi modules require no registration.
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2.7 Supported NumPy features

One objective of Numba is having a seamless integration with NumPy. NumPy arrays provide an efficient storage
method for homogeneous sets of data. NumPy dtypes provide type information useful when compiling, and the regular,
structured storage of potentially large amounts of data in memory provides an ideal memory layout for code generation.
Numba excels at generating code that executes on top of NumPy arrays.

NumPy support in Numba comes in many forms:
¢ Numba understands calls to NumPy ufuncs and is able to generate equivalent native code for many of them.

e NumPy arrays are directly supported in Numba. Access to Numpy arrays is very efficient, as indexing is lowered
to direct memory accesses when possible.

* Numba is able to generate ufuncs and gufuncs. This means that it is possible to implement ufuncs and gufuncs
within Python, getting speeds comparable to that of ufuncs/gufuncs implemented in C extension modules using
the NumPy C APL

The following sections focus on the Numpy features supported in nopython mode, unless otherwise stated.

2.7.1 Scalar types

Numba supports the following Numpy scalar types:

* Integers: all integers of either signedness, and any width up to 64 bits

* Booleans

* Real numbers: single-precision (32-bit) and double-precision (64-bit) reals

* Complex numbers: single-precision (2x32-bit) and double-precision (2x64-bit) complex numbers

* Datetimes and timestamps: of any unit

* Character sequences (but no operations are available on them)

* Structured scalars: structured scalars made of any of the types above and arrays of the types above
The following scalar types and features are not supported:

¢ Arbitrary Python objects

» Half-precision and extended-precision real and complex numbers

* Nested structured scalars the fields of structured scalars may not contain other structured scalars

The operations supported on NumPy scalars are almost the same as on the equivalent built-in types such as int or
float. You can use a type’s constructor to convert from a different type or width. In addition you can use the view(np.
<dtype>) method to bitcast all int and float types within the same width. However, you must define the scalar using
a NumPy constructor within a jitted function. For example, the following will work:

>>> import numpy as np
>>> from numba import njit
>>> @njit
. def bitcast():
i = np.int64(-1)
print(i.view(np.uint64))

>>> bitcast()
18446744073709551615
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Whereas the following will not work:

>>> import numpy as np
>>> from numba import njit
>>> @njit
. def bitcast(i):
print(i.view(np.uint64))

>>> bitcast(np.int64(-1))

TypingError Traceback (most recent call last)

TypingError: Failed in nopython mode pipeline (step: ensure IR is legal prior to.
—lowering)
'view' can only be called on NumPy dtypes, try wrapping the variable with 'np.<dtype>Q)'

File "<ipython-input-3-fc40aaab84c4>", line 3:
def bitcast(i):
print(i.view(np.uint64))

Structured scalars support attribute getting and setting, as well as member lookup using constant strings. Strings stored
in a local or global tuple are considered constant strings and can be used for member lookup.

import numpy as np
from numba import njit

arr = np.array([(1, 2)], dtype=[('al', '£8'), ('a2', '£f8')])
fields_gl = ('al', 'a2'")

Gnjit
def get_field_sum(rec):
fields_lc = ('al', 'a2")
field_namel = fields_1lc[0]
field_name2 = fields_gl[1]
return rec[field_namel] + rec[field_name2]

get_field_sum(arr[0]) # returns 3

It is also possible to use local or global tuples together with literal_unroll:

import numpy as np
from numba import njit, literal_unroll

arr = np.array([(1, 2)], dtype=[('al', '"£8'), ('a2', '£f8"')1)
fields_gl = ('al', 'a2')

@njit
def get_field_sum(rec):
out = 0

for f in literal_unroll(fields_gl):
out += rec[f]
return out

get_field_sum(arr[0]) # returns 3
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Record subtyping

Warning: This is an experimental feature.

Numba allows width subtyping of structured scalars. For example, dtype([('a', "£8'), ('b', "i8')]) will be
considered a subtype of dtype([('a', '£8')], because the second is a strict subset of the first, i.e. field a is of the
same type and is in the same position in both types. The subtyping relationship will matter in cases where compilation
for a certain input is not allowed, but the input is a subtype of another, allowed type.

import numpy as np

from numba import njit, typeof

from numba.core import types

recordl = np.array([1], dtype=[('a', '£8')])[0]

record2 = np.array([(2,3)], dtype=[('a', "£8"), ('b', "£8')])[0]

@njit(types.float64(typeof(recordl)))
def foo(rec):
return rec['a']

foo(recordl)
foo(record2)

Without subtyping the last line would fail. With subtyping, no new compilation will be triggered, but the compiled
function for recordl will be used for record2.

See also:

Numpy scalars reference.

2.7.2 Array types

Numpy arrays of any of the scalar types above are supported, regardless of the shape or layout.

Array access

Arrays support normal iteration. Full basic indexing and slicing is supported. A subset of advanced indexing is also
supported: only one advanced index is allowed, and it has to be a one-dimensional array (it can be combined with an
arbitrary number of basic indices as well).

See also:

Numpy indexing reference.
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Structured array access

Numba presently supports accessing fields of individual elements in structured arrays by attribute as well as by getting
and setting. This goes slightly beyond the NumPy API, which only allows accessing fields by getting and setting. For
example:

from numba import njit
import numpy as np

record_type = np.dtype([("ival", np.int32), ("fval", np.float64)], align=True)

def f(rec):
value = 2.5
rec[0].ival int(value)
rec[0].fval = value
return rec

arr = np.ones(l, dtype=record_type)
cfunc = njit(f)

# Works
print(cfunc(arr))

# Does not work
print(f(arr))

The above code results in the output:

[2, 2.5)]
Traceback (most recent call last):
File "repro.py", line 22, in <module>
print (f(arr))
File "repro.py", line 9, in f
rec[0].ival = int(value)
AttributeError: 'numpy.void' object has no attribute 'ival'

The Numba-compiled version of the function executes, but the pure Python version raises an error because of the
unsupported use of attribute access.

Note: This behavior will eventually be deprecated and removed.

Attributes

The following attributes of Numpy arrays are supported:
e dtype
e flags
e flat
e itemsize

e ndim
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shape
size
strides
T

real

imag

The flags object

The object returned by the flags attribute supports the contiguous, c_contiguous and £_contiguous attributes.

The flat object

The object returned by the flat attribute supports iteration and indexing, but be careful: indexing is very slow on
non-C-contiguous arrays.

The real and imag attributes

Numpy supports these attributes regardless of the dtype but Numba chooses to limit their support to avoid potential
user error. For numeric dtypes, Numba follows Numpy’s behavior. The real attribute returns a view of the real part
of the complex array and it behaves as an identity function for other numeric dtypes. The imag attribute returns a
view of the imaginary part of the complex array and it returns a zero array with the same shape and dtype for other
numeric dtypes. For non-numeric dtypes, including all structured/record dtypes, using these attributes will result in a
compile-time (TypingError) error. This behavior differs from Numpy’s but it is chosen to avoid the potential confusion
with field names that overlap these attributes.

Calculation

The following methods of Numpy arrays are supported in their basic form (without any optional arguments):

allQO
any ()
argmin()
clip(Q
conj
conjugate()
cumprod()
cumsum()
max()
mean()
min()

nonzero()
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https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.T.html#numpy.ndarray.T
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.real.html#numpy.ndarray.real
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.imag.html#numpy.ndarray.imag
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flat.html#numpy.ndarray.flat
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.real.html#numpy.ndarray.real
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.imag.html#numpy.ndarray.imag
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.all.html#numpy.ndarray.all
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.any.html#numpy.ndarray.any
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.clip.html#numpy.ndarray.clip
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conj.html#numpy.ndarray.conj
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conjugate.html#numpy.ndarray.conjugate
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html#numpy.ndarray.cumprod
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html#numpy.ndarray.cumsum
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nonzero.html#numpy.ndarray.nonzero
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prod()
stdQ)

take()

var()

The corresponding top-level Numpy functions (such as numpy .prod()) are similarly supported.

Other methods

The following methods of Numpy arrays are supported:

argmax () (axis keyword argument supported).

argsort() (kind key word argument supported for values 'quicksort' and 'mergesort')

astype() (only the 1-argument form)

copy () (without arguments)

dot () (only the 1-argument form)

flatten() (no order argument; ‘C’ order only)

item() (without arguments)

itemset() (only the 1-argument form)

ptp() (without arguments)

ravel () (no order argument; ‘C’ order only)

repeat () (no axis argument)

reshape() (only the 1-argument form)

sort () (without arguments)

sum() (with or without the axis and/or dtype arguments.)

axis only supports integer values.

If the axis argument is a compile-time constant, all valid values are supported. An out-of-range value will
result in a LoweringError at compile-time.

If the axis argument is not a compile-time constant, only values from O to 3 are supported. An out-of-range
value will result in a runtime exception.

All numeric dtypes are supported in the dtype parameter. timedelta arrays can be used as input arrays
but timedelta is not supported as dtype parameter.

When a dtype is given, it determines the type of the internal accumulator. When it is not, the selection is
made automatically based on the input array’s dtype, mostly following the same rules as NumPy. However,
on 64-bit Windows, Numba uses a 64-bit accumulator for integer inputs (int64 for int32 inputs and
uint64 for uint32 inputs), while NumPy would use a 32-bit accumulator in those cases.

¢ transpose()

e view() (only the 1-argument form)

e __contains__Q)

Where applicable, the corresponding top-level NumPy functions (such as numpy.argmax()) are similarly supported.
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https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html#numpy.ndarray.transpose
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Warning: Sorting may be slightly slower than Numpy’s implementation.

2.7.3 Functions

Linear algebra

Basic linear algebra is supported on 1-D and 2-D contiguous arrays of floating-point and complex numbers:

numpy .dot ()

numpy . kron() (‘C’ and ‘F’ order only)
numpy.outer ()

numpy . trace() (only the first argument).
numpy .vdot ()

On Python 3.5 and above, the matrix multiplication operator from PEP 465 (i.e. a @ b where a and b are 1-D
or 2-D arrays).

numpy.linalg.cholesky()
numpy.linalg.cond() (only non string values in p).
numpy.linalg.det()

numpy.linalg.eig() (only running with data that does not cause a domain change is supported e.g. real input
-> real output, complex input -> complex output).

numpy.linalg.eigh() (only the first argument).

numpy.linalg.eigvals() (only running with data that does not cause a domain change is supported e.g. real
input -> real output, complex input -> complex output).

numpy.linalg.eigvalsh() (only the first argument).

numpy.linalg.inv()

numpy.linalg.lstsq()

numpy.linalg.matrix_power ()

numpy.linalg.matrix_rank()

numpy.linalg.norm() (only the 2 first arguments and only non string values in ord).
numpy.linalg.pinv()

numpy.linalg.qr() (only the first argument).

numpy.linalg.slogdet()

numpy.linalg.solve()

numpy.linalg.svd() (only the 2 first arguments).

Note:

The implementation of these functions needs SciPy to be installed.
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Reductions

The following reduction functions are supported:

numpy
numpy
numpy
numpy
numpy
numpy
numpy
numpy
numpy
numpy
numpy
numpy
numpy
numpy
numpy

numpy

.diff() (only the 2 first arguments)

.median() (only the first argument)

.nancumprod () (only the first argument)

.nancumsum() (only the first argument)

.nanmax () (only the first argument)

.nanmean() (only the first argument)

.nanmedian() (only the first argument)

.nanmin() (only the first argument)

.nanpercentile() (only the 2 first arguments, complex dtypes unsupported)
.nanquantile() (only the 2 first arguments, complex dtypes unsupported)
.nanprod() (only the first argument)

.nanstd() (only the first argument)

.nansum() (only the first argument)

.nanvar () (only the first argument)

.percentile() (only the 2 first arguments, complex dtypes unsupported)

.quantile() (only the 2 first arguments, complex dtypes unsupported)

Other functions

The following top-level functions are supported:

numpy

numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy.
numpy .
numpy .

numpy.

.append()

arange()

argsort() (kind key word argument supported for values 'quicksort' and 'mergesort’)
argwhere()

array () (only the 2 first arguments)
array_equal ()

array_split()

asarray () (only the 2 first arguments)
asarray_chkfinite() (only the 2 first arguments)
asfarray()

asfortranarray() (only the first argument)
atleast_1dQ

atleast_2d(Q)

atleast_3dQ)

bartlett()
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https://numpy.org/doc/stable/reference/generated/numpy.argsort.html#numpy.argsort
https://numpy.org/doc/stable/reference/generated/numpy.argwhere.html#numpy.argwhere
https://numpy.org/doc/stable/reference/generated/numpy.array.html#numpy.array
https://numpy.org/doc/stable/reference/generated/numpy.array_equal.html#numpy.array_equal
https://numpy.org/doc/stable/reference/generated/numpy.array_split.html#numpy.array_split
https://numpy.org/doc/stable/reference/generated/numpy.asarray.html#numpy.asarray
https://numpy.org/doc/stable/reference/generated/numpy.asarray_chkfinite.html#numpy.asarray_chkfinite
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numpy.
numpy .
numpy .
numpy .
numpy.
numpy .
numpy .
numpy.
numpy .

numpy .

bincount ()

blackman()

column_stack()

concatenate()

convolve() (only the 2 first arguments)

copy () (only the first argument)

corrcoef() (only the 3 first arguments, requires SciPy)
correlate() (only the 2 first arguments)
count_nonzero() (axis only supports scalar values)

cov() (only the 5 first arguments)

numpy . cross () (only the 2 first arguments; at least one of the input arrays should have shape[-1] == 3)

— If shape[-1] == 2 for both inputs, please replace your numpy.cross() call with numba.np.
extensions.cross2d().

numpy .
numpy .
numpy .
numpy .
numpy .
numpy.
numpy .
numpy .
numpy .
numpy.
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy.
numpy .
numpy .
numpy .
numpy.
numpy .

numpy.

delete() (only the 2 first arguments)
diag(Q

digitize(Q)

dstack()

dtype() (only the first argument)
ediff1dQ

empty () (only the 2 first arguments)
empty_like() (only the 2 first arguments)
expand_dims ()

extract()

eye()

fill_diagonal ()

flatten() (no order argument; ‘C’ order only)
flatnonzero()

flip() (no axis argument)

fliplr(

flipudQ

frombuffer() (only the 2 first arguments)
full () (only the 3 first arguments)
full_like() (only the 3 first arguments)
hamming )

hanning ()

histogram() (only the 3 first arguments)
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https://numpy.org/doc/stable/reference/generated/numpy.empty.html#numpy.empty
https://numpy.org/doc/stable/reference/generated/numpy.empty_like.html#numpy.empty_like
https://numpy.org/doc/stable/reference/generated/numpy.expand_dims.html#numpy.expand_dims
https://numpy.org/doc/stable/reference/generated/numpy.extract.html#numpy.extract
https://numpy.org/doc/stable/reference/generated/numpy.eye.html#numpy.eye
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numpy.hstack()

numpy.identity ()

numpy .kaiser()

numpy . iscomplex ()

numpy . iscomplexobj ()

numpy .isneginf()

numpy .isposinf()

numpy.isreal )

numpy.isrealobj()

numpy.isscalar()

numpy . interp() (only the 3 first arguments)

numpy . intersect1d() (only first 2 arguments, arl and ar2)
numpy . linspace () (only the 3-argument form)
numpy .ndenumerate

numpy .ndindex

numpy .nditer (only the first argument)

numpy .ones () (only the 2 first arguments)

numpy .ones_like() (only the 2 first arguments)
numpy .partition() (only the 2 first arguments)
numpy . ptp () (only the first argument)

numpy .ravel () (no order argument; ‘C’ order only)
numpy . repeat () (no axis argument)

numpy . reshape () (no order argument; ‘C’ order only)
numpy.roll () (only the 2 first arguments; second argument shift must be an integer)
numpy .roots()

numpy .rot90 () (only the 2 first arguments)

numpy . round_ ()

numpy . searchsorted() (only the 3 first arguments)

numpy . select() (only using homogeneous lists or tuples for the first two arguments, condlist and choicelist).

Additionally, these two arguments can only contain arrays (unlike Numpy that also accepts tuples).
numpy . shape ()

numpy.sinc()

numpy . sort () (no optional arguments)

numpy.split()

numpy .stack()

numpy . swapaxes ()
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e numpy.take() (only the 2 first arguments)

e numpy.transpose()

e numpy.trapz() (only the 3 first arguments)

e numpy.tri() (only the 3 first arguments; third argument k must be an integer)
e numpy.tril () (second argument k must be an integer)

e numpy.tril_indices() (all arguments must be integer)

e numpy.tril_indices_from() (second argument k must be an integer)
e numpy.triu() (second argument k must be an integer)

e numpy.triu_indices() (all arguments must be integer)

e numpy.triu_indices_from() (second argument k must be an integer)
e numpy.unique() (only the first argument)

e numpy.vander ()

e numpy.vstack()

e numpy .where()

e numpy.zeros() (only the 2 first arguments)

e numpy.zeros_like() (only the 2 first arguments)

The following constructors are supported, both with a numeric input (to construct a scalar) or a sequence (to construct
an array):

e numpy.bool_

e numpy.complex64
* numpy.complex128
e numpy.float32

e numpy.float64

e numpy.int8

* numpy.intl6

* numpy.int32

e numpy.int64

e numpy.intc

* numpy.intp

* numpy.uint8

e numpy.uintl6

* numpy.uint32

* numpy.uint64

* numpy.uintc

e numpy.uintp

The following machine parameter classes are supported, with all purely numerical attributes:
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e numpy.iinfo
e numpy . finfo (machar attribute not supported)

e numpy . MachAr (with no arguments to the constructor)

Literal arrays

Neither Python nor Numba has actual array literals, but you can construct arbitrary arrays by calling numpy . array ()
on a nested tuple:

a = numpy.array(((a, b, C)’ (dl e, f)))

(nested lists are not yet supported by Numba)

2.7.4 Modules

random
Numba supports top-level functions from the numpy.random module, but does not allow you to create individual Ran-

domsState instances. The same algorithms are used as for the standard random module (and therefore the same notes
apply), but with an independent internal state: seeding or drawing numbers from one generator won’t affect the other.

The following functions are supported.

Initialization

e numpy.random.seed(): with an integer argument only

Warning: Calling numpy . random. seed() from interpreted code (including from object mode code) will seed
the NumPy random generator, not the Numba random generator. To seed the Numba random generator, see the
example below.

from numba import njit
import numpy as np

OGnjit
def seed(a):
np.random.seed(a)

@Gnjit
def rand(Q:
return np.random.rand()

# Incorrect seeding
np.random.seed(1234)
print(rand())

np.random.seed(1234)

(continues on next page)
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(continued from previous page)

print(rand())

# Correct seeding

seed(1234)

print(rand())

seed(1234)

print(rand())

Simple random data

e numpy.
e numpy.
* numpy.
e numpy.
* numpy
e numpy

e numpy.

random.rand()
random.randint () (only the first two arguments)
random.randn()

random.random()

.random.random_sample()

.random.ranf()

random. sample ()

Permutations

e numpy.

e numpy.

random.choice(): the optional p argument (probabilities array) is not supported

random.permutation()

e numpy.random.shuffle(): the sequence argument must be a one-dimension Numpy array or buffer-providing
object (such as a bytearray or array.array)

Distributions

Warning:

The size argument is not supported in the following functions.

* numpy.
e numpy.
e numpy.
e numpy.
e numpy.
e numpy.
e numpy.
* numpy.

e numpy.

random.beta()
random.binomial ()
random. chisquare()
random.dirichlet()
random. exponential ()
random. £()

random. gamma ()
random.geometric()

random. gumbel )
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* numpy.

¢ numpy

* numpy

* numpy.
e numpy.
e numpy.
e numpy.

e numpy.

¢ numpy

e numpy.
* numpy.
e numpy.
e numpy.
e numpy.
* numpy.

* numpy.

* numpy

¢* numpy

e numpy.
e numpy.
e numpy.
* numpy.

* numpy.

random.
.random.
.random.
random.
random.
random.
random.
random.

.random.

random

random

random.
random.
random.
random.
random.
.random.
.random.
random.
random.
.waldQO

.weibull

random

random

random.

hypergeometric()
laplace()
logistic()
lognormal O
logseries()
multinomial ()
negative_binomial ()
normal )

pareto()

.poisson()

.power()

rayleigh()
standard_cauchy ()
standard_exponential ()
standard_gamma ()
standard_normal ()
standard_t ()
triangular()

uniform()

vonmises()

zipf(Q)

Note: Calling numpy .random. seed() from non-Numba code (or from object mode code) will seed the Numpy

random generator, not the Numba random generator.

Note: Since version 0.28.0, the generator is thread-safe and fork-safe. Each thread and each process will produce
independent streams of random numbers.
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stride_tricks

The following function from the numpy.1lib.stride_tricks module is supported:

e as_strided() (the strides argument is mandatory, the subok argument is not supported)

2.7.5 Standard ufuncs
One objective of Numba is having all the standard ufuncs in NumPy understood by Numba. When a supported ufunc

is found when compiling a function, Numba maps the ufunc to equivalent native code. This allows the use of those
ufuncs in Numba code that gets compiled in nopython mode.

Limitations

Right now, only a selection of the standard ufuncs work in nopython mode. Following is a list of the different standard
ufuncs that Numba is aware of, sorted in the same way as in the NumPy documentation.

Math operations

UFUNC MODE

name object mode nopython mode
add Yes Yes
subtract Yes Yes
multiply Yes Yes
divide Yes Yes
logaddexp Yes Yes
logaddexp2 | Yes Yes
true_divide | Yes Yes
floor_divide | Yes Yes
negative Yes Yes
power Yes Yes
remainder Yes Yes
mod Yes Yes
fmod Yes Yes
divmod (*) Yes Yes
abs Yes Yes
absolute Yes Yes
fabs Yes Yes
rint Yes Yes
sign Yes Yes
conj Yes Yes
exp Yes Yes
exp2 Yes Yes
log Yes Yes
log2 Yes Yes
logl10 Yes Yes
expml Yes Yes
loglp Yes Yes
sqrt Yes Yes

continues on next page
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Table 1 - continued from previous page

UFUNC MODE

name object mode nopython mode
square Yes Yes

reciprocal Yes Yes

conjugate Yes Yes

gcd Yes Yes

lem Yes Yes

(*) not supported on timedelta types

Trigonometric functions

Bit-twiddling functions

UFUNC | MODE
name object mode | nopython mode
sin Yes Yes
cos Yes Yes
tan Yes Yes
arcsin Yes Yes
arccos Yes Yes
arctan Yes Yes
arctan2 Yes Yes
hypot Yes Yes
sinh Yes Yes
cosh Yes Yes
tanh Yes Yes
arcsinh Yes Yes
arccosh Yes Yes
arctanh Yes Yes
deg2rad | Yes Yes
rad2deg | Yes Yes
degrees | Yes Yes
radians Yes Yes
UFUNC MODE
name object mode | nopython mode
bitwise_and | Yes Yes
bitwise_or Yes Yes
bitwise_xor | Yes Yes
bitwise_not | Yes Yes
invert Yes Yes
left_shift Yes Yes
right_shift Yes Yes
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Comparison functions

UFUNC MODE
name object mode | nopython mode
greater Yes Yes
greater_equal | Yes Yes
less Yes Yes
less_equal Yes Yes
not_equal Yes Yes
equal Yes Yes
logical_and Yes Yes
logical_or Yes Yes
logical_xor Yes Yes
logical_not Yes Yes
maximum Yes Yes
minimum Yes Yes
fmax Yes Yes
fmin Yes Yes
Floating functions
UFUNC | MODE
name object mode | nopython mode
isfinite Yes Yes
isinf Yes Yes
isnan Yes Yes
signbit Yes Yes
copysign | Yes Yes
nextafter | Yes Yes
modf Yes No
Idexp Yes (*) Yes
frexp Yes No
floor Yes Yes
ceil Yes Yes
trunc Yes Yes
spacing | Yes Yes

(*) not supported on windows 32 bit

Datetime functions

UFUNC | MODE
name object mode | nopython mode
isnat Yes Yes
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2.8 Deviations from Python Semantics

2.8.1 Bounds Checking

By default, instead of causing an IndexError, accessing an out-of-bound index of an array in a Numba-compiled
function will return invalid values or lead to an access violation error (it’s reading from invalid memory locations).
Bounds checking can be enabled on a specific function via the boundscheck option of the jit decorator. Additionally,
the NUMBA_BOUNDSCHECK can be set to 0 or 1 to globally override this flag.

Note: Bounds checking will slow down typical functions so it is recommended to only use this flag for debugging
purposes.

2.8.2 Exceptions and Memory Allocation

Due to limitations in the current compiler when handling exceptions, memory allocated (almost always NumPy arrays)
within a function that raises an exception will leak. This is a known issue that will be fixed, but in the meantime, it is
best to do memory allocation outside of functions that can also raise exceptions.

2.8.3 Integer width

While Python has arbitrary-sized integers, integers in Numba-compiled functions get a fixed size through type inference
(usually, the size of a machine integer). This means that arithmetic operations can wrapround or produce undefined
results or overflow.

Type inference can be overridden by an explicit type specification, if fine-grained control of integer width is desired.
See also:

Enhancement proposal 1: Changes in integer typing

2.8.4 Boolean inversion

Calling the bitwise complement operator (the ~ operator) on a Python boolean returns an integer, while the same
operator on a Numpy boolean returns another boolean:

>>> ~True

-2

>>> ~np.bool_(True)
False

Numba follows the Numpy semantics.
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2.8.5 Global and closure variables
In nopython mode, global and closure variables are frozen by Numba: a Numba-compiled function sees the value of
those variables at the time the function was compiled. Also, it is not possible to change their values from the function.

Numba may or may not copy global variables referenced inside a compiled function. Small global arrays are copied for
potential compiler optimization with immutability assumption. However, large global arrays are not copied to conserve
memory. The definition of “small” and “large” may change.

2.8.6 Zero initialization of variables

Numba does not track variable liveness at runtime. For simplicity of implementation, all variables are zero-initialized.
Example:

from numba import njit

OGnjit
def foo():
for i in range(0):
pass
print(i) # will print 0 and not raise UnboundLocalError

foo()

2.9 Floating-point pitfalls

2.9.1 Precision and accuracy

For some operations, Numba may use a different algorithm than Python or Numpy. The results may not be bit-by-bit
compatible. The difference should generally be small and within reasonable expectations. However, small accumulated
differences might produce large differences at the end, especially if a divergent function is involved.

Math library implementations

Numba supports a variety of platforms and operating systems, each of which has its own math library implementation
(referred to as 1ibm from here in). The majority of math functions included in 1ibm have specific requirements as
set out by the IEEE 754 standard (like sin(), exp() etc.), but each implementation may have bugs. Thus, on some
platforms Numba has to exercise special care in order to workaround known 1ibm issues.

Another typical problem is when an operating system’s 1ibm function set is incomplete and needs to be supplemented by
additional functions. These are provided with reference to the IEEE 754 and C99 standards and are often implemented
in Numba in a manner similar to equivalent CPython functions.
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Linear algebra

Numpy forces some linear algebra operations to run in double-precision mode even when a float32 input is given.
Numba will always observe the input’s precision, and invoke single-precision linear algebra routines when all inputs
are float32 or complex64.

The implementations of the numpy . 1inalg routines in Numba only support the floating point types that are used in the
LAPACK functions that provide the underlying core functionality. As aresultonly float32, float64, complex64 and
complex128 types are supported. If a user has e.g. an int32 type, an appropriate type conversion must be performed
to a floating point type prior to its use in these routines. The reason for this decision is to essentially avoid having to
replicate type conversion choices made in Numpy and to also encourage the user to choose the optimal floating point
type for the operation they are undertaking.

Mixed-types operations

Numpy will most often return a float64 as a result of a computation with mixed integer and floating-point operands
(a typical example is the power operator **). Numba by contrast will select the highest precision amongst the floating-
point operands, so for example float32 ** int32 will return a float32, regardless of the input values. This makes
performance characteristics easier to predict, but you should explicitly cast the input to float64 if you need the extra
precision.

2.9.2 Warnings and errors

When calling a ufunc created with vectorize (), Numpy will determine whether an error occurred by examining the
FPU error word. It may then print out a warning or raise an exception (such as RuntimeWarning: divide by zero
encountered), depending on the current error handling settings.

Depending on how LLVM optimized the ufunc’s code, however, some spurious warnings or errors may appear. If you
get caught by this issue, we recommend you call numpy . seterr () to change Numpy’s error handling settings, or the
numpy . errstate context manager to switch them temporarily:

with np.errstate(all='ignore'):
x = my_ufunc(y)

2.10 Deprecation Notices

This section contains information about deprecation of behaviours, features and APIs that have become undesir-
able/obsolete. Any information about the schedule for their deprecation and reasoning behind the changes, along with
examples, is provided. However, first is a small section on how to suppress deprecation warnings that may be raised
from Numba so as to prevent warnings propagating into code that is consuming Numba.
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2.10.1 Suppressing Deprecation warnings

All Numba deprecations are issued via NumbaDeprecationWarning or NumbaPendingDeprecationWarning s, to
suppress the reporting of these the following code snippet can be used:

from numba.core.errors import NumbaDeprecationWarning, NumbaPendingDeprecationWarning
import warnings

warnings.simplefilter('ignore', category=NumbaDeprecationWarning)
warnings.simplefilter('ignore', category=NumbaPendingDeprecationWarning)

The action used above is 'ignore', other actions are available, see The Warnings Filter documentation for more
information.

Note: It is strongly recommended that applications and libraries which choose to suppress these warnings should pin
their Numba dependency to a suitable version because their users will no longer be aware of the coming incompatibility.

2.10.2 Deprecation of reflection for List and Set types

Reflection (reflection) is the jargon used in Numba to describe the process of ensuring that changes made by compiled
code to arguments that are mutable Python container data types are visible in the Python interpreter when the compiled
function returns. Numba has for some time supported reflection of 1ist and set data types and it is support for this
reflection that is scheduled for deprecation with view to replace with a better implementation.

Reason for deprecation

First recall that for Numba to be able to compile a function in nopython mode all the variables must have a concrete type
ascertained through type inference. In simple cases, it is clear how to reflect changes to containers inside nopython
mode back to the original Python containers. However, reflecting changes to complex data structures with nested
container types (for example, lists of lists of integers) quickly becomes impossible to do efficiently and consistently.
After a number of years of experience with this problem, it is clear that providing this behaviour is both fraught with
difficulty and often leads to code which does not have good performance (all reflected data has to go through special
APIs to convert the data to native formats at call time and then back to CPython formats at return time). As a result
of this, the sheer number of reported problems in the issue tracker, and how well a new approach that was taken with
typed.Dict (typed dictionaries) has gone, the core developers have decided to deprecate the noted reflection
behaviour.

Example(s) of the impact

At present only a warning of the upcoming change is issued. In future code such as:

from numba import njit

@njit
def foo(x):
x.append(10)

a=1[1, 2, 3]
foo(a)
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will require adjustment to use a typed.List instance, this typed container is synonymous to the 7yped Dict. An
example of translating the above is:

from numba import njit
from numba.typed import List

@Gnjit
def foo(x):
x.append(10)

a=1[1, 2, 3]

typed_a = List(Q)
[typed_a.append(x) for x in a]
foo(typed_a)

For more information about typed.List see Typed List. Further usability enhancements for this feature were made
in the 0.47.0 release cycle.

Schedule

This feature will be removed with respect to this schedule:
* Pending-deprecation warnings will be issued in version 0.44.0

* Prominent notice will be given for a minimum of two releases prior to full removal.

Recommendations

Projects that need/rely on the deprecated behaviour should pin their dependency on Numba to a version prior to removal
of this behaviour, or consider following replacement instructions that will be issued outlining how to adjust to the
change.

Expected Replacement
As noted above typed.List will be used to permit similar functionality to reflection in the case of 1ist s, a typed.
Set will provide the equivalent for set (not implemented yet!). The advantages to this approach are:

* That the containers are typed means type inference has to work less hard.

* Nested containers (containers of containers of ...) are more easily supported.

* Performance penalties currently incurred translating data to/from native formats are largely avoided.

e Numba’s typed.Dict will be able to use these containers as values.
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2.10.3 Deprecation of object mode fall-back behaviour when using @jit

The numba. jit decorator has for a long time followed the behaviour of first attempting to compile the decorated
function in nopython mode and should this compilation fail it will fall-back and try again to compile but this time in
object mode. 1t it this fall-back behaviour which is being deprecated, the result of which will be that numba. jit will
by default compile in nopython mode and object mode compilation will become opt-in only.

Reason for deprecation

The fall-back has repeatedly caused confusion for users as seemingly innocuous changes in user code can lead to drastic
performance changes as code which may have once compiled in nopython mode mode may silently switch to compiling
in object mode e.g:

from numba import jit

@jit
def foo():
1-=1]
for x in range(10):
1.append(x)
return 1

foo()
assert foo.nopython_signatures # this was compiled in nopython mode

@jit
def bar(Q:
1-=1]
for x in range(10):
1.append(x)
return reversed(l) # innocuous change, but no reversed support in nopython mode

bar()

assert not bar.nopython_signatures # this was not compiled in nopython mode

Another reason to remove the fall-back is that it is confusing for the compiler engineers developing Numba as it causes
internal state problems that are really hard to debug and it makes manipulating the compiler pipelines incredibly chal-
lenging.

Further, it has long been considered best practice that the nopython mode keyword argument in the numba . jit decorator
is set to True and that any user effort spent should go into making code work in this mode as there’s very little gain if it
does not. The result is that, as Numba has evolved, the amount of use object mode gets in practice and its general utility
has decreased. It can be noted that there are some minor improvements available through the notion of loop-lifting, the
cases of this being used in practice are, however, rare and often a legacy from use of less-recent Numba whereby such
behaviour was better accommodated/the use of @jit with fall-back was recommended.
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Example(s) of the impact

At present a warning of the upcoming change is issued if @jit decorated code uses the fall-back compilation path. In
future code such as:

@jit
def bar(Q:
1 =11
for x in range(10):
1.append(x)
return reversed(l)

bar()

will simply not compile, a TypingError would be raised.

Schedule

This feature will be removed with respect to this schedule:
* Deprecation warnings will be issued in version 0.44.0

* Prominent notice will be given for a minimum of two releases prior to full removal.

Recommendations

Projects that need/rely on the deprecated behaviour should pin their dependency on Numba to a version prior to removal
of this behaviour. Alternatively, to accommodate the scheduled deprecations, users with code compiled at present with
@jit can supply the nopython=True keyword argument, if the code continues to compile then the code is already
ready for this change. If the code does not compile, continue using the @jit decorator without nopython=True and
profile the performance of the function. Then remove the decorator and again check the performance of the function.
If there is no benefit to having the @jit decorator present consider removing it! If there is benefit to having the @jit
decorator present, then to be future proof supply the keyword argument forceobj=True to ensure the function is
always compiled in object mode.

2.10.4 Deprecation of the target kwarg

There have been a number of users attempting to use the target keyword argument that’s meant for internal use only.
We are deprecating this argument, as alternative solutions are available to achieve the same behaviour.

Recommendations

Update the jit decorator as follows:

* Change @numba.jit(..., target='cuda') to numba.cuda.jit(...).
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Schedule

This feature will be moved with respect to this schedule:
¢ Deprecation warnings will be issued in 0.51.0.

* The target kwarg will be removed in version 0.54.0.

2.10.5 Removal of the role of compute capability for CUDA inspection methods

The following methods of the Dispatcher class:
e inspect_asm
e inspect_llvm
e inspect_sass

accepted a kwarg called compute_capability. This kwarg is now removed as it was problematic - in most cases the
returned values erroneously pertained to the device in the current context, instead of the requested compute capability.

These methods return a dict of variants, which was previously keyed by a (compute_capability, argtypes) tuple.
The dict is now only keyed by argument types, and items in the dict are for the device in the current context.

For specialized Dispatchers (those whose kernels were eagerly compiled by providing a signature), the methods previ-
ously returned only one variant, instead of a dict of variants. For consistency with the CPU target and for support for
multiple signatures to be added to the CUDA target, these methods now always return a dict.

The ptx property also returned one variant directly for specialized Dispatchers, and a dict for un-specialized Dispatch-
ers. It now always returns a dict

Recommendations

Update calls to these methods such that:
* They are always called when the device for which their output is required is in the current CUDA context.
* The compute_capability kwarg is not passed to them.
* Any use of their results indexes into them using only a tuple of argument types.

» With specialized Dispatchers, ensure that the returned dict is indexed into using the appropriate signature.

Schedule

In 0.53.0:
* The compute_capability kwarg was deprecated.

* Returned values from the inspection methods supported indexing by (compute_capability, argtypes) and
argtypes.

* The inspection methods and ptx property of specialized dispatchers returned their result for a single variant,
rather than a dict, and produced a warning.

In 0.54.0:
* The compute_capability kwarg has been removed.
e ptx and the inspection methods always return a dict.

* Support for indexing into the results of these methods using (cc, argtypes) has been removed.
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2.10.6 Deprecation of strict strides checking when computing contiguity

The contiguity of device arrays (the 'C_CONTIGUOUS' and 'F_CONTIGUOUS' elements of the flags of a device array)
are computed using relaxed strides checking, which matches the default in NumPy since Version 1.12. A config vari-
able, NUMBA_NPY_RELAXED_STRIDES_CHECKING, is provided to force computation of these flags using strict strides
checking.

This flag is provided to work around any bugs that may be exposed by strict strides checking, and will be removed in
future.

Schedule

In 0.54.0:
* Relaxed strides checking will become the default.
* Strict strides checking will be deprecated.

In 0.55.0:

* Strict strides checking will be removed, if there are no reports of bugs related to relaxed strides checking in
0.54.0 onwards. This plan will be re-examined if bugs related to relaxed strides checking are reported, but may
not necessarily change as a result.

2.10.7 Deprecation of the inspect_ptx() method

The undocumented inspect_ptx() method of functions decorated with @cuda. jit(device=True) is sometimes
used to compile a Python function to PTX for use outside of Numba. An interface for this specific purpose is provided
in the compile_ptx() function. inspect_ptx() has one or two longstanding issues and presents a maintenance
burden for upcoming changes in the CUDA target, so it is deprecated and will be removed in favor of the use of
compile_ptx().

Recommendations

Replace any code that compiles device functions to PTX using the following pattern:

@cuda.jit(signature, device=True)
def func(args):

ptx_code = func.inspect_ptx(nvvm_options=nvvm_options).decode()

with:

def func(args):

ptx_code, return_type = compile_ptx(func, signature, device=True, nvvm_options=nvvm_
—,options)
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Schedule

e In Numba 0.54: inspect_ptx() will be deprecated.

¢ In Numba 0.55: inspect_ptx () will be removed.

2.10.8 Deprecation of eager compilation of CUDA device functions

In future versions of Numba, the device kwarg to the @cuda. jit decorator will be obviated, and whether a device
function or global kernel is compiled will be inferred from the context. With respect to kernel / device functions and
lazy / eager compilation, four cases are presently handled:

1. device=True, eager compilation with a signature provided
2. device=False, eager compilation with a signature provided
3. device=True, lazy compilation with no signature

4. device=False, lazy compilation with no signature

The latter two cases can be differentiated without the device kwarg, because it can be inferred from the calling context
- if the call is from the host, then a global kernel should be compiled, and if the call is from a kernel or another device
function, then a device function should be compiled.

The first two cases cannot be differentiated in the absence of the device kwarg - without it, it will not be clear from
a signature alone whether a device function or global kernel should be compiled. In order to resolve this, support for
eager compilation of device functions will be removed. Eager compilation with the @cuda. jit decorator will in future
always imply the immediate compilation of a global kernel.

Recommendations

Any eagerly-compiled device functions should have their signature removed, e.g.:

@Qcuda.jit('int32(int32, int32)', device=True)
def f(x, y):
return x + y

becomes:

@cuda. jit(device=True)
def f(x, y):
return x + y

Schedule

¢ In Numba 0.54: Eager compilation of device functions will be deprecated.

e In Numba 0.55: Eager compilation of device functions will be unsupported and attempts to eagerly compile
device functions will raise an error.
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2.10.9 Dropping support for the ROCm target

The ROCm target has not been maintained for a number of years. It’s known to be not far from working but has
essentially bit-rotted in a number of areas. Numba 0.54 includes a new API for describing targets and both the CPU
and CUDA targets have been ported to use this. Due to lack of maintenance, support and user base, the ROCm target is
not being ported to this API, is being moved to an “unmaintained” status and will reside outside of the Numba package.
Should there be sufficient interest and support for this target in future its status will be reconsidered.

Schedule

In 0.54.0:

* The ROCm target is officially unmaintained and the target source code has been moved out of the Numba main
repository and into a separate repository.
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CHAPTER
THREE

NUMBA FOR CUDA GPUS

3.1 Overview

Numba supports CUDA GPU programming by directly compiling a restricted subset of Python code into CUDA kernels
and device functions following the CUDA execution model. Kernels written in Numba appear to have direct access to
NumPy arrays. NumPy arrays are transferred between the CPU and the GPU automatically.

3.1.1 Terminology

Several important terms in the topic of CUDA programming are listed here:
* host: the CPU
* device: the GPU
* host memory: the system main memory
* device memory: onboard memory on a GPU card
e kernels: a GPU function launched by the host and executed on the device

* device function: a GPU function executed on the device which can only be called from the device (i.e. from a
kernel or another device function)

3.1.2 Programming model

Most CUDA programming facilities exposed by Numba map directly to the CUDA C language offered by NVidia.
Therefore, it is recommended you read the official CUDA C programming guide.

3.1.3 Requirements

Supported GPUs

Numba supports CUDA-enabled GPU with compute capability 3.0 or above with an up-to-data Nvidia driver.
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Software

Numba aims to support CUDA Toolkit versions released within the last 3 years. At the present time, you will need the
CUDA toolkit version 9.2 or later installed.

CUDA is supported on 64-bit Linux and Windows. 32-bit platforms, and macOS are unsupported.

If you are using Conda, you can install the CUDA toolkit with:

$ conda install cudatoolkit

If you are not using Conda or if you want to use a different version of CUDA toolkit, the following describe how Numba
searches for a CUDA toolkit installation.

Setting CUDA Installation Path

Numba searches for a CUDA toolkit installation in the following order:
1. Conda installed cudatoolkit package.

2. Environment variable CUDA_HOME, which points to the directory of the installed CUDA toolkit (i.e. /home/
user/cuda-10)

3. System-wide installation at exactly /usr/local/cuda on Linux platforms. Versioned installation paths (i.e.
/usr/local/cuda-10.0) are intentionally ignored. Users can use CUDA_HOME to select specific versions.

In addition to the CUDA toolkit libraries, which can be installed by conda into an environment or installed system-
wide by the CUDA SDK installer, the CUDA target in Numba also requires an up-to-date NVIDIA graphics driver.
Updated graphics drivers are also installed by the CUDA SDK installer, so there is no need to do both. Note that
on macOS, the CUDA SDK must be installed to get the required driver, and the driver is only supported on macOS
prior to 10.14 (Mojave). If the 1libcuda library is in a non-standard location, users can set environment variable
NUMBA_CUDA_DRIVER to the file path (not the directory path) of the shared library file.

3.1.4 Missing CUDA Features

Numba does not implement all features of CUDA, yet. Some missing features are listed below:
* dynamic parallelism

¢ texture memory

3.2 Writing CUDA Kernels

3.2.1 Introduction

CUDA has an execution model unlike the traditional sequential model used for programming CPUs. In CUDA, the code
you write will be executed by multiple threads at once (often hundreds or thousands). Your solution will be modeled
by defining a thread hierarchy of grid, blocks and threads.

Numba’s CUDA support exposes facilities to declare and manage this hierarchy of threads. The facilities are largely
similar to those exposed by NVidia’s CUDA C language.

Numba also exposes three kinds of GPU memory: global device memory (the large, relatively slow off-chip memory
that’s connected to the GPU itself), on-chip shared memory and local memory. For all but the simplest algorithms, it
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is important that you carefully consider how to use and access memory in order to minimize bandwidth requirements
and contention.

3.2.2 Kernel declaration

A kernel function is a GPU function that is meant to be called from CPU code (*). It gives it two fundamental charac-
teristics:

¢ kernels cannot explicitly return a value; all result data must be written to an array passed to the function (if
computing a scalar, you will probably pass a one-element array);

* kernels explicitly declare their thread hierarchy when called: i.e. the number of thread blocks and the number of
threads per block (note that while a kernel is compiled once, it can be called multiple times with different block
sizes or grid sizes).

At first sight, writing a CUDA kernel with Numba looks very much like writing a JIT function for the CPU:

@cuda.jit
def increment_by_one(an_array):

o

Increment all array elements by one.

mren

# code elided here; read further for different implementations

(*) Note: newer CUDA devices support device-side kernel launching; this feature is called dynamic parallelism but
Numba does not support it currently)

3.2.3 Kernel invocation

A kernel is typically launched in the following way:

threadsperblock = 32
blockspergrid = (an_array.size + (threadsperblock - 1)) // threadsperblock
increment_by_one[blockspergrid, threadsperblock](an_array)

‘We notice two steps here:

* Instantiate the kernel proper, by specifying a number of blocks (or “blocks per grid”), and a number of threads
per block. The product of the two will give the total number of threads launched. Kernel instantiation is done by
taking the compiled kernel function (here increment_by_one) and indexing it with a tuple of integers.

* Running the kernel, by passing it the input array (and any separate output arrays if necessary). Kernels run
asynchronously: launches queue their execution on the device and then return immediately. You can use cuda.
synchronize () to wait for all previous kernel launches to finish executing.

Note: Passing an array that resides in host memory will implicitly cause a copy back to the host, which will be
synchronous. In this case, the kernel launch will not return until the data is copied back, and therefore appears to
execute synchronously.
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Choosing the block size
It might seem curious to have a two-level hierarchy when declaring the number of threads needed by a kernel. The
block size (i.e. number of threads per block) is often crucial:

* On the software side, the block size determines how many threads share a given area of shared memory.

* On the hardware side, the block size must be large enough for full occupation of execution units; recommenda-
tions can be found in the CUDA C Programming Guide.

Multi-dimensional blocks and grids

To help deal with multi-dimensional arrays, CUDA allows you to specify multi-dimensional blocks and grids. In
the example above, you could make blockspergrid and threadsperblock tuples of one, two or three integers.
Compared to 1D declarations of equivalent sizes, this doesn’t change anything to the efficiency or behaviour of generated
code, but can help you write your algorithms in a more natural way.

3.2.4 Thread positioning

When running a kernel, the kernel function’s code is executed by every thread once. It therefore has to know which
thread it is in, in order to know which array element(s) it is responsible for (complex algorithms may define more
complex responsibilities, but the underlying principle is the same).

One way is for the thread to determine its position in the grid and block and manually compute the corresponding array
position:

@cuda.jit
def increment_by_one(an_array):
# Thread id in a 1D block
tx = cuda.threadIdx.x
# Block id in a 1D grid
ty = cuda.blockIdx.x
# Block width, i.e. number of threads per block
bw = cuda.blockDim.x
# Compute flattened index inside the array
pos = tx + ty * bw
if pos < an_array.size: # Check array boundaries
an_array[pos] += 1

Note: Unless you are sure the block size and grid size is a divisor of your array size, you must check boundaries as
shown above.

threadIdx, blockIdx, blockDim and gridDim are special objects provided by the CUDA backend for the sole
purpose of knowing the geometry of the thread hierarchy and the position of the current thread within that geometry.

These objects can be 1D, 2D or 3D, depending on how the kernel was invoked. To access the value at each dimension,
use the x, y and z attributes of these objects, respectively.

numba.cuda.threadIdx
The thread indices in the current thread block. For 1D blocks, the index (given by the x attribute) is an inte-
ger spanning the range from 0 inclusive to numba. cuda.blockDim exclusive. A similar rule exists for each
dimension when more than one dimension is used.
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numba . cuda.blockDim
The shape of the block of threads, as declared when instantiating the kernel. This value is the same for all threads
in a given kernel, even if they belong to different blocks (i.e. each block is “full”).

numba.cuda.blockIdx
The block indices in the grid of threads launched a kernel. For a 1D grid, the index (given by the x attribute)
is an integer spanning the range from O inclusive to numba. cuda.gridDim exclusive. A similar rule exists for
each dimension when more than one dimension is used.

numba.cuda.gridDim
The shape of the grid of blocks, i.e. the total number of blocks launched by this kernel invocation, as declared
when instantiating the kernel.

Absolute positions

Simple algorithms will tend to always use thread indices in the same way as shown in the example above. Numba
provides additional facilities to automate such calculations:

numba.cuda.grid(ndim)
Return the absolute position of the current thread in the entire grid of blocks. ndim should correspond to the
number of dimensions declared when instantiating the kernel. If ndim is 1, a single integer is returned. If ndim
is 2 or 3, a tuple of the given number of integers is returned.

numba.cuda.gridsize (ndim)
Return the absolute size (or shape) in threads of the entire grid of blocks. ndim has the same meaning as in
grid() above.

With these functions, the incrementation example can become:

@cuda.jit
def increment_by_one(an_array):
pos = cuda.grid(l)
if pos < an_array.size:
an_array[pos] += 1

The same example for a 2D array and grid of threads would be:

@cuda.jit
def increment_a_2D_array(an_array):
X, vy = cuda.grid(2)
if x < an_array.shape[0] and y < an_array.shape[1]:
an_array[x, y] += 1

Note the grid computation when instantiating the kernel must still be done manually, for example:

threadsperblock (16, 16)

blockspergrid_x = math.ceil(an_array.shape[0] / threadsperblock[0])
blockspergrid_y = math.ceil(an_array.shape[1l] / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)
increment_a_2D_array[blockspergrid, threadsperblock](an_array)
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Further Reading

Please refer to the the CUDA C Programming Guide for a detailed discussion of CUDA programming.

3.3 Memory management

3.3.1 Data transfer

Even though Numba can automatically transfer NumPy arrays to the device, it can only do so conservatively by always
transferring device memory back to the host when a kernel finishes. To avoid the unnecessary transfer for read-only
arrays, you can use the following APIs to manually control the transfer:

numba. cuda.device_array (shape, dtype=np.float_, strides=None, order='C’, stream=0)
Allocate an empty device ndarray. Similar to numpy . empty ().

numba.cuda.device_array_like(ary, stream=0)
Call device_array () with information from the array.

numba. cuda.to_device (obj, stream=0, copy=True, to=None)
Allocate and transfer a numpy ndarray or structured scalar to the device.

To copy host->device a numpy array:

ary = np.arange(10)
d_ary = cuda.to_device(ary)

To enqueue the transfer to a stream:

stream = cuda.stream()
d_ary = cuda.to_device(ary, stream=stream)

The resulting d_ary is a DeviceNDArray.

To copy device->host:

hary = d_ary.copy_to_host()

To copy device->host to an existing array:

ary = np.empty(shape=d_ary.shape, dtype=d_ary.dtype)
d_ary.copy_to_host(ary)

To enqueue the transfer to a stream:

hary = d_ary.copy_to_host(stream=stream)

In addition to the device arrays, Numba can consume any object that implements cuda array interface. These objects
also can be manually converted into a Numba device array by creating a view of the GPU buffer using the following
APIs:

numba. cuda.as_cuda_array (obj, sync=True)
Create a DeviceNDArray from any object that implements the cuda array interface.

A view of the underlying GPU buffer is created. No copying of the data is done. The resulting DeviceNDArray
will acquire a reference from obj.

If sync is True, then the imported stream (if present) will be synchronized.
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numba.cuda.is_cuda_array(obj)
Test if the object has defined the __cuda_array_interface__ attribute.

Does not verify the validity of the interface.

Device arrays
Device array references have the following methods. These methods are to be called in host code, not within CUDA-
jitted functions.

class numba.cuda.cudadrv.devicearray.DeviceNDArray (shape, strides, dtype, stream=0, gpu_data=None)
An on-GPU array type

copy_to_host (ary=None, stream=0)
Copy self to ary or create a new Numpy ndarray if ary is None.

If a CUDA stream is given, then the transfer will be made asynchronously as part as the given stream.
Otherwise, the transfer is synchronous: the function returns after the copy is finished.

Always returns the host array.

Example:

import numpy as np
from numba import cuda

arr = np.arange(1000)
d_arr = cuda.to_device(arr)

my_kernel[100, 100](d_arr)

result_array = d_arr.copy_to_host()

is_c_contiguous()
Return true if the array is C-contiguous.

is_£f_contiguous()
Return true if the array is Fortran-contiguous.

ravel (order='C', stream=0)
Flatten the array without changing its contents, similar to numpy .ndarray.ravel ().

reshape (*newshape, **kws)
Reshape the array without changing its contents, similarly to numpy .ndarray.reshape (). Example:

d_arr = d_arr.reshape(20, 50, order='F"')

Note: DeviceNDArray defines the cuda array interface.
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3.3.2 Pinned memory

numba . cuda.pinned (*arylist)
A context manager for temporary pinning a sequence of host ndarrays.

numba. cuda.pinned_array (shape, dtype=np.float_, strides=None, order='C")
Allocate an ndarray with a buffer that is pinned (pagelocked). Similar to np.empty ().

numba.cuda.pinned_array_like (ary)
Call pinned_array () with the information from the array.

3.3.3 Mapped memory

numba . cuda .mapped (*arylist, **kws)
A context manager for temporarily mapping a sequence of host ndarrays.

numba. cuda.mapped_array (shape, dtype=np.float_, strides=None, order='C’, stream=0, portable=Fulse,
we=False)
Allocate a mapped ndarray with a buffer that is pinned and mapped on to the device. Similar to np.empty()

Parameters

* portable - a boolean flag to allow the allocated device memory to be usable in multiple
devices.

* wc — a boolean flag to enable writecombined allocation which is faster to write by the host
and to read by the device, but slower to write by the host and slower to write by the device.

numba.cuda.mapped_array_like(ary, stream=0, portable=False, we=False)
Call mapped_array () with the information from the array.

3.3.4 Managed memory

numba. cuda.managed_array (shape, dtype=np.float_, strides=None, order="'C', stream=0, attach_global=True)
Allocate a np.ndarray with a buffer that is managed. Similar to np.empty().

Managed memory is supported on Linux / x86 and PowerPC, and is considered experimental on Windows and
Linux / AArch64.

Parameters attach_global — A flag indicating whether to attach globally. Global attachment im-
plies that the memory is accessible from any stream on any device. If False, attachment is host,
and memory is only accessible by devices with Compute Capability 6.0 and later.

3.3.5 Streams

Streams can be passed to functions that accept them (e.g. copies between the host and device) and into kernel launch
configurations so that the operations are executed asynchronously.

numba.cuda.stream()
Create a CUDA stream that represents a command queue for the device.

numba.cuda.default_stream()
Get the default CUDA stream. CUDA semantics in general are that the default stream is either the legacy default
stream or the per-thread default stream depending on which CUDA APIs are in use. In Numba, the APIs for the
legacy default stream are always the ones in use, but an option to use APIs for the per-thread default stream may
be provided in future.
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numba.cuda.legacy_default_stream()
Get the legacy default CUDA stream.

numba.cuda.per_thread_default_stream()
Get the per-thread default CUDA stream.

numba.cuda.external_stream(ptr)
Create a Numba stream object for a stream allocated outside Numba.

Parameters ptr (int) — Pointer to the external stream to wrap in a Numba Stream
CUDA streams have the following methods:

class numba.cuda.cudadrv.driver.Stream(context, handle, finalizer, external=False)

auto_synchronize()
A context manager that waits for all commands in this stream to execute and commits any pending memory
transfers upon exiting the context.

synchronize()
Wait for all commands in this stream to execute. This will commit any pending memory transfers.

3.3.6 Shared memory and thread synchronization

A limited amount of shared memory can be allocated on the device to speed up access to data, when necessary. That
memory will be shared (i.e. both readable and writable) amongst all threads belonging to a given block and has faster
access times than regular device memory. It also allows threads to cooperate on a given solution. You can think of it
as a manually-managed data cache.

The memory is allocated once for the duration of the kernel, unlike traditional dynamic memory management.

numba.cuda.shared. array (shape, type)
Allocate a shared array of the given shape and type on the device. This function must be called on the device
(i.e. from a kernel or device function). shape is either an integer or a tuple of integers representing the array’s
dimensions and must be a simple constant expression. type is a Numba type of the elements needing to be stored
in the array.

The returned array-like object can be read and written to like any normal device array (e.g. through indexing).

A common pattern is to have each thread populate one element in the shared array and then wait for all threads
to finish using syncthreads().

numba. cuda.syncthreads ()
Synchronize all threads in the same thread block. This function implements the same pattern as barriers in
traditional multi-threaded programming: this function waits until all threads in the block call it, at which point
it returns control to all its callers.

See also:

Matrix multiplication example.
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3.3.7 Local memory

Local memory is an area of memory private to each thread. Using local memory helps allocate some scratchpad
area when scalar local variables are not enough. The memory is allocated once for the duration of the kernel, unlike
traditional dynamic memory management.

numba.cuda.local.array(shape, type)
Allocate a local array of the given shape and type on the device. shape is either an integer or a tuple of integers
representing the array’s dimensions and must be a simple constant expression. type is a Numba type of the
elements needing to be stored in the array. The array is private to the current thread. An array-like object is
returned which can be read and written to like any standard array (e.g. through indexing).

3.3.8 Constant memory

Constant memory is an area of memory that is read only, cached and off-chip, it is accessible by all threads and is host
allocated. A method of creating an array in constant memory is through the use of:

numba.cuda.const.array_like (arr)
Allocate and make accessible an array in constant memory based on array-like arr.

3.3.9 Deallocation Behavior

This section describes the deallocation behaviour of Numba’s internal memory management. If an External Memory
Management Plugin is in use (see External Memory Management (EMM) Plugin interface), then deallocation behaviour
may differ; you may refer to the documentation for the EMM Plugin to understand its deallocation behaviour.

Deallocation of all CUDA resources are tracked on a per-context basis. When the last reference to a device memory
is dropped, the underlying memory is scheduled to be deallocated. The deallocation does not occur immediately. It is
added to a queue of pending deallocations. This design has two benefits:

1. Resource deallocation API may cause the device to synchronize; thus, breaking any asynchronous execution.
Deferring the deallocation could avoid latency in performance critical code section.

2. Some deallocation errors may cause all the remaining deallocations to fail. Continued deallocation errors can
cause critical errors at the CUDA driver level. In some cases, this could mean a segmentation fault in the CUDA
driver. In the worst case, this could cause the system GUI to freeze and could only recover with a system reset.
When an error occurs during a deallocation, the remaining pending deallocations are cancelled. Any deallocation
error will be reported. When the process is terminated, the CUDA driver is able to release all allocated resources
by the terminated process.

The deallocation queue is flushed automatically as soon as the following events occur:
* An allocation failed due to out-of-memory error. Allocation is retried after flushing all deallocations.

e The deallocation queue has reached its maximum size, which is default to 10. User can override
by setting the environment variable NUMBA_CUDA_MAX_PENDING_DEALLOCS_COUNT. For example,
NUMBA_CUDA_MAX_PENDING_DEALLOCS_COUNT=20, increases the limit to 20.

e The maximum accumulated byte size of resources that are pending deallocation is reached.
This is default to 20% of the device memory capacity. User can override by setting the
environment variable NUMBA_CUDA_MAX_PENDING _DEALLOCS_RATIO. For example,
NUMBA_CUDA_MAX_PENDING _DEALLOCS_RATIO=0.5 sets the limit to 50% of the capacity.

Sometimes, it is desired to defer resource deallocation until a code section ends. Most often, users want to avoid any
implicit synchronization due to deallocation. This can be done by using the following context manager:
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numba.cuda.defer_cleanup()
Temporarily disable memory deallocation. Use this to prevent resource deallocation breaking asynchronous
execution.

For example:

with defer_cleanup():
# all cleanup is deferred in here
do_speed_critical_code()

# cleanup can occur here

Note: this context manager can be nested.

3.4 Writing Device Functions

CUDA device functions can only be invoked from within the device (by a kernel or another device function). To define
a device function:

from numba import cuda

@cuda. jit(device=True)
def a_device_function(a, b):
return a + b

Unlike a kernel function, a device function can return a value like normal functions.

3.5 Supported Python features in CUDA Python

This page lists the Python features supported in the CUDA Python. This includes all kernel and device functions
compiled with @cuda. jit and other higher level Numba decorators that targets the CUDA GPU.

3.5.1 Language

Execution Model

CUDA Python maps directly to the single-instruction multiple-thread execution (SIMT) model of CUDA. Each in-
struction is implicitly executed by multiple threads in parallel. With this execution model, array expressions are less
useful because we don’t want multiple threads to perform the same task. Instead, we want threads to perform a task in
a cooperative fashion.

For details please consult the CUDA Programming Guide.
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Constructs

The following Python constructs are not supported:
* Exception handling (try .. except,try .. finally)
* Context management (the with statement)
» Comprehensions (either list, dict, set or generator comprehensions)
* Generator (any yield statements)

The raise statement is supported.

The assert statement is supported, but only has an effect when debug=True is passed to the numba. cuda. jit()
decorator. This is similar to the behavior of the assert keyword in CUDA C/C++, which is ignored unless compiling

with device debug turned on.

Printing of strings, integers, and floats is supported, but printing is an asynchronous operation - in order to ensure that
all output is printed after a kernel launch, it is necessary to call numba. cuda.synchronize(). Eliding the call to
synchronize is acceptable, but output from a kernel may appear during other later driver operations (e.g. subsequent
kernel launches, memory transfers, etc.), or fail to appear before the program execution completes.

3.5.2 Built-in types

The following built-in types support are inherited from CPU nopython mode.
* int
* float
* complex
* bool
* None
* tuple

See nopython built-in types.

3.5.3 Built-in functions

The following built-in functions are supported:
e abs()
* bool
e complex
e enumerate()
e float
e int: only the one-argument form
* len()
* min(): only the multiple-argument form
e max(): only the multiple-argument form

* pow()
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e range
e round()

* zip(Q

3.5.4 Standard library modules

cmath

The following functions from the cmath module are supported:
e cmath.acos(Q)
e cmath.acosh()
e cmath.asin()
e cmath.asinh()
e cmath.atan()
e cmath.atanh()
e cmath.cos()

e cmath.cosh()
e cmath.exp()

e cmath.isfinite()
e cmath.isinf()
e cmath.isnan()
e cmath.log()

e cmath.logl®()
e cmath.phase()
e cmath.polar()
e cmath.rect()
e cmath.sin()

e cmath.sinh()
e cmath.sqrt()
e cmath.tan()

e cmath.tanh()
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math

The following functions from the math module are supported:

e math.acos()

math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.
math.

math.

asinQ)
atan()
acosh()
asinh()
atanh(Q)
cos()
sin()
tan(Q)
hypot ()
cosh()
sinh ()
tanh()
atan2()
erf()
erfc()
expQ
expml ()
fabs(
frexp()
ldexp()
gamma ()
lgamma ()
log®
1og20)
log100)
loglpO
sqrtQ
remainder(): Python 3.7+
pow ()
ceil ()
floor()
copysign()
fmod O
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math.modf()
math.isnan()
math.isinf()

math.isfinite()

operator

The following functions from the operator module are supported:

operator.add()
operator.and_(Q)
operator.eq()
operator. floordiv()
operator.ge()
operator.gt()
operator.iadd()
operator.iand()
operator.ifloordiv()
operator.ilshift()
operator.imod()
operator.imul O
operator.invert()
operator.ior()
operator.ipow()
operator.irshift()
operator.isub()
operator.itruediv()
operator.ixor()
operator.le()
operator.lshift()
operator.lt()
operator.mod()
operator.mul ()
operator.ne()
operator.neg()
operator.not_()
operator.or_()

operator.pos()
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e operator.pow()

e operator.rshift()
e operator.sub()

e operator.truediv()

e operator.xor()

3.5.5 Numpy support

Due to the CUDA programming model, dynamic memory allocation inside a kernel is inefficient and is often not
needed. Numba disallows any memory allocating features. This disables a large number of NumPy APIs. For best
performance, users should write code such that each thread is dealing with a single element at a time.

Supported numpy features:
* accessing ndarray attributes .shape, .strides, .ndim, .size, etc..
* scalar ufuncs that have equivalents in the math module; i.e. np.sin(x[0]), where x is a 1D array.
* indexing and slicing works.
Unsupported numpy features:
e array creation APIs.
* array methods.

* functions that returns a new array.

3.6 CUDA Fast Math

As noted in Fastmath, for certain classes of applications that utilize floating point, strict IEEE-754 conformance is not
required. For this subset of applications, performance speedups may be possible.

The CUDA target implements Fastmath behavior with two differences.

* First, the fastmath argument to the @jit decorator is limited to the values True and False. When True,
the following optimizations are enabled:

— Flushing of denormals to zero.

— Use of a fast approximation to the square root function.

— Use of a fast approximation to the division operation.

— Contraction of multiply and add operations into single fused multiply-add operations.
See the documentation for nvvmCompileProgram for more details of these optimizations.

 Secondly, calls to a subset of math module functions on float32 operands will be implemented using fast
approximate implementations from the libdevice library.

math.cos(): Implemented using _ nv_fast cosf.

math.sin(): Implemented using _ nv_fast_sinf.

math.tan(): Implemented using __ nv_fast_tanf.

math.exp(): Implemented using __nv_fast_expf.

math.log2(): Implemented using __ nv_fast _log2f.
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— math.logl0(): Implemented using __ nv_fast_log10f.
— math.log(): Implemented using __ nv_fast_logf.

— math.pow(): Implemented using __ nv_fast_powf.

3.7 Supported Atomic Operations

Numba provides access to some of the atomic operations supported in CUDA. Those that are presently implemented
are as follows:

class numba.cuda.atomic
Namespace for atomic operations

class add(ary, idx, val)
Perform atomic ary[idx] += val. Supported on int32, float32, and float64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class and_(ary, idx, val)
Perform atomic ary[idx] &= val. Supported on int32, int64, uint32 and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class compare_and_swap (ary, old, val)
Conditionally assign val to the first element of an 1D array ary if the current value matches old.

Returns the current value as if it is loaded atomically.

class dec(ary, idx, val)
Perform ary[idx] = (value if (array[idx] == 0) or (array[idx] > value) else array[idx] - 1).

Supported on uint32, and uint64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class exch(ary, idx, val)
Perform atomic ary[idx] = val. Supported on int32, int64, uint32 and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class inc(ary, idx, val)
Perform atomic ary[idx] += 1 up to val, then reset to 0. Supported on uint32, and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class max(ary, idx, val)
Perform atomic ary[idx] = max(ary[idx], val).

Supported on int32, int64, uint32, uint64, float32, float64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class min(ary, idx, val)
Perform atomic ary[idx] = min(ary[idx], val).

Supported on int32, int64, uint32, uint64, float32, float64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class nanmax(ary, idx, val)
Perform atomic ary[idx] = max(ary[idx], val).

NOTE: NaN is treated as a missing value such that: nanmax(NaN, n) == n, nanmax(n, NaN) ==n
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Supported on int32, int64, uint32, uint64, float32, float64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class nanmin(ary, idx, val)
Perform atomic ary[idx] = min(ary[idx], val).

NOTE: NaN is treated as a missing value, such that: nanmin(NaN, n) == n, nanmin(n, NaN) ==n
Supported on int32, int64, uint32, uint64, float32, float64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class or_(ary, idx, val)
Perform atomic ary[idx] |= val. Supported on int32, int64, uint32 and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class sub(ary, idx, val)
Perform atomic ary[idx] -= val. Supported on int32, float32, and float64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class xor(ary, idx, val)
Perform atomic ary[idx] = val. Supported on int32, int64, uint32 and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

3.7.1 Example

The following code demonstrates the use of numba. cuda.atomic.max to find the maximum value in an array. Note
that this is not the most efficient way of finding a maximum in this case, but that it serves as an example:

from numba import cuda
import numpy as np

@cuda.jit
def max_example(result, values):
"""Find the maximum value in values and store in result[0]
tid = cuda.threadIdx.x
bid = cuda.blockIdx.x
bdim = cuda.blockDim.x
i = (bid * bdim) + tid
cuda.atomic.max(result, 0, values[i])

e

arr = np.random.rand(16384)
result = np.zeros(l, dtype=np.float64)

max_example[256,64] (result, arr)
print(result[0]) # Found using cuda.atomic.max
print(max(arr)) # Print max(arr) for comparison (should be equall)

Multiple dimension arrays are supported by using a tuple of ints for the index:

@cuda.jit
def max_example_3d(result, values):

e

(continues on next page)
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Find the maximum value in values and store in result[0].
Both result and values are 3d arrays.

i, j, k = cuda.grid(3)

# Atomically store to result[®,1,2] from values[i, j, k]
cuda.atomic.max(result, (0, 1, 2), values[i, j, k])

arr = np.random.rand(1000).reshape(10,10,10)
result = np.zeros((3, 3, 3), dtype=np.float64)
max_example_3d[(2, 2, 2), (5, 5, 5)](result, arr)
print(result[0, 1, 2], '==', np.max(arr))

3.8 Cooperative Groups

3.8.1 Supported features
Numba’s Cooperative Groups support presently provides grid groups and grid synchronization, along with cooperative
kernel launches.

Cooperative groups are supported on Linux, and Windows for devices in TCC mode. Cooperative Groups also require
the CUDA Device Runtime library, cudadevrt, to be available - for conda default channel-installed CUDA toolkit
packages, it is only available in versions 10.2 onwards. System-installed toolkits (e.g. from NVIDIA distribution
packages or runfiles) all include cudadevrt.

3.8.2 Using Grid Groups

To get the current grid group, use the cg. this_grid() function:

g = cuda.cg.this_grid(Q

Synchronizing the grid is done with the sync () method of the grid group:

g.syncQ

3.8.3 Cooperative Launches

Unlike the CUDA C/C++ API, a cooperative launch is invoked using the same syntax as a normal kernel launch - Numba
automatically determines whether a cooperative launch is required based on whether a grid group is synchronized in
the kernel.

The grid size limit for a cooperative launch is more restrictive than for a normal launch - the grid must be no
larger than the maximum number of active blocks on the device on which it is launched. To get maximum grid
size for a cooperative launch of a kernel with a given block size and dynamic shared memory requirement, use the
max_cooperative_grid_blocks() method of kernel overloads:

_Kernel .max_cooperative_grid_blocks (blockdim, dynsmemsize=0)
Calculates the maximum number of blocks that can be launched for this kernel in a cooperative grid in the current
context, for the given block and dynamic shared memory sizes.

Parameters
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* blockdim — Block dimensions, either as a scalar for a 1D block, or a tuple for 2D or 3D
blocks.

* dynsmemsize — Dynamic shared memory size in bytes.
Returns The maximum number of blocks in the grid.

This can be used to ensure that the kernel is launched with no more than the maximum number
of blocks. Exceeding the maximum number of blocks for the cooperative launch will result in a
CUDA_ERROR_COOPERATIVE_LAUNCH_TOO_LARGE error.

3.8.4 Applications and Example

Grid group synchronization can be used to implement a global barrier across all threads in the grid - applications of
this include a global reduction to a single value, or looping over rows of a large matrix sequentially using the entire
grid to operate on column elements in parallel.

In the following example, rows are written sequentially by the grid. Each thread in the grid reads a value from the
previous row written by it’s opposite thread. A grid sync is needed to ensure that threads in the grid don’t run ahead of
threads in other blocks, or fail to see updates from their opposite thread.

First we’ll define our kernel:

Listing 1: from test_grid_sync of numba/cuda/tests/
doc_example/test_cg.py

from numba import cuda, int32, void
import numpy as np

@cuda.jit(void(int32[:,::1]1))
def sequential_rows(M):

col = cuda.grid(1)

g = cuda.cg.this_grid(Q)

rows = M.shape[0]
cols M.shape[1]

for row in range(l, rows):
opposite = cols - col - 1
# Each row's elements are one greater than the previous row
M[row, col] = M[row - 1, opposite] + 1
# Wait until all threads have written their column element,
# and that the write is visible to all other threads
g.sync(Q

Then create some empty input data and determine the grid and block sizes:

Listing 2: from test_grid_sync of numba/cuda/tests/
doc_example/test_cg.py

# Empty input data

A = np.zeros((1024, 1024), dtype=np.int32)

# A somewhat arbitrary choice (one warp), but generally smaller block sizes
# allow more blocks to be launched (noting that other limitations on

# occupancy apply such as shared memory size)

(continues on next page)
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blockdim = 32
griddim = A.shape[1] // blockdim

Finally we launch the kernel and print the result:

Listing 3: from test_grid_sync of numba/cuda/tests/
doc_example/test_cg.py

# Kernel launch - this is implicitly a cooperative launch
sequential_rows[griddim, blockdim] (A)

# What do the results look like?

# print(A)

#

#[[ 0 0 o ... 0 0 0]
# [ 1 1 1 ... 1 1 1]
# [ 2 2 2 ... 2 2 2]
# [1021 1021 1021 ... 1021 16021 1021]
# [1022 1022 1022 ... 1022 1022 1022]
# [1023 1023 1023 ... 1023 1023 1023]]

The maximum grid size for sequential_rows can be enquired using:

overload = sequential_rows.overloads[(int32[:,::1],)

max_blocks = overload.max_cooperative_grid_blocks(blockdim)
print(max_blocks)

# 1152 (e.g. on Quadro RTX 8000 with Numba 0.52.1 and CUDA 11.0)

3.9 Random Number Generation

Numba provides a random number generation algorithm that can be executed on the GPU. Due to technical issues with
how NVIDIA implemented cuRAND, however, Numba’s GPU random number generator is not based on cuRAND.
Instead, Numba’s GPU RNG is an implementation of the xoroshiro128+ algorithm. The xoroshiro128+ algorithm has
a period of 2**128 - 1, which is shorter than the period of the XORWOW algorithm used by default in cuRAND,
but xoroshiro128+ still passes the BigCrush tests of random number generator quality.

When using any RNG on the GPU, it is important to make sure that each thread has its own RNG state, and they have
been initialized to produce non-overlapping sequences. The numba.cuda.random module provides a host function to
do this, as well as CUDA device functions to obtain uniformly or normally distributed random numbers.

Note: Numba (like cuRAND) uses the Box-Muller transform <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>

to generate normally distributed random numbers from a uniform generator. However, Box-Muller generates pairs
of random numbers, and the current implementation only returns one of them. As a result, generating normally
distributed values is half the speed of uniformly distributed values.

numba. cuda.random.create_xoroshirol28p_states(n, seed, subsequence_start=0, stream=0)
Returns a new device array initialized for n random number generators.

This initializes the RNG states so that each state in the array corresponds subsequences in the separated by
2*%*64 steps from each other in the main sequence. Therefore, as long no CUDA thread requests more than
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2**64 random numbers, all of the RNG states produced by this function are guaranteed to be independent.
The subsequence_start parameter can be used to advance the first RNG state by a multiple of 2**64 steps.
Parameters
e n (int) — number of RNG states to create
» seed (uint64) — starting seed for list of generators
* subsequence_start (uint64) -
e stream (CUDA stream) — stream to run initialization kernel on

numba.cuda.random.init_xoroshirol28p_states(states, seed, subsequence_start=0, stream=0)
Initialize RNG states on the GPU for parallel generators.

This initializes the RNG states so that each state in the array corresponds subsequences in the separated by
2*%64 steps from each other in the main sequence. Therefore, as long no CUDA thread requests more than
2**64 random numbers, all of the RNG states produced by this function are guaranteed to be independent.

The subsequence_start parameter can be used to advance the first RNG state by a multiple of 2**64 steps.
Parameters
* states (1D DeviceNDArray, dtype=xoroshirol28p_dtype)— array of RNG states
* seed (uint64) — starting seed for list of generators

numba . cuda.random.xoroshiro128p_normal_float32 (states, index)
Return a normally distributed float32 and advance states[index].

The return value is drawn from a Gaussian of mean=0 and sigma=1 using the Box-Muller transform. This
advances the RNG sequence by two steps.

Parameters
* states (1D array, dtype=xoroshirol28p_dtype) — array of RNG states
* index (int64) — offset in states to update

Return type float32

numba. cuda.random.xoroshiro128p_normal_float64 (states, index)
Return a normally distributed float32 and advance states[index].

The return value is drawn from a Gaussian of mean=0 and sigma=1 using the Box-Muller transform. This
advances the RNG sequence by two steps.

Parameters
* states (1D array, dtype=xoroshirol28p_dtype) — array of RNG states
» index (int64) — offset in states to update

Return type float64

numba . cuda.random.xoroshiro128p_uniform_float32 (states, index)
Return a float32 in range [0.0, 1.0) and advance states[index].

Parameters
* states (1D array, dtype=xoroshirol28p_dtype) — array of RNG states
* index (int64) — offset in states to update

Return type float32
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numba. cuda.random.xoroshiro128p_uniform_f£float64 (states, index)
Return a float64 in range [0.0, 1.0) and advance states[index].

Parameters
» states (1D array, dtype=xoroshirol28p_dtype) — array of RNG states
» index (int64) — offset in states to update

Return type float64

3.9.1 A simple example

Here is a sample program that uses the random number generator:

from __future__ import print_function, absolute_import
from numba import cuda

from numba.cuda.random import create_xoroshirol28p_states, xoroshirol28p_uniform_float32
import numpy as np

@cuda.jit

def compute_pi(rng_states, iterations, out):
"""Find the maximum value in values and store in result[0]
thread_id = cuda.grid(1)

e

# Compute pi by drawing random (x, y) points and finding what
# fraction lie inside a unit circle
inside = 0
for i in range(iterations):
x = xoroshirol28p_uniform_float32(rng_states, thread_id)
y = xoroshirol28p_uniform_float32(rng_states, thread_id)
if x*%2 + y**2 <= 1.0:
inside += 1

out[thread_id] = 4.0 * inside / iterations

threads_per_block = 64
blocks = 24
rng_states = create_xoroshirol28p_states(threads_per_block * blocks, seed=1)

out = np.zeros(threads_per_block * blocks, dtype=np.float32)

compute_pi[blocks, threads_per_block](rng_states, 10000, out)
print('pi:', out.mean())
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3.9.2 An example of managing RNG state size and using a 3D grid

The number of RNG states scales with the number of threads using the RNG, so it is often better to use strided loops
in conjunction with the RNG in order to keep the state size manageable.

In the following example, which initializes a large 3D array with random numbers, using one thread per output element
would result in 453,617,100 RNG states. This would take a long time to initialize and poorly utilize the GPU. Instead,
it uses a fixed size 3D grid with a total of 2,097,152 ((16 ** 3) * (8 ** 3)) threads striding over the output array.
The 3D thread indices startx, starty, and startz are linearized into a 1D index, tid, to index into the 2,097,152
RNG states.

Listing 4: from test_ex_3d_grid of " numba/cuda/tests/
doc_example/test_random.py

from numba import cuda

from numba.cuda.random import (create_xoroshirol28p_states,
xoroshirol28p_uniform_float32)

import numpy as np

@cuda.jit

def random_3d(arr, rng_states):
# Per-dimension thread indices and strides
startx, starty, startz = cuda.grid(3)
stridex, stridey, stridez = cuda.gridsize(3)

# Linearized thread index
tid = (startz * stridey * stridex) + (starty * stridex) + startx

# Use strided loops over the array to assign a random value to each entry
for i in range(startz, arr.shape[0], stridez):
for j in range(starty, arr.shape[l], stridey):
for k in range(startx, arr.shape[2], stridex):
arr[i, j, k] = xoroshirol28p_uniform_float32(rng_states, tid)

# Array dimensions
X, Y, Z =701, 900, 719

# Block and grid dimensions
bx’ by’ bz = 8, 8, 8
gx, gy, gz = 16, 16, 16

# Total number of threads
nthreads = bx * by * bz * gx * gy * gz

# Initialize a state for each thread
rng_states = create_xoroshirol28p_states(nthreads, seed=1)

# Generate random numbers
arr = cuda.device_array((X, Y, Z), dtype=np.float32)
random_3d[(gx, gy, gz), (bx, by, bz)](arr, rng_states)
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3.10 Device management

For multi-GPU machines, users may want to select which GPU to use. By default the CUDA driver selects the fastest
GPU as the device 0, which is the default device used by Numba.

The features introduced on this page are generally not of interest unless working with systems hosting/offering more
than one CUDA-capable GPU.

3.10.1 Device Selection

If at all required, device selection must be done before any CUDA feature is used.

from numba import cuda
cuda.select_device(0)

The device can be closed by:

cuda.close()

Users can then create a new context with another device.

cuda.select_device(l) # assuming we have 2 GPUs

numba. cuda.select_device (device_id)
Create a new CUDA context for the selected device_id. device_id should be the number of the device (starting
from O; the device order is determined by the CUDA libraries). The context is associated with the current thread.
Numba currently allows only one context per thread.

If successful, this function returns a device instance.

numba.cuda.close()
Explicitly close all contexts in the current thread.

Note: Compiled functions are associated with the CUDA context. This makes it not very useful to close and
create new devices, though it is certainly useful for choosing which device to use when the machine has multiple
GPUs.

3.11 The Device List

The Device List is a list of all the GPUs in the system, and can be indexed to obtain a context manager that ensures
execution on the selected GPU.

numba.cuda.gpus
numba.cuda.cudadrv.devices.gpus
numba. cuda. gpus is an instance of the _DeviceList class, from which the current GPU context can also be retrieved:

class numba.cuda.cudadrv.devices._DevicelList

property current
Returns the active device or None if there’s no active device
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3.12 Device UUIDs

The UUID of a device (equal to that returned by nvidia-smi -L) is available in the uuid attribute of a CUDA device
object.

For example, to obtain the UUID of the current device:

dev = cuda.current_context().device
# prints e.g. "GPU-e6489c45-5b68-3b03-bab7-0e7c8e809643"
print(dev.uuid)

3.13 Examples

3.13.1 Matrix multiplication

Here is a naive implementation of matrix multiplication using a CUDA kernel:

@cuda.jit
def matmul(A, B, O):
"""Perform square matrix multiplication of C = A * B
i, j = cuda.grid(2)
if i < C.shape[0] and j < C.shape[1]:
tmp = 0.
for k in range(A.shape[1]):
tmp += A[i, k] * B[k, j]
Cli, j] = tmp

This implementation is straightforward and intuitive but performs poorly, because the same matrix elements will be
loaded multiple times from device memory, which is slow (some devices may have transparent data caches, but they
may not be large enough to hold the entire inputs at once).

It will be faster if we use a blocked algorithm to reduce accesses to the device memory. CUDA provides a fast shared
memory for threads in a block to cooperately compute on a task. The following implements a faster version of the
square matrix multiplication using shared memory:

from numba import cuda, float32

# Controls threads per block and shared memory usage.
# The computation will be done on blocks of TPBxTPB elements.
TPB = 16

@cuda.jit
def fast_matmul(A, B, O):
# Define an array in the shared memory
# The size and type of the arrays must be known at compile time
sA = cuda.shared.array(shape=(TPB, TPB), dtype=float32)
sB = cuda.shared.array(shape=(TPB, TPB), dtype=float32)

X, y = cuda.grid(2)

tx cuda.threadIdx.x

(continues on next page)
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ty = cuda.threadIdx.y
bpg = cuda.gridDim.x # blocks per grid

if x >= C.shape[0] or y >= C.shape[1]:
# Quit if (x, y) is outside of valid C boundary
return

# Each thread computes one element in the result matrix.
# The dot product is chunked into dot products of TPB-long vectors.
tmp = 0.
for i in range(bpg):
# Preload data into shared memory
sA[tx, ty] = A[x, ty + i * TPB]
sB[tx, ty] = B[tx + i * TPB, vy]

# Wait until all threads finish preloading
cuda.syncthreads()

# Computes partial product on the shared memory
for j in range(TPB):
tmp += sA[tx, j] * sB[j, ty]

# Wait until all threads finish computing
cuda.syncthreads()

Clx, y] = tmp

Because the shared memory is a limited resources, the code preloads small block at a time from the input arrays. Then,
it calls syncthreads () to wait until all threads have finished preloading and before doing the computation on the
shared memory. It synchronizes again after the computation to ensure all threads have finished with the data in shared
memory before overwriting it in the next loop iteration.

3.14 Debugging CUDA Python with the the CUDA Simulator

Numba includes a CUDA Simulator that implements most of the semantics in CUDA Python using the Python in-
terpreter and some additional Python code. This can be used to debug CUDA Python code, either by adding print
statements to your code, or by using the debugger to step through the execution of an individual thread.

The simulator deliberately allows running non-CUDA code like starting a debugger and printing arbitrary expressions
for debugging purposes. Therefore, it is best to start from code that compiles for the CUDA target, and then move over
to the simulator to investigate issues.

Execution of kernels is performed by the simulator one block at a time. One thread is spawned for each thread in the
block, and scheduling of the execution of these threads is left up to the operating system.
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3.14.1 Using the simulator

The simulator is enabled by setting the environment variable NUMBA_ENABLE_CUDASIM to 1 prior to importing Numba.
CUDA Python code may then be executed as normal. The easiest way to use the debugger inside a kernel is to only
stop a single thread, otherwise the interaction with the debugger is difficult to handle. For example, the kernel below
will stop in the thread <<<(3,0,0), (1, 0, 0)>>>:

@cuda.jit
def vec_add(A, B, out):
x = cuda.threadIdx.x
bx = cuda.blockIdx.x
bdx = cuda.blockDim.x
if x == 1 and bx == 3:
from pdb import set_trace; set_trace()
i =Dbx * bdx + x
out[i] = A[i] + B[il]

when invoked with a one-dimensional grid and one-dimensional blocks.

3.14.2 Supported features
The simulator aims to provide as complete a simulation of execution on a real GPU as possible - in particular, the
following are supported:

* Atomic operations

» Constant memory

¢ Local memory

* Shared memory: declarations of shared memory arrays must be on separate source lines, since the simulator uses
source line information to keep track of allocations of shared memory across threads.

* Mapped arrays.
* Host and device memory operations: copying and setting memory.

» syncthreads () is supported - however, in the case where divergent threads enter different syncthreads ()
calls, the launch will not fail, but unexpected behaviour will occur. A future version of the simulator may detect
this condition.

* The stream API is supported, but all operations occur sequentially and synchronously, unlike on a real device.
Synchronising on a stream is therefore a no-op.

* The event API is also supported, but provides no meaningful timing information.

e Data transfer to and from the GPU - in particular, creating array objects with device_array() and
device_array_like(). The APIs for pinned memory pinned() and pinned_array() are also supported,
but no pinning takes place.

e The driver API implementation of the list of GPU contexts (cuda.gpus and cuda.cudadrv.devices.gpus)
is supported, and reports a single GPU context. This context can be closed and reset as the real one would.

* The detect () function is supported, and reports one device called SIMULATOR.

» Cooperative grids: A cooperative kernel can be launched, but with only one block - the simulator always returns
1 from a kernel overload’s max_cooperative_grid_blocks () method.

Some limitations of the simulator include:
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* It does not perform type checking/type inference. If any argument types to a jitted function are incorrect, or if
the specification of the type of any local variables are incorrect, this will not be detected by the simulator.

* Only one GPU is simulated.

» Multithreaded accesses to a single GPU are not supported, and will result in unexpected behaviour.
* Most of the driver API is unimplemented.

* It is not possible to link PTX code with CUDA Python functions.

* Warps and warp-level operations are not yet implemented.

* Because the simulator executes kernels using the Python interpreter, structured array access by attribute that
works with the hardware target may fail in the simulator - see Structured array access.

» Operations directly against device arrays are only partially supported, that is, testing equality, less than, greater
than, and basic mathematical operations are supported, but many other operations, such as the in-place operators
and bit operators are not.

* The £fs () function only works correctly for values that can be represented using 32-bit integers.

Obviously, the speed of the simulator is also much lower than that of a real device. It may be necessary to reduce the
size of input data and the size of the CUDA grid in order to make debugging with the simulator tractable.

3.15 GPU Reduction

Writing a reduction algorithm for CUDA GPU can be tricky. Numba provides a @reduce decorator for converting a
simple binary operation into a reduction kernel. An example follows:

import numpy
from numba import cuda

@cuda.reduce
def sum_reduce(a, b):

return a + b

A = (numpy.arange(1234, dtype=numpy.float64)) + 1

expect = A.sum() # numpy sum reduction
got = sum_reduce(A) # cuda sum reduction
assert expect == got

Lambda functions can also be used here:

sum_reduce = cuda.reduce(lambda a, b: a + b)

3.15.1 The Reduce class

The reduce decorator creates an instance of the Reduce class. Currently, reduce is an alias to Reduce, but this
behavior is not guaranteed.

class numba.cuda.Reduce (functor)
Create a reduction object that reduces values using a given binary function. The binary function is compiled
once and cached inside this object. Keeping this object alive will prevent re-compilation.

__init__(functor)
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Parameters functor — A function implementing a binary operation for reduction. It will be
compiled as a CUDA device function using cuda. jit(device=True).

__call__ (arr, size=None, res=None, init=0, stream=0)
Performs a full reduction.

Parameters

e arr — A host or device array.

» size — Optional integer specifying the number of elements in arr to reduce. If this pa-

rameter is not specified, the entire array is reduced.

» res - Optional device array into which to write the reduction result to. The result is written
into the first element of this array. If this parameter is specified, then no communication of

the reduction output takes place from the device to the host.

e init - Optional initial value for the reduction, the type of which must match arr.dtype.

* stream — Optional CUDA stream in which to perform the reduction. If no stream is spec-

ified, the default stream of O is used.

Returns If res is specified, None is returned. Otherwise, the result of the reduction is returned.

3.16 CUDA Ufuncs and Generalized Ufuncs

This page describes the CUDA ufunc-like object.

To support the programming pattern of CUDA programs, CUDA Vectorize and GUVectorize cannot produce a con-
ventional ufunc. Instead, a ufunc-like object is returned. This object is a close analog but not fully compatible with a
regular NumPy ufunc. The CUDA ufunc adds support for passing intra-device arrays (already on the GPU device) to
reduce traffic over the PCI-express bus. It also accepts a stream keyword for launching in asynchronous mode.

3.16.1 Example: Basic Example

import math
from numba import vectorize, cuda
import numpy as np

@vectorize(['float32(float32, float32, float32)',
'float64(float64, float64, float64)'],
target="cuda')
def cu_discriminant(a, b, c):
return math.sqrt(b ** 2 - 4 * a * ¢)

N = 10000
dtype = np.float32

prepare the input

= np.array(np.random.sample(N), dtype=dtype)

= np.array(np.random.sample(N) + 10, dtype=dtype)
= np.array(np.random.sample(N), dtype=dtype)

N W > H%

D = cu_discriminant(A, B, C)

(continues on next page)
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print(D) # print result

3.16.2 Example: Calling Device Functions

All CUDA ufunc kernels have the ability to call other CUDA device functions:

from numba import vectorize, cuda

# define a device function
@cuda.jit('float32(float32, float32, float32)', device=True, inline=True)
def cu_device_fn(x, y, z):

return x **y / z

# define a ufunc that calls our device function
@vectorize(['float32(float32, float32, float32)'], target='cuda')
def cu_ufunc(x, y, z):

return cu_device_fn(x, y, z)

3.16.3 Generalized CUDA ufuncs

Generalized ufuncs may be executed on the GPU using CUDA, analogous to the CUDA ufunc functionality. This may
be accomplished as follows:

from numba import guvectorize

@guvectorize(['void(float32[:,:], float32[:,:], float32[:,:1)'],
"(m,n), (n,p)->(m,p)", target='cuda')
def matmulcore(A, B, O:

There are times when the gufunc kernel uses too many of a GPU’s resources, which can cause the kernel launch to
fail. The user can explicitly control the maximum size of the thread block by setting the max_blocksize attribute on the
compiled gufunc object.

from numba import guvectorize

@Qguvectorize(..., target='cuda')
def very_complex_kernel(A, B, O):

very_complex_kernel .max_blocksize = 32 # Ilimits to 32 threads per block
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3.17 Sharing CUDA Memory

3.17.1 Sharing between process

Export device array to another process

A device array can be shared with another process in the same machine using the CUDA IPC API. To do so, use the .
get_ipc_handle() method on the device array to get a IpcArrayHandle object, which can be transferred to another
process.

DeviceNDArray.get_ipc_handle()
Returns a IpcArrayHandle object that is safe to serialize and transfer to another process to share the local allo-
cation.

Note: this feature is only available on Linux.

class numba.cuda.cudadrv.devicearray.IpcArrayHandle (ipc_handle, array_desc)
An IPC array handle that can be serialized and transfer to another process in the same machine for share a GPU
allocation.

On the destination process, use the .open() method to creates a new DeviceNDArray object that shares the allo-
cation from the original process. To release the resources, call the .close() method. After that, the destination
can no longer use the shared array object. (Note: the underlying weakref to the resource is now dead.)

This object implements the context-manager interface that calls the .open() and .close() method automatically:

with the_ipc_array_handle as ipc_array:
# use ipc_array here as a normal gpu array object
some_code(ipc_array)

# ipc_array is dead at this point

close()
Closes the IPC handle to the array.

open()
Returns a new DeviceNDArray that shares the allocation from the original process. Must not be used on
the original process.

Import IPC memory from another process

The following function is used to open IPC handle from another process as a device array.

cuda.open_ipc_array (shape, dtype, strides=None, offset=0)
A context manager that opens a IPC handle (CUipcMemHandle) that is represented as a sequence of bytes (e.g.
bytes, tuple of int) and represent it as an array of the given shape, strides and dtype. The strides can be omitted.
In that case, it is assumed to be a 1D C contiguous array.

Yields a device array.

The IPC handle is closed automatically when context manager exits.
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3.18 CUDA Array Interface (Version 3)

The CUDA Array Interface (or CAl) is created for interoperability between different implementations of CUDA array-
like objects in various projects. The idea is borrowed from the NumPy array interface.

Note: Currently, we only define the Python-side interface. In the future, we may add a C-side interface for efficient
exchange of the information in compiled code.

3.18.1 Python Interface Specification

Note: Experimental feature. Specification may change.

The __cuda_array_interface__ attribute returns a dictionary (dict) that must contain the following entries:
e shape: (integer, ...)
A tuple of int (or long) representing the size of each dimension.
* typestr: str
The type string. This has the same definition as typestr in the numpy array interface.
e data: (integer, boolean)

The data is a 2-tuple. The first element is the data pointer as a Python int (or long). The data must be device-
accessible. For zero-size arrays, use 0 here. The second element is the read-only flag as a Python bool.

Because the user of the interface may or may not be in the same context, the most common case is to use
cuPointerGetAttribute with CU_POINTER_ATTRIBUTE_DEVICE_POINTER in the CUDA driver API (or the
equivalent CUDA Runtime API) to retrieve a device pointer that is usable in the currently active context.

e version: integer
An integer for the version of the interface being exported. The current version is 3.
The following are optional entries:
e strides: None or (integer, ...)

If strides is not given, or it is None, the array is in C-contiguous layout. Otherwise, a tuple of int (or long) is
explicitly given for representing the number of bytes to skip to access the next element at each dimension.

* descr
This is for describing more complicated types. This follows the same specification as in the numpy array interface.
* mask: None or object exposing the __cuda_array_interface__

If None then all values in data are valid. All elements of the mask array should be interpreted only as true or not
true indicating which elements of this array are valid. This has the same definition as mask in the numpy array
interface.

Note: Numba does not currently support working with masked CUDA arrays and will raise a
NotImplementedError exception if one is passed to a GPU function.
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e stream: None or integer

An optional stream upon which synchronization must take place at the point of consumption, either by synchro-
nizing on the stream or enqueuing operations on the data on the given stream. Integer values in this entry are as
follows:

0: This is disallowed as it would be ambiguous between None and the default stream, and also between the
legacy and per-thread default streams. Any use case where O might be given should either use None, 1, or
2 instead for clarity.

1: The legacy default stream.

2: The per-thread default stream.

Any other integer: a cudaStream_t represented as a Python integer.
When None, no synchronization is required. See the Synchronization section below for further details.

In a future revision of the interface, this entry may be expanded (or another entry added) so that an event to
synchronize on can be specified instead of a stream.

Synchronization

Definitions

When discussing synchronization, the following definitions are used:
* Producer: The library / object on which __cuda_array_interface__ is accessed.
* Consumer: The library / function that accesses the __cuda_array_interface__ of the Producer.
* User Code: Code that induces a Producer and Consumer to share data through the CAIL

* User: The person writing or maintaining the User Code. The User may implement User Code without knowledge
of the CAl, since the CAI accesses can be hidden from their view.

In the following example:

import cupy
from numba import cuda

@cuda.jit
def add(x, y, out):
start = cuda.grid(l)
stride = cuda.gridsize(l)
for i in range(start, x.shape[0], stride):
out[i] = x[i] + y[i]

a = cupy.arange(10)
b=a®*2

out = cupy.zeros_like(a)

add[1, 32]Ca, b, out)

When the add kernel is launched:
¢ a, b, out are Producers.
¢ The add kernel is the Consumer.

e The User Code is specifically add[1, 32](a, b, out).
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¢ The author of the code is the User.

Design Motivations

Elements of the CAI design related to synchronization seek to fulfill these requirements:
1. Producers and Consumers that exchange data through the CAI must be able to do so without data races.

2. Requirement 1 should be met without requiring the user to be aware of any particulars of the CAI - in other words,
exchanging data between Producers and Consumers that operate on data asynchronously should be correct by
default.

* An exception to this requirement is made for Producers and Consumers that explicitly document that the
User is required to take additional steps to ensure correctness with respect to synchronization. In this case,
Users are required to understand the details of the CUDA Array Interface, and the Producer/Consumer
library documentation must specify the steps that Users are required to take.

Use of this exception should be avoided where possible, as it is provided for libraries that cannot implement
the synchronization semantics without the involvement of the User - for example, those interfacing with
third-party libraries oblivious to the CUDA Array Interface.

3. Where the User is aware of the particulars of the CAI and implementation details of the Producer and Consumer,
they should be able to, at their discretion, override some of the synchronization semantics of the interface to
reduce the synchronization overhead. Overriding synchronization semantics implies that:

e The CAI design, and the design and implementation of the Producer and Consumer do not specify or
guarantee correctness with respect to data races.

* Instead, the User is responsible for ensuring correctness with respect to data races.

Interface Requirements

The stream entry enables Producers and Consumers to avoid hazards when exchanging data. Expected behaviour of
the Consumer is as follows:

* When stream is not present or is None:
— No synchronization is required on the part of the Consumer.
— The Consumer may enqueue operations on the underlying data immediately on any stream.

e When streamis an integer, its value indicates the stream on which the Producer may have in-progress operations
on the data, and which the Consumer is expected to either:

— Synchronize on before accessing the data, or
— Enqueue operations in when accessing the data.
The Consumer can choose which mechanism to use, with the following considerations:

— If the Consumer synchronizes on the provided stream prior to accessing the data, then it must ensure that
no computation can take place in the provided stream until its operations in its own choice of stream have
taken place. This could be achieved by either:

% Placing a wait on an event in the provided stream that occurs once all of the Consumer’s operations on
the data are completed, or

% Avoiding returning control to the user code until after its operations on its own stream have completed.
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— If the consumer chooses to only enqueue operations on the data in the provided stream, then it may return
control to the User code immediately after enqueueing its work, as the work will all be serialized on the
exported array’s stream. This is sufficient to ensure correctness even if the User code were to induce the
Producer to subsequently start enqueueing more work on the same stream.

o If the User has set the Consumer to ignore CAI synchronization semantics, the Consumer may assume it can
operate on the data immediately in any stream with no further synchronization, even if the stream member has
an integer value.

When exporting an array through the CAI, Producers must ensure that:

« If there is work on the data enqueued in one or more streams, then synchronization on the provided stream is
sufficient to ensure synchronization with all pending work.

— If the Producer has no enqueued work, or work only enqueued on the stream identified by stream, then
this condition is met.

— If the Producer has enqueued work on the data on multiple streams, then it must enqueue events on those
streams that follow the enqueued work, and then wait on those events in the provided stream. For example:

1. Work is enqueued by the Producer on streams 7, 9, and 15.
2. Events are then enqueued on each of streams 7, 9, and 15.
3. Producer then tells stream 3 to wait on the events from Step 2, and the stream entry is set to 3.
* If there is no work enqueued on the data, then the stream entry may be either None, or not provided.
Optionally, to facilitate the User relaxing conformance to synchronization semantics:
* Producers may provide a configuration option to always set stream to None.

» Consumers may provide a configuration option to ignore the value of stream and act as if it were None or not
provided. This elides synchronization on the Producer-provided streams, and allows enqueuing work on streams
other than that provided by the Producer.

These options should not be set by default in either a Producer or a Consumer. The CAI specification does not prescribe
the exact mechanism by which these options are set, or related options that Producers or Consumers might provide to
allow the user further control over synchronization behavior.

Synchronization in Numba

Numba is neither strictly a Producer nor a Consumer - it may be used to implement either by a User. In order to
facilitate the correct implementation of synchronization semantics, Numba exhibits the following behaviors related to
synchronization of the interface:

* When Numba acts as a Consumer (for example when an array-like object is passed to a kernel launch): If stream
is an integer, then Numba will immediately synchronize on the provided stream. A Numba Device Array
created from an array-like object has its default stream set to the provided stream.

e When Numba acts as a Producer (when the __cuda_array_interface__ property of a Numba CUDA Array
is accessed): If the exported CUDA Array has a default stream, then it is given as the stream entry. Otherwise,
streamis set to None.

Note: In Numba’s terminology, an array’s default stream is a property specifying the stream that Numba will enqueue
asynchronous transfers in if no other stream is provided as an argument to the function invoking the transfer. It is not
the same as the Default Stream in normal CUDA terminology.

Numba’s synchronization behavior results in the following intended consequences:
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» Exchanging data either as a Producer or a Consumer will be correct without the need for any further action from
the User, provided that the other side of the interaction also follows the CAI synchronization semantics.

» The User is expected to either:

— Avoid launching kernels or other operations on streams that are not the default stream for their parameters,
or

— When launching operations on a stream that is not the default stream for a given parameter, they should
then insert an event into the stream that they are operating in, and wait on that event in the default stream
for the parameter. For an example of this, see below.

The User may override Numba’s synchronization behavior by setting the environment variable
NUMBA_CUDA_ARRAY_INTERFACE_SYNC or the config variable CUDA_ARRAY_INTERFACE_SYNC to O (see GPU
Support Environment Variables). When set, Numba will not synchronize on the streams of imported arrays,
and it is the responsibility of the user to ensure correctness with respect to stream synchronization. Synchro-
nization when creating a Numba CUDA Array from an object exporting the CUDA Array Interface may also be
elided by passing sync=False when creating the Numba CUDA Array with numba. cuda.as_cuda_array() or
numba. cuda. from_cuda_array_interface().

There is scope for Numba’s synchronization implementation to be optimized in the future, by eliding synchronizations
when a kernel or driver API operation (e.g. a memcopy or memset) is launched on the same stream as an imported
array.

An example launching on an array’s non-default stream

This example shows how to ensure that a Consumer can safely consume an array with a default stream when it is passed
to a kernel launched in a different stream.

First we need to import Numba and a consumer library (a fictitious library named other_cai_library for this ex-
ample):

from numba import cuda, int32, void
import other_cai_library

Now we’ll define a kernel - this initializes the elements of the array, setting each entry to its index:

@cuda.jit(void, int32[::1])
def initialize_array(x):
i = cuda.grid(1)
if 1 < len(x):
x[i] = 1

Next we will create two streams:

array_stream = cuda.stream()
kernel_stream = cuda.stream()

Then create an array with one of the streams as its default stream:

N
X

16384
cuda.device_array(N, stream=array_stream)

Now we launch the kernel in the other stream:
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nthreads = 256
nblocks = N // nthreads

initialize_array[nthreads, nblocks, kernel_stream](x)

If we were to pass x to a Consumer now, there is a risk that it may operate on it in array_stream whilst the kernel is
still running in kernel_stream. To prevent operations in array_stream starting before the kernel launch is finished,
we create an event and wait on it:

# Create event

evt = cuda.event()

# Record the event after the kernel launch in kernel_stream
evt.record(kernel_stream)

# Wait for the event in array_stream

evt.wait(array_stream)

It is now safe for other_cai_library to consume x:

other_cai_library.consume (x)

Lifetime management

Data

Obtaining the value of the __cuda_array_interface__ property of any object has no effect on the lifetime of the
object from which it was created. In particular, note that the interface has no slot for the owner of the data.

The User code must preserve the lifetime of the object owning the data for as long as the Consumer might use it.

Streams

Like data, CUDA streams also have a finite lifetime. It is therefore required that a Producer exporting data on the
interface with an associated stream ensures that the exported stream’s lifetime is equal to or surpasses the lifetime of
the object from which the interface was exported.

Lifetime management in Numba

Producing Arrays

Numba takes no steps to maintain the lifetime of an object from which the interface is exported - it is the user’s respon-
sibility to ensure that the underlying object is kept alive for the duration that the exported interface might be used.

The lifetime of any Numba-managed stream exported on the interface is guaranteed to equal or surpass the lifetime of
the underlying object, because the underlying object holds a reference to the stream.

Note: Numba-managed streams are those created with cuda.default_stream(), cuda.
legacy_default_stream(), or cuda.per_thread_default_stream(). Streams not managed by Numba
are created from an external stream with cuda.external_stream().
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Consuming Arrays

Numba provides two mechanisms for creating device arrays from objects exporting the CUDA Array Interface. Which
to use depends on whether the created device array should maintain the life of the object from which it is created:

* as_cuda_array: This creates a device array that holds a reference to the owning object. As long as a reference
to the device array is held, its underlying data will also be kept alive, even if all other references to the original
owning object have been dropped.

e from_cuda_array_interface: This creates a device array with no reference to the owning object by default.
The owning object, or some other object to be considered the owner can be passed in the owner parameter.

The interfaces of these functions are:

cuda.as_cuda_array (sync=True)
Create a DeviceNDArray from any object that implements the cuda array interface.

A view of the underlying GPU buffer is created. No copying of the data is done. The resulting DeviceNDArray
will acquire a reference from obj.

If sync is True, then the imported stream (if present) will be synchronized.

cuda. from_cuda_array_interface(owner=None, sync=True)
Create a DeviceNDArray from a cuda-array-interface description. The owner is the owner of the underlying
memory. The resulting DeviceNDArray will acquire a reference from it.

If sync is True, then the imported stream (if present) will be synchronized.

Pointer Attributes

Additional information about the data pointer can be retrieved using cuPointerGetAttribute or
cudaPointerGetAttributes. Such information include:

 the CUDA context that owns the pointer;
* is the pointer host-accessible?
* is the pointer a managed memory?

Differences with CUDA Array Interface (Version 0)

Version 0 of the CUDA Array Interface did not have the optional mask attribute to support masked arrays.

Differences with CUDA Array Interface (Version 1)

Versions 0 and 1 of the CUDA Array Interface neither clarified the strides attribute for C-contiguous arrays nor specified
the treatment for zero-size arrays.
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Differences with CUDA Array Interface (Version 2)

Prior versions of the CUDA Array Interface made no statement about synchronization.

Interoperability

The following Python libraries have adopted the CUDA Array Interface:
* Numba
e CuPy
 PyTorch
* PyArrow
* mpidpy
e ArrayViews
* JAX
* PyCUDA
e DALI: the NVIDIA Data Loading Library :
— TensorGPU objects expose the CUDA Array Interface.
— The External Source operator consumes objects exporting the CUDA Array Interface.
* The RAPIDS stack:
— cuDF
- cuML

cuSignal
- RMM

If your project is not on this list, please feel free to report it on the Numba issue tracker.

3.19 External Memory Management (EMM) Plugin interface

The CUDA Array Interface enables sharing of data between different Python libraries that access CUDA devices.
However, each library manages its own memory distinctly from the others. For example:

* By default, Numba allocates memory on CUDA devices by interacting with the CUDA driver API to call func-
tions such as cuMemAlloc and cuMemFree, which is suitable for many use cases.

e The RAPIDS libraries (cuDF, cuML, etc.) use the RAPIDS Memory Manager (RMM) for allocating device
memory.

e CuPy includes a memory pool implementation for both device and pinned memory.

When multiple CUDA-aware libraries are used together, it may be preferable for Numba to defer to another library
for memory management. The EMM Plugin interface facilitates this, by enabling Numba to use another CUDA-aware
library for all allocations and deallocations.

An EMM Plugin is used to facilitate the use of an external library for memory management. An EMM Plugin can be
a part of an external library, or could be implemented as a separate library.
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3.19.1 Overview of External Memory Management

When an EMM Plugin is in use (see Setting the EMM Plugin), Numba will make memory allocations and deallocations
through the Plugin. It will never directly call functions such as cuMemAlloc, cuMemFree, etc.

EMM Plugins always take responsibility for the management of device memory. However, not all CUDA-aware libraries
also support managing host memory, so a facility for Numba to continue the management of host memory whilst ceding
control of device memory to the EMM is provided (see The Host-Only CUDA Memory Manager).

Effects on Deallocation Strategies

Numba’s internal Deallocation Behavior is designed to increase efficiency by deferring deallocations until a significant
quantity are pending. It also provides a mechanism for preventing deallocations entirely during critical sections, using
the defer_cleanup () context manager.

When an EMM Plugin is in use, the deallocation strategy is implemented by the EMM, and Numba’s internal deallo-
cation mechanism is not used. The EMM Plugin could implement:

* A similar strategy to the Numba deallocation behaviour, or

» Something more appropriate to the plugin - for example, deallocated memory might immediately be returned to
a memory pool.

The defer_cleanup context manager may behave differently with an EMM Plugin - an EMM Plugin should be ac-
companied by documentation of the behaviour of the defer_cleanup context manager when it is in use. For example,
a pool allocator could always immediately return memory to a pool even when the context manager is in use, but could
choose not to free empty pools until defer_cleanup is not in use.

Management of other objects

In addition to memory, Numba manages the allocation and deallocation of events, streams, and modules (a module
is a compiled object, which is generated from @cuda. jit-ted functions). The management of events, streams, and
modules is unchanged by the use of an EMM Plugin.

Asynchronous allocation and deallocation

The present EMM Plugin interface does not provide support for asynchronous allocation and deallocation. This may
be added to a future version of the interface.

3.19.2 Implementing an EMM Plugin

An EMM Plugin is implemented by deriving from BaseCUDAMemoryManager. A summary of considerations for the
implementation follows:

* Numba instantiates one instance of the EMM Plugin class per context. The context that owns an EMM Plugin
object is accessible through self. context, if required.

* The EMM Plugin is transparent to any code that uses Numba - all its methods are invoked by Numba, and never
need to be called by code that uses Numba.

* The allocation methods memalloc, memhostalloc, and mempin, should use the underlying library to allocate
and/or pin device or host memory, and construct an instance of a memory pointer representing the memory to
return back to Numba. These methods are always called when the current CUDA context is the context that owns
the EMM Plugin instance.
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The initialize method is called by Numba prior to the first use of the EMM Plugin object for a context. This
method should do anything required to prepare the underlying library for allocations in the current context. This
method may be called multiple times, and must not invalidate previous state when it is called.

The reset method is called when all allocations in the context are to be cleaned up. It may be called even prior
to initialize, and an EMM Plugin implementation needs to guard against this.

To support inter-GPU communication, the get_ipc_handle method should provide an IpcHandle for a given
MemoryPointer instance. This method is part of the EMM interface (rather than being handled within Numba)
because the base address of the allocation is only known by the underlying library. Closing an IPC handle is
handled internally within Numba.

It is optional to provide memory info from the get_memory_info method, which provides a count of the total
and free memory on the device for the context. It is preferrable to implement the method, but this may not be
practical for all allocators. If memory info is not provided, this method should raise a RuntimeError.

The defer_cleanup method should return a context manager that ensures that expensive cleanup operations are
avoided whilst it is active. The nuances of this will vary between plugins, so the plugin documentation should
include an explanation of how deferring cleanup affects deallocations, and performance in general.

The interface_version property is used to ensure that the plugin version matches the interface provided by
the version of Numba. At present, this should always be 1.

Full documentation for the base class follows:

class numba.cuda.BaseCUDAMemoryManager (*args, **kwargs)

Abstract base class for External Memory Management (EMM) Plugins.

abstract memalloc(size)
Allocate on-device memory in the current context.

Parameters size (int) — Size of allocation in bytes
Returns A memory pointer instance that owns the allocated memory
Return type MemoryPointer

abstract memhostalloc(size, mapped, portable, wc)
Allocate pinned host memory.

Parameters
e size (int) — Size of the allocation in bytes

» mapped (bool)— Whether the allocated memory should be mapped into the CUDA address
space.

¢ portable (bool) — Whether the memory will be considered pinned by all contexts, and
not just the calling context.

* wc (bool) — Whether to allocate the memory as write-combined.

Returns A memory pointer instance that owns the allocated memory. The return type depends
on whether the region was mapped into device memory.

Return type MappedMemory or PinnedMemory

abstract mempin(owner, pointer, size, mapped)
Pin a region of host memory that is already allocated.

Parameters
» owner — The object that owns the memory.

* pointer (int) — The pointer to the beginning of the region to pin.
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» size (int) — The size of the region in bytes.

« mapped (bool) — Whether the region should also be mapped into device memory.
Returns A memory pointer instance that refers to the allocated memory.
Return type MappedMemory or PinnedMemory

abstract initialize()
Perform any initialization required for the EMM plugin instance to be ready to use.

Returns None

abstract get_ipc_handle (memory)
Return an IPC handle from a GPU allocation.

Parameters memory (MemoryPointer)— Memory for which the IPC handle should be created.
Returns IPC handle for the allocation
Return type IpcHandle

abstract get_memory_info()
Returns (free, total) memory in bytes in the context. May raise Not ImplementedError, if returning
such information is not practical (e.g. for a pool allocator).

Returns Memory info
Return type MemoryInfo

abstract reset()
Clears up all memory allocated in this context.

Returns None

abstract defer_cleanup()
Returns a context manager that ensures the implementation of deferred cleanup whilst it is active.

Returns Context manager

abstract property interface_version
Returns an integer specifying the version of the EMM Plugin interface supported by the plugin implemen-
tation. Should always return 1 for implementations of this version of the specification.

The Host-Only CUDA Memory Manager

Some external memory managers will support management of on-device memory but not host memory. For im-
plementing EMM Plugins using one of these memory managers, a partial implementation of a plugin that imple-
ments host-side allocation and pinning is provided. To use it, derive from HostOnlyCUDAMemoryManager instead of
BaseCUDAMemoryManager. Guidelines for using this class are:

* The host-only memory manager implements memhostalloc and mempin - the EMM Plugin should still imple-
ment memalloc.

 If reset is overridden, it must also call super () .reset() to allow the host allocations to be cleaned up.

* If defer_cleanup is overridden, it must hold an active context manager from super () .defer_cleanup() to
ensure that host-side cleanup is also deferred.

Documentation for the methods of HostOnlyCUDAMemoryManager follows:

class numba.cuda.HostOnlyCUDAMemoryManager (*args, **kwargs)
Base class for External Memory Management (EMM) Plugins that only implement on-device allocation. A
subclass need not implement the memhostalloc and mempin methods.
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This class also implements reset and defer_cleanup (see numba. cuda.BaseCUDANemoryManager) for its
own internal state management. If an EMM Plugin based on this class also implements these methods, then its
implementations of these must also call the method from super () to give HostOnlyCUDAMemoryManager an
opportunity to do the necessary work for the host allocations it is managing.

This class does not implement interface_version, as it will always be consistent with the version of Numba
in which it is implemented. An EMM Plugin subclassing this class should implement interface_version
instead.

memhostalloc (size, mapped=False, portable=False, we=False)
Implements the allocation of pinned host memory.

It is recommended that this method is not overridden by EMM Plugin implementations - instead, use the
BaseCUDAMemoryManager.

mempin (owner, pointer, size, mapped=False)
Implements the pinning of host memory.

It is recommended that this method is not overridden by EMM Plugin implementations - instead, use the
BaseCUDAMemoryManager.

reset()
Clears up all host memory (mapped and/or pinned) in the current context.

EMM Plugins that override this method must call super() .reset() to ensure that host allocations are
also cleaned up.

defer_cleanup()
Returns a context manager that disables cleanup of mapped or pinned host memory in the current context
whilst it is active.

EMM Plugins that override this method must obtain the context manager from this method before yielding
to ensure that cleanup of host allocations is also deferred.

The IPC Handle Mixin

An implementation of the get_ipc_handle() function is is provided in the GetIpcHandleMixin class. This uses
the driver API to determine the base address of an allocation for opening an IPC handle. If this implementation is
appropriate for an EMM plugin, it can be added by mixing in the GetIpcHandleMixin class:

class numba.cuda.GetIpcHandleMixin

A class that provides a default implementation of get_ipc_handle().

get_ipc_handle (memory)
Open an IPC memory handle by using cuMemGetAddressRange to determine the base pointer
of the allocation. An IPC handle of type cu_ipc_mem_handle is constructed and initialized
with cuIpcGetMemHandle. A numba.cuda.IpcHandle is returned, populated with the underlying
ipc_mem_handle.
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3.19.3 Classes and structures of returned objects

This section provides an overview of the classes and structures that need to be constructed by an EMM Plugin.

Memory Pointers
EMM Plugins should construct memory pointer instances that represent their allocations, for return to Numba. The
appropriate memory pointer class to use in each method is:

e MemoryPointer: returned from memalloc

* MappedMemory: returned from memhostalloc or mempin when the host memory is mapped into the device
memory space.

* PinnedMemory: return from memhostalloc or mempin when the host memory is not mapped into the device
memory space.

Memory pointers can take a finalizer, which is a function that is called when the buffer is no longer needed. Usually the
finalizer will make a call to the memory management library (either internal to Numba, or external if allocated by an
EMM Plugin) to inform it that the memory is no longer required, and that it could potentially be freed and/or unpinned.
The memory manager may choose to defer actually cleaning up the memory to any later time after the finalizer runs -
it is not required to free the buffer immediately.

Documentation for the memory pointer classes follows.

class numba.cuda.MemoryPointer (context, pointer, size, owner=None, finalizer=None)
A memory pointer that owns a buffer, with an optional finalizer. Memory pointers provide reference counting,
and instances are initialized with a reference count of 1.

The base MemoryPointer class does not use the reference count for managing the buffer lifetime. Instead, the
buffer lifetime is tied to the memory pointer instance’s lifetime:

* When the instance is deleted, the finalizer will be called.
* When the reference count drops to 0, no action is taken.

Subclasses of MemoryPointer may modify these semantics, for example to tie the buffer lifetime to the reference
count, so that the buffer is freed when there are no more references.

Parameters
* context (Context)— The context in which the pointer was allocated.
e pointer (ctypes.c_void_p) — The address of the buffer.
* size (int) — The size of the allocation in bytes.

» owner (NoneType) — The owner is sometimes set by the internals of this class, or used for
Numba’s internal memory management. It should not be provided by an external user of
the MemoryPointer class (e.g. from within an EMM Plugin); the default of None should
always suffice.

e finalizer (function)— A function that is called when the buffer is to be freed.

The AutoFreePointer class need not be used directly, but is documented here as it is subclassed by numba. cuda.
MappedMemory:

class numba.cuda.cudadrv.driver.AutoFreePointer (*args, **kwargs)
Modifies the ownership semantic of the MemoryPointer so that the instance lifetime is directly tied to the number
of references.

When the reference count reaches zero, the finalizer is invoked.
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Constructor arguments are the same as for MemoryPointer.

class numba.cuda.MappedMemory (context, pointer, size, owner=None, finalizer=None)
A memory pointer that refers to a buffer on the host that is mapped into device memory.

Parameters
» context (Context)— The context in which the pointer was mapped.
e pointer (ctypes.c_void_p) — The address of the buffer.
» size (int) — The size of the buffer in bytes.

» owner (NoneType) — The owner is sometimes set by the internals of this class, or used for
Numba’s internal memory management. It should not be provided by an external user of the
MappedMemory class (e.g. from within an EMM Plugin); the default of None should always
suffice.

e finalizer (function) — A function that is called when the buffer is to be freed.

class numba.cuda.PinnedMemory (context, pointer, size, owner=None, finalizer=None)
A pointer to a pinned buffer on the host.

Parameters
» context (Context) — The context in which the pointer was mapped.
» owner — The object owning the memory. For EMM plugin implementation, this ca
e pointer (ctypes.c_void_p) — The address of the buffer.
» size (int) — The size of the buffer in bytes.

* owner — An object owning the buffer that has been pinned. For EMM plugin implementation,
the default of None suffices for memory allocated in memhostalloc - for mempin, it should
be the owner passed in to the mempin method.

e finalizer (function)— A function that is called when the buffer is to be freed.

Memory Info
If an implementation of get_memory_info () is to provide a result, then it should return an instance of the MemoryInfo
named tuple:

class numba.cuda.MemoryInfo (free, total)
Free and total memory for a device.

free
Free device memory in bytes.

total
Total device memory in bytes.

214 Chapter 3. Numba for CUDA GPUs


https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

IPC

An instance of IpcHandle is required to be returned from an implementation of get_ipc_handle():

class numba.cuda.IpcHandle (base, handle, size, source_info=None, offset=0)
CUDA IPC handle. Serialization of the CUDA IPC handle object is implemented here.

Parameters
* base (MemoryPointer) — A reference to the original allocation to keep it alive
* handle — The CUDA IPC handle, as a ctypes array of bytes.
» size (int) - Size of the original allocation

» source_info (dict) — The identity of the device on which the IPC handle was opened.

offset (int) — The offset into the underlying allocation of the memory referred to by this
IPC handle.

Guidance for constructing an IPC handle in the context of implementing an EMM Plugin:

* The memory parameter passed to the get_ipc_handle method of an EMM Plugin can be passed as the base
parameter.

* A suitable type for the handle can be constructed as ctypes.c_byte * 64. The data for handle must be
populated using a method for obtaining a CUDA IPC handle appropriate to the underlying library.

e size should match the size of the original allocation, which can be obtained with memory.size in
get_ipc_handle.

* An appropriate value for source_info can be created by calling self.context.device.
get_device_identity().

¢ If the underlying memory does not point to the base of an allocation returned by the CUDA driver or runtime
API (e.g. if a pool allocator is in use) then the offset from the base must be provided.

3.19.4 Setting the EMM Plugin

By default, Numba uses its internal memory management - if an EMM Plugin is to be used, it must be configured.
There are two mechanisms for configuring the use of an EMM Plugin: an environment variable, and a function.

Environment variable

A module name can be provided in the environment variable, NUMBA_CUDA_MEMORY_MANAGER. If this environment
variable is set, Numba will attempt to import the module, and and use its _numba_memory_manager global variable
as the memory manager class. This is primarily useful for running the Numba test suite with an EMM Plugin, e.g.:

$ NUMBA_CUDA_MEMORY_MANAGER=rmm python -m numba.runtests numba.cuda.tests
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Function
The set_memory_manager () function can be used to set the memory manager at runtime. This should be called prior
to the initialization of any contexts, as EMM Plugin instances are instantiated along with contexts.

numba.cuda.set_memory_manager (mm_plugin)
Configure Numba to use an External Memory Management (EMM) Plugin. If the EMM Plugin version does not
match one supported by this version of Numba, a RuntimeError will be raised.

Parameters mm_plugin (BaseCUDAMemoryManager) — The class implementing the EMM Plugin.

Returns None

Resetting the memory manager

It is recommended that the memory manager is set once prior to using any CUDA functionality, and left unchanged for
the remainder of execution. It is possible to set the memory manager multiple times, noting the following:

* At the time of their creation, contexts are bound to an instance of a memory manager for their lifetime.

* Changing the memory manager will have no effect on existing contexts - only contexts created after the memory
manager was updated will use instances of the new memory manager.

e numba.cuda.close() can be used to destroy contexts after setting the memory manager so that they get re-
created with the new memory manager.

— This will invalidate any arrays, streams, events, and modules owned by the context.

— Attempting to use invalid arrays, streams, or events will likely fail with an exception being raised due to
a CUDA_ERROR_INVALID_CONTEXT or CUDA_ERROR_CONTEXT_IS_DESTROYED return code from a Driver
API function.

— Attempting to use an invalid module will result in similar, or in some cases a segmentation fault / access
violation.

Note: The invalidation of modules means that all functions compiled with @cuda. jit prior to context destruction
will need to be redefined, as the code underlying them will also have been unloaded from the GPU.

3.20 CUDA Frequently Asked Questions

3.20.1 nvprof reports “No kernels were profiled”

When using the nvprof tool to profile Numba jitted code for the CUDA target, the output contains No kernels were
profiled but there are clearly running kernels present, what is going on?

This is quite likely due to the profiling data not being flushed on program exit, see the NVIDIA CUDA documentation
for details. To fix this simply add a call to numba.cuda.profile_stop() prior to the exit point in your program (or
wherever you want to stop profiling). For more on CUDA profiling support in Numba, see Profiling.
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CHAPTER
FOUR

CUDA PYTHON REFERENCE

4.1 CUDA Host API

4.1.1 Device Management

Device detection and enquiry

The following functions are available for querying the available hardware:

numba.cuda.is_available()
Returns a boolean to indicate the availability of a CUDA GPU.

This will initialize the driver if it hasn’t been initialized.

numba.cuda.detect()
Detect supported CUDA hardware and print a summary of the detected hardware.

Returns a boolean indicating whether any supported devices were detected.

Context management

CUDA Python functions execute within a CUDA context. Each CUDA device in a system has an associated CUDA
context, and Numba presently allows only one context per thread. For further details on CUDA Contexts, refer to the
CUDA Driver API Documentation on Context Management and the CUDA C Programming Guide Context Documen-
tation. CUDA Contexts are instances of the Context class:

class numba.cuda.cudadrv.driver.Context (device, handle)
This object wraps a CUDA Context resource.

Contexts should not be constructed directly by user code.

get_memory_info()
Returns (free, total) memory in bytes in the context.

pop Q)
Pops this context off the current CPU thread. Note that this context must be at the top of the context stack,
otherwise an error will occur.

push()
Pushes this context on the current CPU Thread.

reset()
Clean up all owned resources in this context.

The following functions can be used to get or select the context:
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numba. cuda.current_context (devium=None)
Get the current device or use a device by device number, and return the CUDA context.

numba.cuda.require_context (fi)
A decorator that ensures a CUDA context is available when fn is executed.

Note: The function fn cannot switch CUDA-context.
The following functions affect the current context:

numba. cuda.synchronize()
Synchronize the current context.

numba.cuda.close()
Explicitly clears all contexts in the current thread, and destroys all contexts if the current thread is the main
thread.

Device management

Numba maintains a list of supported CUDA-capable devices:

numba . cuda.gpus
An indexable list of supported CUDA devices. This list is indexed by integer device ID.

Alternatively, the current device can be obtained:

numba.cuda.gpus.current ()
Return the currently-selected device.

Getting a device through numba. cuda.gpus always provides an instance of numba.cuda.cudadrv.devices.
_DeviceContextManager, which acts as a context manager for the selected device:

class numba.cuda.cudadrv.devices._DeviceContextManager (device)
Provides a context manager for executing in the context of the chosen device. The normal use of instances of this
type is from numba. cuda. gpus. For example, to execute on device 2:

with numba.cuda.gpus[2]:
d_a = numba.cuda.to_device(a)

to copy the array a onto device 2, referred to by d_a.
One may also select a context and device or get the current device using the following three functions:

numba.cuda.select_device(device_id)
Make the context associated with device device_id the current context.

Returns a Device instance.
Raises exception on error.

numba.cuda.get_current_device()
Get current device associated with the current thread

numba.cuda.list_devices()
Return a list of all detected devices

The numba. cuda. cudadrv.driver.Device class can be used to enquire about the functionality of the selected de-
vice:

class numba.cuda.cudadrv.driver.Device
The device associated with a particular context.
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compute_capability

A tuple,

id

(major, minor) indicating the supported compute capability.

The integer ID of the device.

name

The name of the device (e.g. “GeForce GTX 970”).

uuid

The UUID of the device (e.g. “GPU-e6489c45-5b68-3b03-bab7-0e7c8e809643”).

reset()

Delete the context for the device. This will destroy all memory allocations, events, and streams created
within the context.

4.1.2 Compilation

Numba provides an entry point for compiling a Python function to PTX without invoking any of the driver APIL. This

can be useful for:

* Generating PTX that is to be inlined into other PTX code (e.g. from outside the Numba / Python ecosystem).

* Generating code when there is no device present.

» Generating code prior to a fork without initializing CUDA.

Note: It is the user’s responsibility to manage any ABI issues arising from the use of compilation to PTX.

numba.cuda.compile_ptx(pyfunc, args, debug=False, lineinfo=False, device=False, fastmath=False, cc=None,

opt=True)

Compile a Python function to PTX for a given set of argument types.

Parameters

pyfunc — The Python function to compile.
args — A tuple of argument types to compile for.
debug (bool) — Whether to include debug info in the generated PTX.

lineinfo (bool)— Whether to include a line mapping from the generated PTX to the source
code. Usually this is used with optimized code (since debug mode would automatically
include this), so we want debug info in the LLVM but only the line mapping in the final
PTX.

device (bool) — Whether to compile a device function. Defaults to False, to compile
global kernel functions.

fastmath (bool) — Whether to enable fast math flags (ftz=1, prec_sqrt=0, prec_div=, and
fma=1)

cc (tuple) — Compute capability to compile for, as a tuple (MAJOR, MINOR). Defaults to
(5, 2).

opt (bool) — Enable optimizations. Defaults to True.

Returns (ptx, resty): The PTX code and inferred return type

Return

type tuple

4.1. CUDA Host API
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The environment variable NUMBA_CUDA_DEFAULT_PTX_CC can be set to control the default compute capability tar-
geted by compile_ptx - see GPU support. If PTX for the compute capability of the current device is required, the
compile_ptx_for_current_device function can be used:

numba.cuda.compile_ptx_for_current_device(pyfunc, args, debug=Fulse, lineinfo=False, device=False,
fastmath=False, opt=True)
Compile a Python function to PTX for a given set of argument types for the current device’s compute capabilility.
This calls compile_ptx() with an appropriate cc value for the current device.

4.1.3 Measurement
Profiling

The NVidia Visual Profiler can be used directly on executing CUDA Python code - it is not a requirement to insert calls
to these functions into user code. However, these functions can be used to allow profiling to be performed selectively
on specific portions of the code. For further information on profiling, see the NVidia Profiler User’s Guide.

numba.cuda.profile_start()
Enable profile collection in the current context.

numba.cuda.profile_stop()
Disable profile collection in the current context.

numba.cuda.profiling ()
Context manager that enables profiling on entry and disables profiling on exit.

Events

Events can be used to monitor the progress of execution and to record the timestamps of specific points being reached.
Event creation returns immediately, and the created event can be queried to determine if it has been reached. For further
information, see the CUDA C Programming Guide Events section.

The following functions are used for creating and measuring the time between events:

numba. cuda.event (timing=True)
Create a CUDA event. Timing data is only recorded by the event if it is created with timing=True.

numba.cuda.event_elapsed_time (evistart, evtend)
Compute the elapsed time between two events in milliseconds.

Events are instances of the numba. cuda. cudadrv.driver.Event class:

class numba.cuda.cudadrv.driver.Event (context, handle, finalizer=None)

query()
Returns True if all work before the most recent record has completed; otherwise, returns False.

record (stream=0)
Set the record point of the event to the current point in the given stream.

The event will be considered to have occurred when all work that was queued in the stream at the time of
the call to record() has been completed.

synchronize()
Synchronize the host thread for the completion of the event.

wait (stream=0)
All future works submitted to stream will wait util the event completes.
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4.1.4 Stream Management

Streams allow concurrency of execution on a single device within a given context. Queued work items in the same
stream execute sequentially, but work items in different streams may execute concurrently. Most operations involving
a CUDA device can be performed asynchronously using streams, including data transfers and kernel execution. For
further details on streams, see the CUDA C Programming Guide Streams section.

Numba defaults to using the legacy default stream as the default stream. The per-thread default stream can be made the
default stream by setting the environment variable NUMBA_CUDA_PER_THREAD_DEFAULT_STREAM to 1 (see the CUDA
Environment Variables section). Regardless of this setting, the objects representing the legacy and per-thread default
streams can be constructed using the functions below.

Streams are instances of numba. cuda. cudadrv.driver.Stream:

class numba.cuda.cudadrv.driver.Stream(context, handle, finalizer, external=False)

add_callback(callback, arg)
Add a callback to a compute stream. The user provided function is called from a driver thread once all
preceding stream operations are complete.

Callback functions are called from a CUDA driver thread, not from the thread that invoked add_callback.
No CUDA API functions may be called from within the callback function.

The duration of a callback function should be kept short, as the callback will block later work in the stream
and may block other callbacks from being executed.

Note: The driver function underlying this method is marked for eventual deprecation and may be replaced
in a future CUDA release.

Parameters
¢ callback — Callback function with arguments (stream, status, arg).
» arg — User data to be passed to the callback function.

async_done() — _asyncio.Future
Return an awaitable that resolves once all preceding stream operations are complete.

auto_synchronize()
A context manager that waits for all commands in this stream to execute and commits any pending memory
transfers upon exiting the context.

synchronize()
Wait for all commands in this stream to execute. This will commit any pending memory transfers.

To create a new stream:

numba.cuda.stream()
Create a CUDA stream that represents a command queue for the device.

To get the default stream:

numba.cuda.default_stream()
Get the default CUDA stream. CUDA semantics in general are that the default stream is either the legacy default
stream or the per-thread default stream depending on which CUDA APIs are in use. In Numba, the APIs for the
legacy default stream are always the ones in use, but an option to use APIs for the per-thread default stream may
be provided in future.

To get the default stream with an explicit choice of whether it is the legacy or per-thread default stream:

numba.cuda.legacy_default_stream()
Get the legacy default CUDA stream.

4.1. CUDA Host API 221


http://docs.nvidia.com/cuda/cuda-c-programming-guide/#streams

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

numba.cuda.per_thread_default_stream()
Get the per-thread default CUDA stream.

To construct a Numba Stream object using a stream allocated elsewhere, the external_stream function is provided.
Note that the lifetime of external streams must be managed by the user - Numba will not deallocate an external stream,
and the stream must remain valid whilst the Numba Stream object is in use.

numba.cuda.external_stream(ptr)
Create a Numba stream object for a stream allocated outside Numba.

Parameters ptr (int) — Pointer to the external stream to wrap in a Numba Stream

4.1.5 Runtime

Numba generally uses the Driver API, but it provides a simple wrapper to the Runtime API so that the version of the
runtime in use can be queried. This is accessed through cuda.runtime, which is an instance of the numba. cuda.
cudadrv.runtime.Runtime class:

class numba.cuda.cudadrv.runtime.Runtime
Runtime object that lazily binds runtime API functions.

get_version()
Returns the CUDA Runtime version as a tuple (major, minor).

is_supported_version()
Returns True if the CUDA Runtime is a supported version.

property supported_versions
A tuple of all supported CUDA toolkit versions. Versions are given in the form (major_version,
minor_version).

Whether the current runtime is officially supported and tested with the current version of Numba can also be queried:

numba.cuda.is_supported_version()
Returns True if the CUDA Runtime is a supported version.

Unsupported versions (e.g. newer versions than those known to Numba) may still work; this function provides
a facility to check whether the current Numba version is tested and known to work with the current runtime
version. If the current version is unsupported, the caller can decide how to act. Options include:

 Continuing silently,
* Emitting a warning,

* Generating an error or otherwise preventing the use of CUDA.

4.2 CUDA Kernel API

4.2.1 Kernel declaration

The @cuda. jit decorator is used to create a CUDA dispatcher object that can be configured and launched:

numba. cuda. jit (func_or_sig=None, device=Fulse, inline=False, link=[ ], debug=None, opt=True, **kws)
JIT compile a python function conforming to the CUDA Python specification. If a signature is supplied, then a
function is returned that takes a function to compile.

Parameters
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» func_or_sig — A function to JIT compile, or a signature of a function to compile.
If a function is supplied, then a numba.cuda.compiler.Auto]itCUDAKernel is re-
turned. If a signature is supplied, then a function is returned. The returned function ac-
cepts another function, which it will compile and then return a numba.cuda.compiler.
AutoJitCUDAKernel.

Note: A kernel cannot have any return value.

device (bool) — Indicates whether this is a device function.

» link (1ist)— A list of files containing PTX source to link with the function

debug — If True, check for exceptions thrown when executing the kernel. Since this degrades
performance, this should only be used for debugging purposes. Defaults to False. (The de-
fault value can be overridden by setting environment variable NUMBA_CUDA_DEBUGINFO=1.)

» fastmath — When True, enables fastmath optimizations as outlined in the CUDA Fast Math
documentation.

* max_registers — Request that the kernel is limited to using at most this number of registers
per thread. The limit may not be respected if the ABI requires a greater number of registers
than that requested. Useful for increasing occupancy.

* opt (bool)— Whether to compile from LLVM IR to PTX with optimization enabled. When
True, -opt=3 is passed to NVVM. When False, -opt=0 is passed to NVVM. Defaults to
True.

* lineinfo (bool) — If True, generate a line mapping between source code and assembly
code. This enables inspection of the source code in NVIDIA profiling tools and correlation
with program counter sampling.

4.2.2 Dispatcher objects

The usual syntax for configuring a Dispatcher with a launch configuration uses subscripting, with the arguments being
as in the following:

# func is some function decorated with @cuda.jit
func[griddim, blockdim, stream, sharedmem]

The griddim and blockdim arguments specify the size of the grid and thread blocks, and may be either integers or
tuples of length up to 3. The stream parameter is an optional stream on which the kernel will be launched, and the
sharedmem parameter specifies the size of dynamic shared memory in bytes.

Subscripting the Dispatcher returns a configuration object that can be called with the kernel arguments:

configured = func[griddim, blockdim, stream, sharedmem]
configured(x, y, z)

However, it is more idiomatic to configure and call the kernel within a single statement:

func[griddim, blockdim, stream, sharedmem](x, y, z)

This is similar to launch configuration in CUDA C/C++:

func<<<griddim, blockdim, sharedmem, stream>>>(x, y, z)
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Note: The order of stream and sharedmem are reversed in Numba compared to in CUDA C/C++.

Dispatcher objects also provide several utility methods for inspection and creating a specialized instance:

class numba.cuda.compiler.Dispatcher (py_func, sigs, targetoptions)

CUDA Dispatcher object. When configured and called, the dispatcher will specialize itself for the given argu-
ments (if no suitable specialized version already exists) & compute capability, and launch on the device associated
with the current context.

Dispatcher objects are not to be constructed by the user, but instead are created using the numba. cuda. jit()
decorator.

property extensions
A list of objects that must have a prepare_args function. When a specialized kernel is called, each argument
will be passed through to the prepare_args (from the last object in this list to the first). The arguments to
prepare_args are:

* ty the numba type of the argument

* val the argument value itself

* stream the CUDA stream used for the current call to the kernel

* retr a list of zero-arg functions that you may want to append post-call cleanup work to.

The prepare_args function must return a tuple (¢y, val), which will be passed in turn to the next right-most
extension. After all the extensions have been called, the resulting (#y, val) will be passed into Numba’s
default argument marshalling logic.

forall (ntasks, tpb=0, stream=0, sharedmem=0)
Returns a 1D-configured kernel for a given number of tasks.

This assumes that:
* the kernel maps the Global Thread ID cuda.grid(1) to tasks on a 1-1 basis.

* the kernel checks that the Global Thread ID is upper-bounded by ntasks, and does nothing if it is not.

Parameters
¢ ntasks — The number of tasks.
* tpb — The size of a block. An appropriate value is chosen if this parameter is not supplied.
* stream — The stream on which the configured kernel will be launched.
¢ sharedmem — The number of bytes of dynamic shared memory required by the kernel.

Returns A configured kernel, ready to launch on a set of arguments.

get_regs_per_thread (signature=None)
Returns the number of registers used by each thread in this kernel for the device in the current context.

Parameters signature — The signature of the compiled kernel to get register usage for. This
may be omitted for a specialized kernel.

Returns The number of registers used by the compiled variant of the kernel for the given signature
and current device.

inspect_asm(signature=None)
Return this kernel’s PTX assembly code for for the device in the current context.

Parameters signature — A tuple of argument types.
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Returns The PTX code for the given signature, or a dict of PTX codes for all previously-
encountered signatures.

inspect_llvm(signature=None)
Return the LLVM IR for this kernel.

Parameters signature — A tuple of argument types.

Returns The LLVM IR for the given signature, or a dict of LLVM IR for all previously-
encountered signatures.

inspect_sass (signature=None)
Return this kernel’s SASS assembly code for for the device in the current context.

Parameters signature — A tuple of argument types.

Returns The SASS code for the given signature, or a dict of SASS codes for all previously-
encountered signatures.

SASS for the device in the current context is returned.
Requires nvdisasm to be available on the PATH.

inspect_types (file=None)
Produce a dump of the Python source of this function annotated with the corresponding Numba IR and type
information. The dump is written to file, or sys.stdout if file is None.

specialize (*args)
Create a new instance of this dispatcher specialized for the given args.

property specialized
True if the Dispatcher has been specialized.

4.2.3 Intrinsic Attributes and Functions

The remainder of the attributes and functions in this section may only be called from within a CUDA Kernel.

Thread Indexing

numba. cuda.threadIdx
The thread indices in the current thread block, accessed through the attributes x, y, and z. Each index is an
integer spanning the range from 0 inclusive to the corresponding value of the attribute in numba . cuda. blockDim
exclusive.

numba.cuda.blockIdx
The block indices in the grid of thread blocks, accessed through the attributes x, y, and z. Each index is an
integer spanning the range from 0 inclusive to the corresponding value of the attribute in numba . cuda.gridDim
exclusive.

numba. cuda.blockDim
The shape of a block of threads, as declared when instantiating the kernel. This value is the same for all threads
in a given kernel, even if they belong to different blocks (i.e. each block is “full”).

numba.cuda.gridDim
The shape of the grid of blocks, accessed through the attributes x, y, and z.

numba.cuda.laneid
The thread index in the current warp, as an integer spanning the range from O inclusive to the numba. cuda.
warpsize exclusive.
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numba.cuda.warpsize
The size in threads of a warp on the GPU. Currently this is always 32.

numba. cuda.grid(ndim)
Return the absolute position of the current thread in the entire grid of blocks. ndim should correspond to the
number of dimensions declared when instantiating the kernel. If ndim is 1, a single integer is returned. If ndim
is 2 or 3, a tuple of the given number of integers is returned.

Computation of the first integer is as follows:

cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x

and is similar for the other two indices, but using the y and z attributes.

numba.cuda.gridsize(ndim)
Return the absolute size (or shape) in threads of the entire grid of blocks. ndim should correspond to the number
of dimensions declared when instantiating the kernel.

Computation of the first integer is as follows:

cuda.blockDim.x * cuda.gridDim.x

and is similar for the other two indices, but using the y and z attributes.

Memory Management

numba.cuda.shared. array (shape, dtype)
Creates an array in the local memory space of the CUDA kernel with the given shape and dtype.

Returns an array with its content uninitialized.

Note: All threads in the same thread block sees the same array.

numba.cuda.local.array(shape, dtype)
Creates an array in the local memory space of the CUDA kernel with the given shape and dtype.

Returns an array with its content uninitialized.

Note: Each thread sees a unique array.

numba.cuda.const.array_like(ary)
Copies the ary into constant memory space on the CUDA kernel at compile time.

Returns an array like the ary argument.

Note: All threads and blocks see the same array.
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Synchronization and Atomic Operations

numba. cuda.atomic.add(array, idx, value)
Perform array[idx] += value. Support int32, int64, float32 and float64 only. The idx argument can be an
integer or a tuple of integer indices for indexing into multiple dimensional arrays. The number of element in idx
must match the number of dimension of array.

Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.sub(array, idx, value)
Perform array[idx] -= value. Supports int32, int64, float32 and float64 only. The idx argument can be an
integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in idx
must match the number of dimensions of array.

Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.and_(array, idx, value)
Perform array[idx] &= value. Supports int32, uint32, int64, and uint64 only. The idx argument can be an
integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in idx
must match the number of dimensions of array.

Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.or_(array, idx, value)
Perform array[idx] |= value. Supports int32, uint32, int64, and uint64 only. The idx argument can be an
integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in idx
must match the number of dimensions of array.

Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.xor (array, idx, value)
Perform array[idx] A= value. Supports int32, uint32, int64, and uint64 only. The idx argument can be an
integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in idx
must match the number of dimensions of array.

Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba. cuda.atomic.exch(array, idx, value)
Perform array[idx] = value. Supports int32, uint32, int64, and uint64 only. The idx argument can be an
integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in idx
must match the number of dimensions of array.

Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba. cuda.atomic.inc(array, idx, value)
Perform array[idx] = (0 if array[idx] >= value else array[idx] + 1). Supports uint32, and
uint64 only. The idx argument can be an integer or a tuple of integer indices for indexing into multi-dimensional
arrays. The number of elements in idx must match the number of dimensions of array.

Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba. cuda.atomic.dec(array, idx, value)
Perform array[idx] = (value if (array[idx] == 0) or (array[idx] > value) else
array[idx] - 1). Supports uint32, and uint64 only. The idx argument can be an integer or a tuple of
integer indices for indexing into multi-dimensional arrays. The number of elements in idx must match the
number of dimensions of array.

Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.max (array, idx, value)
Perform array[idx] = max(array[idx], value). Support int32, int64, float32 and float64 only. The idx
argument can be an integer or a tuple of integer indices for indexing into multiple dimensional arrays. The number
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of element in idx must match the number of dimension of array.
Returns the value of array[idx] before the storing the new value. Behaves like an atomic load.

numba. cuda.syncthreads ()
Synchronize all threads in the same thread block. This function implements the same pattern as barriers in
traditional multi-threaded programming: this function waits until all threads in the block call it, at which point
it returns control to all its callers.

numba. cuda. syncthreads_count (predicate)
An extension to numba. cuda. syncthreads where the return value is a count of the threads where predicate
is true.

numba. cuda.syncthreads_and (predicate)
An extension to numba. cuda. syncthreads where 1 is returned if predicate is true for all threads or O oth-
erwise.

numba.cuda.syncthreads_or (predicate)
An extension to numba. cuda.syncthreads where 1 is returned if predicate is true for any thread or O oth-
erwise.

Warning: All syncthreads functions must be called by every thread in the thread-block. Falling to do so
may result in undefined behavior.

Cooperative Groups
numba.cuda.cg.this_grid(Q)
Get the current grid group.
Returns The current grid group
Return type numba.cuda.cg.GridGroup

class numba.cuda.cg.GridGroup
A grid group. Users should not construct a GridGroup directly - instead, get the current grid group using cg.
this_grid().

sync()
Synchronize the current grid group.

Memory Fences

The memory fences are used to guarantee the effect of memory operations are visible by other threads within the same
thread-block, the same GPU device, and the same system (across GPUs on global memory). Memory loads and stores
are guaranteed to not move across the memory fences by optimization passes.

Warning: The memory fences are considered to be advanced API and most usercases should use the thread barrier
(e.g. syncthreads()).

numba.cuda.threadfence()
A memory fence at device level (within the GPU).

numba. cuda. threadfence_block()
A memory fence at thread block level.
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numba.cuda.threadfence_system()
A memory fence at system level (across GPUs).

Warp Intrinsics

The argument membermask is a 32 bit integer mask with each bit corresponding to a thread in the warp, with 1 meaning
the thread is in the subset of threads within the function call. The membermask must be all 1 if the GPU compute
capability is below 7.x.

numba. cuda. syncwarp (membermask)
Synchronize a masked subset of the threads in a warp.

numba. cuda.all_sync(membermask, predicate)
If the predicate is true for all threads in the masked warp, then a non-zero value is returned, otherwise 0 is
returned.

numba . cuda.any_sync (membermask, predicate)
If the predicate is true for any thread in the masked warp, then a non-zero value is returned, otherwise 0 is
returned.

numba . cuda.eq_sync (membermask, predicate)
If the boolean predicate is the same for all threads in the masked warp, then a non-zero value is returned,
otherwise 0 is returned.

numba. cuda.ballot_sync (membermask, predicate)
Returns a mask of all threads in the warp whose predicate is true, and are within the given mask.

numba. cuda.shfl_sync(membermask, value, src_lane)
Shuffles value across the masked warp and returns the value from src_lane. If this is outside the warp, then
the given value is returned.

numba . cuda.shfl_up_sync(membermask, value, delta)
Shuffles value across the masked warp and returns the value from laneid - delta. If this is outside the
warp, then the given value is returned.

numba.cuda.shfl_down_sync (membermask, value, delta)
Shuffles value across the masked warp and returns the value from laneid + delta. If this is outside the
warp, then the given value is returned.

numba . cuda.shfl_xor_sync(membermask, value, lane_mask)
Shuffles value across the masked warp and returns the value from laneid A lane_mask.

numba . cuda.match_any_sync (membermask, value, lane_mask)
Returns a mask of threads that have same value as the given value from within the masked warp.

numba . cuda.match_all_sync(membermask, value, lane_mask)
Returns a tuple of (mask, pred), where mask is a mask of threads that have same value as the given value from
within the masked warp, if they all have the same value, otherwise it is 0. And pred is a boolean of whether or
not all threads in the mask warp have the same warp.

numba. cuda.activemask()
Returns a 32-bit integer mask of all currently active threads in the calling warp. The Nth bit is set if the Nth lane
in the warp is active when activemask() is called. Inactive threads are represented by 0 bits in the returned mask.
Threads which have exited the kernel are always marked as inactive.

numba.cuda.lanemask_1t ()
Returns a 32-bit integer mask of all lanes (including inactive ones) with ID less than the current lane.
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Integer Intrinsics

A subset of the CUDA Math API’s integer intrinsics are available. For further documentation, including semantics,
please refer to the CUDA Toolkit documentation.

numba. cuda.popc(x)
Returns the number of bits set in x.

numba. cuda.brev(x)
Returns the reverse of the bit pattern of x. For example, 0b10110110 becomes 0b01101101.

numba.cuda.clz(x)
Returns the number of leading zeros in x.

numba.cuda. £ffs(x)
Returns the position of the first (least significant) bit set to 1 in x, where the least significant bit position is 1.
f£s(0®) returns 0.

Floating Point Intrinsics

A subset of the CUDA Math API’s floating point intrinsics are available. For further documentation, including seman-
tics, please refer to the single and double precision parts of the CUDA Toolkit documentation.

numba.cuda.fma()
Perform the fused multiply-add operation. Named after the fma and fmaf in the C api, but maps to the fma.rn.
£32 and fma.rn. £64 (round-to-nearest-even) PTX instructions.

numba. cuda.cbrt(x)
Perform the cube root operation, x ** (1/3). Named after the functions cbrt and cbrtf in the C api. Supports
float32, and float64 arguments only.

Control Flow Instructions

A subset of the CUDA’s control flow instructions are directly available as intrinsics. Avoiding branches is a key way to
improve CUDA performance, and using these intrinsics mean you don’t have to rely on the nvcc optimizer identifying
and removing branches. For further documentation, including semantics, please refer to the relevant CUDA Toolkit
documentation.

numba.cuda.selp()
Select between two expressions, depending on the value of the first argument. Similar to LLVM’s select
instruction.

Timer Intrinsics

numba . cuda.nanosleep (ns)
Suspends the thread for a sleep duration approximately close to the delay ns, specified in nanoseconds.
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4.3 Memory Management

numba.cuda.to_device (obj, stream=0, copy=True, to=None)
Allocate and transfer a numpy ndarray or structured scalar to the device.

To copy host->device a numpy array:

ary = np.arange(10)
d_ary = cuda.to_device(ary)

To enqueue the transfer to a stream:

stream = cuda.stream()
d_ary = cuda.to_device(ary, stream=stream)

The resulting d_ary is a DeviceNDArray.

To copy device->host:

hary = d_ary.copy_to_host()

To copy device->host to an existing array:

ary = np.empty(shape=d_ary.shape, dtype=d_ary.dtype)
d_ary.copy_to_host(ary)

To enqueue the transfer to a stream:

hary = d_ary.copy_to_host(stream=stream)

numba . cuda.device_array (shape, dtype=np.float_, strides=None, order='C', stream=0)
Allocate an empty device ndarray. Similar to numpy . empty ().

numba.cuda.device_array_like (ary, stream=0)
Call device_array() with information from the array.

numba. cuda.pinned_array (shape, dtype=np.float_, strides=None, order='C")
Allocate an ndarray with a buffer that is pinned (pagelocked). Similar to np.empty ().

numba.cuda.pinned_array_like(ary)
Call pinned_array () with the information from the array.

numba. cuda .mapped_array (shape, dtype=np.float_, strides=None, order='C’, stream=0, portable=Fulse,
we=Fualse)
Allocate a mapped ndarray with a buffer that is pinned and mapped on to the device. Similar to np.empty()

Parameters

* portable — a boolean flag to allow the allocated device memory to be usable in multiple
devices.

* wc — a boolean flag to enable writecombined allocation which is faster to write by the host
and to read by the device, but slower to write by the host and slower to write by the device.

numba.cuda.mapped_array_like(ary, stream=0, portable=False, we=False)
Call mapped_array () with the information from the array.

numba.cuda.managed_array (shape, dtype=np.float_, strides=None, order="C', stream=0, attach_global=True)
Allocate a np.ndarray with a buffer that is managed. Similar to np.empty().
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Managed memory is supported on Linux / x86 and PowerPC, and is considered experimental on Windows and
Linux / AArch64.

Parameters attach_global — A flag indicating whether to attach globally. Global attachment im-
plies that the memory is accessible from any stream on any device. If False, attachment is host,
and memory is only accessible by devices with Compute Capability 6.0 and later.

numba. cuda.pinned (*arylist)
A context manager for temporary pinning a sequence of host ndarrays.

numba . cuda .mapped ( *arylist, **kws)
A context manager for temporarily mapping a sequence of host ndarrays.

4.3.1 Device Objects

class numba.cuda.cudadrv.devicearray.DeviceNDArray (shape, strides, dtype, stream=0, gpu_data=None)
An on-GPU array type

copy_to_device(ary, stream=0)
Copy ary to self.

If ary is a CUDA memory, perform a device-to-device transfer. Otherwise, perform a a host-to-device
transfer.

copy_to_host (ary=None, stream=0)
Copy self to ary or create a new Numpy ndarray if ary is None.

If a CUDA stream is given, then the transfer will be made asynchronously as part as the given stream.
Otherwise, the transfer is synchronous: the function returns after the copy is finished.

Always returns the host array.

Example:

import numpy as np
from numba import cuda

arr = np.arange(1000)
d_arr = cuda.to_device(arr)

my_kernel[100, 100](d_arr)

result_array = d_arr.copy_to_host()

is_c_contiguous()
Return true if the array is C-contiguous.

is_£f_contiguous()
Return true if the array is Fortran-contiguous.

ravel (order='C", stream=0)
Flatten the array without changing its contents, similar to numpy .ndarray.ravel ().

reshape (*newshape, **kws)
Reshape the array without changing its contents, similarly to numpy.ndarray.reshape (). Example:

d_arr = d_arr.reshape(20, 50, order='F')
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split (section, stream=0)
Split the array into equal partition of the section size. If the array cannot be equally divided, the last section
will be smaller.

class numba.cuda.cudadrv.devicearray.DeviceRecord(dtype, stream=0, gpu_data=None)
An on-GPU record type

copy_to_device(ary, stream=0)
Copy ary to self.

If ary is a CUDA memory, perform a device-to-device transfer. Otherwise, perform a a host-to-device
transfer.

copy_to_host (ary=None, stream=0)
Copy self to ary or create a new Numpy ndarray if ary is None.

If a CUDA stream is given, then the transfer will be made asynchronously as part as the given stream.
Otherwise, the transfer is synchronous: the function returns after the copy is finished.

Always returns the host array.

Example:

import numpy as np
from numba import cuda

arr = np.arange(1000)
d_arr = cuda.to_device(arr)

my_kernel[100, 100](d_arr)

result_array = d_arr.copy_to_host()

class numba.cuda.cudadrv.devicearray.MappedNDArray (shape, strides, dtype, stream=0, gpu_data=None)
A host array that uses CUDA mapped memory.

copy_to_device(ary, stream=0)
Copy ary to self.

If ary is a CUDA memory, perform a device-to-device transfer. Otherwise, perform a a host-to-device
transfer.

copy_to_host (ary=None, stream=0)
Copy self to ary or create a new Numpy ndarray if ary is None.

If a CUDA stream is given, then the transfer will be made asynchronously as part as the given stream.
Otherwise, the transfer is synchronous: the function returns after the copy is finished.

Always returns the host array.

Example:

import numpy as np
from numba import cuda

arr = np.arange(1000)
d_arr = cuda.to_device(arr)

my_kernel[100, 100](d_arr)

(continues on next page)
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(continued from previous page)

result_array = d_arr.copy_to_host()

split (section, stream=0)

Split the array into equal partition of the section size. If the array cannot be equally divided, the last section

will be smaller.

4.4 Libdevice functions

All wrapped libdevice functions are listed in this section. All functions in libdevice are wrapped, with the exception
of __nv_nan and __nv_nanf. These functions return a representation of a quiet NaN, but the argument they take (a
pointer to an object specifying the representation) is undocumented, and follows an unusual form compared to the rest
of libdevice - it is not an output like every other pointer argument. If a NaN is required, one can be obtained in CUDA

Python by other means, e.g. math.nan.

4.4.1 Wrapped functions

numba.cuda.libdevice.abs(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_abs.html

Parameters x (int32) — Argument.
Return type int32

numba.cuda.libdevice.acos(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acos.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.acosf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acosf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.acosh(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acosh.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.acoshf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acoshf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.asin(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asin.html

Parameters x (float64)— Argument.

Return type float64
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numba.cuda.libdevice.asinf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.asinh(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinh.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.asinhf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinhf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.atan(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.atan2(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan2.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.atan2f(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan2f.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.atanf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanf.html

Parameters x (float32)— Argument.
Return type float32
numba.cuda.libdevice.atanh(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanh.html

Parameters x (float64)— Argument.
Return type float64
numba.cuda.libdevice.atanhf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanhf.html

Parameters x (float32)— Argument.
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Return type float32

numba.cuda.libdevice.brev(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_brev.html

Parameters x (int32) — Argument.
Return type int32

numba.cuda.libdevice.brevll (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_brevll.html

Parameters x (int64)— Argument.
Return type int64

numba.cuda.libdevice.byte_perm(x, y, z)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_byte_perm.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
* Z (int32) — Argument.
Return type int32

numba.cuda.libdevice.cbrt(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cbrt.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.cbrtf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cbrtf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.ceil (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ceil.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.ceilf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ceilf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.clz(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_clz.html

Parameters x (int32) — Argument.
Return type int32

numba.cuda.libdevice.clzll (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_clzll.html

Parameters x (int64)— Argument.
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Return type int32

numba.cuda.libdevice.copysign(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_copysign.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.copysignf(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_copysignf.html

Parameters
* x (float32) — Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.cos(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cos.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.cosf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cosf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.cosh(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cosh.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.coshf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_coshf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.cospi(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cospi.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.cospif(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cospif.html

Parameters x (float32)— Argument.
Return type float32
numba.cuda.libdevice.dadd_rd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rd.html
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Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.dadd_rn(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rn.html

Parameters
* X (float64) — Argument.
* y (float64) — Argument.
Return type float64

numba.cuda.libdevice.dadd_ru(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_ru.html

Parameters
* x (float64)— Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.dadd_rz(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rz.html

Parameters
* x (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.ddiv_rd(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rd.html

Parameters
* x (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.ddiv_rn(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rn.html

Parameters
* x (float64)— Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.ddiv_ru(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_ru.html

Parameters

* X (float64) — Argument.
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* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.ddiv_rz(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rz.html

Parameters
* X (float64) — Argument.
* y(float64)— Argument.
Return type float64
numba.cuda.libdevice.dmul_rd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rd.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.dmul_rn(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rn.html

Parameters
* x (float64)— Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.dmul_ru(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_ru.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.dmul_rz(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rz.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type float64
numba.cuda.libdevice.double2float_rd(d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rd.html

Parameters d (float64)— Argument.
Return type float32

numba.cuda.libdevice.double2float_rn(d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rn.html
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Parameters d (float64)— Argument.
Return type float32

numba.cuda.libdevice.double2float_ru(d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_ru.html

Parameters d (float64)— Argument.
Return type float32

numba.cuda.libdevice.double2float_rz(d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rz.html

Parameters d (float64)— Argument.
Return type float32

numba.cuda.libdevice.double2hiint (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2hiint.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2int_rd(d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rd.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2int_rn(d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rn.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2int_ru(d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_ru.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2int_rz(d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rz.html

Parameters d (float64)— Argument.
Return type int32
numba.cuda.libdevice.double2ll_rd(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_rd.html

Parameters f (float64)— Argument.
Return type int64
numba.cuda.libdevice.double2ll_rn(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_rn.html

Parameters f (float64)— Argument.
Return type int64
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numba.cuda.libdevice.double2ll_ru(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_ru.html

Parameters f (float64)— Argument.
Return type int64

numba.cuda.libdevice.double2ll_rz(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_rz.html

Parameters f (float64)— Argument.
Return type int64

numba.cuda.libdevice.double2loint (d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2loint.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2uint_rd(d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rd.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2uint_rn(d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rn.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2uint_ru(d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_ru.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2uint_rz(d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rz.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2ull_rd(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rd.html

Parameters f (float64)— Argument.
Return type int64

numba.cuda.libdevice.double2ull_rn(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rn.html

Parameters f (float64)— Argument.
Return type int64

numba.cuda.libdevice.double2ull_ru(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_ru.html

Parameters f (float64)— Argument.
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Return type int64

numba.cuda.libdevice.double2ull_rz(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rz.html

Parameters f (float64)— Argument.
Return type int64

numba.cuda.libdevice.double_as_longlong(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double_as_longlong.html

Parameters x (float64)— Argument.
Return type int64

numba.cuda.libdevice.drcp_rd(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rd.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.drcp_rn(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rn.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.drcp_ru(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_ru.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.drcp_rz(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rz.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.dsqrt_rd(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rd.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.dsqrt_rn(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rn.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.dsqrt_ru(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_ru.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.dsqrt_rz(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rz.html
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Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erf.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfc(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfc.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfcf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.erfcinv(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcinv.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfcinvf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcinvf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.erfcx(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcx.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfcxf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcxf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.erff(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erff.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.erfinv(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfinv.html

Parameters x (float64)— Argument.

Return type float64
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numba.cuda.libdevice.erfinvf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfinvf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.exp(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.expl®(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp10.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.expl®f(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp10f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.exp2(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp2.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.exp2f(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp2f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.expf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.expml (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expm1.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.expmlf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expm1f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fabs(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fabs.html

Parameters f (float64)— Argument.
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Return type float64
numba.cuda.libdevice. fabsf(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fabsf.html

Parameters f (float32)— Argument.
Return type float32
numba.cuda.libdevice.fadd_rd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rd.html

Parameters
* X (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.fadd_rn(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rn.html

Parameters
* x (float32) — Argument.
* y (float32) — Argument.
Return type float32

numba.cuda.libdevice. fadd_ru(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_ru.html

Parameters
* x (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.fadd_rz(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rz.html

Parameters
* X (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.fast_cosf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_cosf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fast_expl®£f(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_exp10f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fast_expf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_expf.html
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Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fast_fdividef(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_fdividef.html

Parameters
* x (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fast_logl1®£f(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_log10f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fast_log2f(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_log2f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fast_logf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_logf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fast_powf (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_powf.html

Parameters
* X (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.fast_sincosf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_sincosf.html

Parameters x (float32)— Argument.
Return type UniTuple(float32 x 2)

numba.cuda.libdevice. fast_sinf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_sinf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fast_tanf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_tanf.html

Parameters x (float32)— Argument.

Return type float32
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numba.cuda.libdevice.fdim(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdim.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice. fdimf(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdimf.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fdiv_rd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rd.html

Parameters
* x (float32) — Argument.
* y (float32) — Argument.
Return type float32

numba.cuda.libdevice.fdiv_rn(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rn.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fdiv_ru(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_ru.html

Parameters
* X (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.fdiv_rz(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rz.html

Parameters
* X (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.ffs(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ffs.html
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Parameters x (int32) — Argument.
Return type int32

numba.cuda.libdevice.ffsll (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_{Tsll.html

Parameters x (int64)— Argument.
Return type int32

numba.cuda.libdevice.finitef (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_finitef.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice. float2half_rn(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2half rn.html

Parameters f (float32)-— Argument.
Return type intl6

numba.cuda.libdevice.float2int_rd(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rd.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice.float2int_rn(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rn.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice.float2int_ru(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_ru.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice.float2int_rz(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rz.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice. float21ll_rd(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float21l_rd.html

Parameters f (float32)- Argument.
Return type int64

numba.cuda.libdevice.float21ll_rn(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float21l_rn.html

Parameters f (float32)- Argument.
Return type int64
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numba.cuda.libdevice.float21ll_ru(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float21l_ru.html

Parameters f (float32)-— Argument.
Return type int64
numba.cuda.libdevice.float2ll_rz(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_rz.html

Parameters f (float32)— Argument.
Return type int64

numba.cuda.libdevice. float2uint_rd(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rd.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice. float2uint_rn(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rn.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice. float2uint_ru(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_ru.html

Parameters in (float32) — Argument.
Return type int32

numba.cuda.libdevice. float2uint_rz(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rz.html

Parameters in (float32)— Argument.
Return type int32
numba.cuda.libdevice.float2ull_rd(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rd.html

Parameters f (float32)-— Argument.
Return type int64
numba.cuda.libdevice.float2ull_rn(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rn.html

Parameters f (float32)-— Argument.
Return type int64
numba.cuda.libdevice.float2ull_ru(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_ru.html

Parameters f (float32)-— Argument.
Return type int64
numba.cuda.libdevice.float2ull_rz(f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rz.html

Parameters f (float32)-— Argument.
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Return type int64

numba.cuda.libdevice.float_as_int(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float_as_int.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice. floor(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_floor.html

Parameters f (float64)— Argument.
Return type float64

numba.cuda.libdevice. floorf(f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_floorf.html

Parameters f (float32)-— Argument.
Return type float32

numba.cuda.libdevice. fma(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
* z (float64) — Argument.
Return type float64

numba.cuda.libdevice. fma_rd(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rd.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
* z (float64) — Argument.
Return type float64

numba.cuda.libdevice. fma_rn(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rn.html

Parameters
* X (float64) — Argument.
* y (float64) — Argument.
* z (float64) — Argument.
Return type float64

numba.cuda.libdevice. fma_ru(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_ru.html

Parameters

* X (float64) — Argument.
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* y(float64) — Argument.
* z (float64) — Argument.
Return type float64

numba.cuda.libdevice. fma_rz(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rz.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
* z (float64) — Argument.
Return type float64

numba.cuda.libdevice. fmaf(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf.html

Parameters
* X (float32) — Argument.
* y(float32) — Argument.
* z (float32) — Argument.
Return type float32

numba.cuda.libdevice.fmaf_rd(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf rd.html

Parameters
* X (float32) — Argument.
* y(float32) — Argument.
* z (float32)— Argument.
Return type float32

numba.cuda.libdevice. fmaf rn(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf_rn.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
* z (float32) — Argument.
Return type float32

numba.cuda.libdevice. fmaf ru(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf_ru.html

Parameters
* X (float32) — Argument.
* y (float32) — Argument.
* z (float32) — Argument.
Return type float32
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numba.cuda.libdevice.fmaf rz(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf rz.html

Parameters
* x (float32)— Argument.
* y (float32) — Argument.
* z (float32) — Argument.
Return type float32

numba.cuda.libdevice. fmax(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmax.html

Parameters
* x (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice. fmaxf (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaxf.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fmin(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmin.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice. fminf(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fminf.html

Parameters
* x (float32) — Argument.
* y (float32) — Argument.
Return type float32

numba.cuda.libdevice. fmod(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmod.html

Parameters
* X (float64) — Argument.
* y (float64) — Argument.
Return type float64
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numba.cuda.libdevice. fmodf (x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmodf.html

Parameters
* X (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fmul_rd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rd.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fmul_rn(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rn.html

Parameters
* X (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fmul_ru(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_ru.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fmul_rz(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rz.html

Parameters
* X (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. frcp_rd(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rd.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. frcp_rn(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rn.html

Parameters x (float32)— Argument.

Return type float32
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numba.cuda.libdevice. frcp_ru(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_ru.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. frcp_rz(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rz.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. frexp(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frexp.html

Parameters x (float64)— Argument.
Return type Tuple(float64, int32)

numba.cuda.libdevice. frexpf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frexpf.html

Parameters x (float32)— Argument.
Return type Tuple(float32, int32)

numba.cuda.libdevice. frsqrt_rn(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frsqrt_rn.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fsqrt_rd(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rd.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fsqrt_rn(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rn.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fsqrt_ru(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_ru.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fsqrt_rz(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rz.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fsub_rd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rd.html

Parameters
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* X (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fsub_rn(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rn.html

Parameters
* x (float32) — Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice. fsub_ru(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_ru.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice. fsub_rz(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rz.html

Parameters
* x (float32)— Argument.
* y (float32) — Argument.
Return type float32
numba.cuda.libdevice.hadd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hadd.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32
numba.cuda.libdevice.half2float (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_half2float.html

Parameters h (int16)— Argument.
Return type float32

numba.cuda.libdevice.hiloint2double(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hiloint2double.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type float64
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numba.cuda.libdevice.hypot (x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hypot.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type float64
numba.cuda.libdevice.hypotf(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hypotf.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.ilogb(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ilogb.html

Parameters x (float64)— Argument.
Return type int32

numba.cuda.libdevice.ilogbf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ilogbf.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice.int2double_rn(i)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2double_rn.html

Parameters i (int32) — Argument.
Return type float64

numba.cuda.libdevice.int2float_rd(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rd.html

Parameters in (int32) - Argument.
Return type float32

numba.cuda.libdevice.int2float_rn(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rn.html

Parameters in (int32)— Argument.
Return type float32

numba.cuda.libdevice.int2float_ru(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_ru.html

Parameters in (int32) - Argument.
Return type float32

numba.cuda.libdevice.int2float_rz(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rz.html

Parameters in (int32) - Argument.
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Return type float32

numba.cuda.libdevice.int_as_float(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int_as_float.html

Parameters x (int32) — Argument.
Return type float32

numba.cuda.libdevice.isfinited (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isfinited.html

Parameters x (float64)— Argument.
Return type int32

numba.cuda.libdevice.isinfd (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isinfd.html

Parameters x (float64)— Argument.
Return type int32

numba.cuda.libdevice.isinff (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isinff.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice.isnand (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isnand.html

Parameters x (float64)— Argument.
Return type int32

numba.cuda.libdevice.isnanf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isnanf.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice.jO(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j0.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.jO£f(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jOf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.j1l(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jl.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.jlf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j1f.html

4.4. Libdevice functions

257


https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int_as_float.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isfinited.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isinfd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isinff.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isnand.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isnanf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j0.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j0f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j1.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j1f.html

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. jn(n, x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jn.html

Parameters

* n (int32) — Argument.

* X (float64) — Argument.
Return type float64

numba.cuda.libdevice. jnf(n, x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jnf.html

Parameters

* n (int32) — Argument.

* x (float32) — Argument.
Return type float32

numba.cuda.libdevice.ldexp(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_Ildexp.html

Parameters
* x (float64)— Argument.
* y (int32) — Argument.
Return type float64

numba.cuda.libdevice.ldexpf (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_Idexpf.html

Parameters
* X (float32) — Argument.
* y (int32) — Argument.
Return type float32

numba.cuda.libdevice.lgamma(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_Igamma.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.lgammaf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_Igammaf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.ll2double_rd (/)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_I112double_rd.html

Parameters 1 (int64)— Argument.

Return type float64
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numba.cuda.libdevice.ll2double_rn(l)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_l112double_rn.html

Parameters 1 (int64)— Argument.
Return type float64

numba.cuda.libdevice.ll2double_ru(l)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_l12double_ru.html

Parameters 1 (int64)— Argument.
Return type float64

numba.cuda.libdevice.ll2double_rz (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_l112double_rz.html

Parameters 1 (int64) — Argument.
Return type float64
numba.cuda.libdevice.ll2float_rd (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_I112float_rd.html

Parameters 1 (int64) — Argument.
Return type float32
numba.cuda.libdevice.ll2float_rn(/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_I112float_rn.html

Parameters 1 (int64)— Argument.
Return type float32
numba.cuda.libdevice.ll2float_ru(l)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_l112float_ru.html

Parameters 1 (int64)— Argument.
Return type float32
numba.cuda.libdevice.ll2float_rz(l)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_I12float_rz.html

Parameters 1 (int64)— Argument.
Return type float32

numba.cuda.libdevice.llabs(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_Ilabs.html

Parameters x (int64)— Argument.
Return type int64

numba.cuda.libdevice.llmax(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_Ilmax.html

Parameters
* X (int64) — Argument.
* y (int64) — Argument.
Return type int64
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numba.cuda.libdevice.llmin(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_IImin.html

Parameters
* X (int64) — Argument.
* y (int64) — Argument.
Return type int64

numba.cuda.libdevice.llrint (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_lIrint.html

Parameters x (float64)— Argument.
Return type int64

numba.cuda.libdevice.llrintf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llrintf.html

Parameters x (float32)— Argument.
Return type int64

numba.cuda.libdevice.llround(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llround.html

Parameters x (float64)— Argument.
Return type int64

numba.cuda.libdevice.llroundf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llroundf.html

Parameters x (float32)— Argument.
Return type int64

numba.cuda.libdevice.log(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.logl®(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log10.html

Parameters x (float64)— Argument.
Return type float64
numba.cuda.libdevice.logl®£f(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log10f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.loglp(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_loglp.html

Parameters x (float64)— Argument.

Return type float64
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numba.cuda.libdevice.loglpf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log1pf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.log2(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log2.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.log2f(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log2f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.logb(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logb.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.logbf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logbf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.logf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.longlong_as_double(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_longlong_as_double.html

Parameters x (int64)— Argument.
Return type float64

numba.cuda.libdevice.max(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_max.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.min(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_min.html

Parameters
* X (int32) — Argument.

* y (int32) — Argument.

4.4. Libdevice functions 261


https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log1pf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log2.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log2f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logb.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logbf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_longlong_as_double.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_max.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_min.html

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

Return type int32

numba.cuda.libdevice.modf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_modf.html

Parameters x (float64)— Argument.
Return type UniTuple(float64 x 2)

numba.cuda.libdevice.modff (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_modff.html

Parameters x (float32)— Argument.
Return type UniTuple(float32 x 2)

numba.cuda.libdevice.mul24(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mul24.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.mul64hi (x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mul64hi.html

Parameters
* X (int64) — Argument.
* y (int64) — Argument.
Return type int64

numba.cuda.libdevice.mulhi (x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mulhi.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.nearbyint (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nearbyint.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.nearbyintf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nearbyintf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.nextafter(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nextafter.html

Parameters

* X (float64) — Argument.
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* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.nextafterf(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nextafterf.html

Parameters
* x (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.normcdf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdf.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.normcdff (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdff.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.normcdfinv (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdfinv.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.normcdfinvf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdfinvf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.popc(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_popc.html

Parameters x (int32) — Argument.
Return type int32

numba.cuda.libdevice.popcll(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_popcll.html

Parameters x (int64)— Argument.
Return type int32

numba.cuda.libdevice.pow(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_pow.html

Parameters
* x (float64) — Argument.
* y(float64) — Argument.
Return type float64
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numba.cuda.libdevice.powf (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powf.html

Parameters
* X (float32)— Argument.
* y(float32) — Argument.
Return type float32

numba.cuda.libdevice.powi (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powi.html

Parameters
* X (float64) — Argument.
* y (int32) — Argument.
Return type float64

numba.cuda.libdevice.powif (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powif.html

Parameters
* x (float32)— Argument.
* y (int32) — Argument.
Return type float32

numba.cuda.libdevice.rcbrt(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rcbrt.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.rcbrtf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rcbrtf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.remainder(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remainder.html

Parameters
* x (float64) — Argument.
* y(float64) — Argument.
Return type float64

numba.cuda.libdevice.remainderf(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remainderf.html

Parameters
* x (float32) — Argument.
* y(float32) — Argument.
Return type float32
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numba.cuda.libdevice.remquo(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remquo.html

Parameters
* X (float64) — Argument.
* y(float64) — Argument.
Return type Tuple(float64, int32)

numba.cuda.libdevice.remquof (x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remquof.html

Parameters
* X (float32) — Argument.
* y(float32) — Argument.
Return type Tuple(float32, int32)

numba.cuda.libdevice.rhadd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rhadd.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.rint (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rint.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.rintf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rintf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.round(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_round.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.roundf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_roundf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.rsqrt(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rsqrt.html

Parameters x (float64)— Argument.

Return type float64
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numba.cuda.libdevice.rsqrtf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rsqrtf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.sad(x,y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sad.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
* z (int32) — Argument.
Return type int32

numba.cuda.libdevice.saturatef(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_saturatef.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.scalbn(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_scalbn.html

Parameters
* x (float64) — Argument.
* y (int32) — Argument.
Return type float64

numba.cuda.libdevice.scalbnf(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_scalbnf.html

Parameters
* x (float32) — Argument.
* y (int32) — Argument.
Return type float32

numba.cuda.libdevice.signbitd(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_signbitd.html

Parameters x (float64)— Argument.
Return type int32

numba.cuda.libdevice.signbitf(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_signbitf.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice.sin(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sin.html

Parameters x (float64)— Argument.

Return type float64
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numba.cuda.libdevice.sincos (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sincos.html

Parameters x (float64)— Argument.
Return type UniTuple(float64 x 2)

numba.cuda.libdevice.sincosf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sincosf.html

Parameters x (float32)— Argument.
Return type UniTuple(float32 x 2)

numba.cuda.libdevice.sincospi (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sincospi.html

Parameters x (float64)— Argument.
Return type UniTuple(float64 x 2)

numba.cuda.libdevice.sincospif(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sincospif.html

Parameters x (float32)— Argument.
Return type UniTuple(float32 x 2)

numba.cuda.libdevice.sinf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sinf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.sinh(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sinh.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.sinhf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sinhf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.sinpi(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sinpi.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.sinpif(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sinpif.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.sqrt(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sqrt.html

Parameters x (float64)— Argument.
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Return type float64

numba.cuda.libdevice.sqrtf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sqrtf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.tan(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_tan.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.tanf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_tanf.html

Parameters x (float32)— Argument.
Return type float32
numba.cuda.libdevice.tanh(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_tanh.html

Parameters x (float64)— Argument.
Return type float64
numba.cuda.libdevice.tanhf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_tanhf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.tgamma (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_tgamma.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.tgammaf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_tgammaf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.trunc(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_trunc.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.truncf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_truncf.html

Parameters x (float32)— Argument.
Return type float32
numba.cuda.libdevice.uhadd(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_uhadd.html
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Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.uint2double_rn(i)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_uint2double_rn.html

Parameters i (int32) — Argument.
Return type float64

numba.cuda.libdevice.uint2float_rd(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_uint2float_rd.html

Parameters in (int32) - Argument.
Return type float32

numba.cuda.libdevice.uint2float_rn(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_uint2float_rn.html

Parameters in (int32) - Argument.
Return type float32

numba.cuda.libdevice.uint2float_ru(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_uint2float_ru.html

Parameters in (int32) - Argument.
Return type float32

numba.cuda.libdevice.uint2float_rz(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_uint2float_rz.html

Parameters in (int32) - Argument.
Return type float32

numba.cuda.libdevice.ull2double_rd (/)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ull2double_rd.html

Parameters 1 (int64)— Argument.
Return type float64

numba.cuda.libdevice.ull2double_rn(l)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ull2double_rn.html

Parameters 1 (int64)— Argument.
Return type float64

numba.cuda.libdevice.ull2double_ru(l)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ull2double_ru.html

Parameters 1 (int64)— Argument.
Return type float64

numba.cuda.libdevice.ull2double_rz (/)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ull2double_rz.html

Parameters 1 (int64)— Argument.
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Return type float64
numba.cuda.libdevice.ull2float_rd (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ull2float_rd.html

Parameters 1 (int64)— Argument.
Return type float32

numba.cuda.libdevice.ull2float_rn(l)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ull2float_rn.html

Parameters 1 (int64)— Argument.
Return type float32

numba.cuda.libdevice.ull2float_ru(l)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ull2float_ru.html

Parameters 1 (int64) — Argument.
Return type float32

numba.cuda.libdevice.ull2float_rz (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ull2float_rz.html

Parameters 1 (int64)— Argument.
Return type float32

numba.cuda.libdevice.ullmax(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ullmax.html

Parameters
* X (int64) — Argument.
* y (int64) — Argument.
Return type int64

numba.cuda.libdevice.ullmin(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ullmin.html

Parameters
* X (int64) — Argument.
* y (int64) — Argument.
Return type int64

numba.cuda.libdevice.umax(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_umax.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.umin(x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_umin.html

Parameters

* X (int32) — Argument.
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* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.umul24(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_umul24.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.umul64hi (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_umul64hi.html

Parameters
* X (int64) — Argument.
* y (int64) — Argument.
Return type int64

numba.cuda.libdevice.umulhi (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_umulhi.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.urhadd(x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_urhadd.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.usad(x, y, z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_usad.html

Parameters
* X (int32) — Argument.
* y (int32) — Argument.
* z (int32) — Argument.
Return type int32

numba.cuda.libdevice.y®(x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_y0.html

Parameters x (float64)— Argument.

Return type float64

4.4. Libdevice functions 271


https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_umul24.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_umul64hi.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_umulhi.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_urhadd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_usad.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_y0.html

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

numba.cuda.libdevice.y®£f(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/___nv_yOf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.yl(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_y1.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.ylf(x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_y1f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.yn(n, x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_yn.html

Parameters

* n (int32) — Argument.

* X (float64)— Argument.
Return type float64

numba.cuda.libdevice.ynf(n, x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ynf.html

Parameters

* n (int32)— Argument.

* x (float32)— Argument.
Return type float32
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CHAPTER
FIVE

EXTENDING NUMBA

This chapter describes how to extend Numba to make it recognize and support additional operations, functions or types.
Numba provides two categories of APISs to this end:

* The high-level APIs provide abstracted entry points which are sufficient for simple uses. They require little
knowledge of Numba’s internal compilation chain.

* The low-level APIs reflect Numba’s internal compilation chain and allow flexible interaction with its various
layers, but require more effort and experience with Numba internals.

It may be helpful for readers of this chapter to also read some of the documents in the developer manual, especially the
architecture document.

5.1 High-level extension API

This extension API is exposed through the numba. extending module.

5.1.1 Implementing functions

The @overload decorator allows you to implement arbitrary functions for use in nopython mode functions. The func-
tion decorated with @overload is called at compile-time with the fypes of the function’s runtime arguments. It should
return a callable representing the implementation of the function for the given types. The returned implementation is
compiled by Numba as if it were a normal function decorated with @jit. Additional options to @jit can be passed as
dictionary using the jit_options argument.

For example, let’s pretend Numba doesn’t support the Len () function on tuples yet. Here is how to implement it using
@overload:

from numba import types
from numba.extending import overload

@overload(len)
def tuple_len(seq):
if isinstance(seq, types.BaseTuple):
n = len(seq)
def len_impl(seq):
return n
return len_impl

You might wonder, what happens if 1len() is called with something else than a tuple? If a function decorated with
@overload doesn’t return anything (i.e. returns None), other definitions are tried until one succeeds. Therefore,
multiple libraries may overload 1len() for different types without conflicting with each other.
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5.1.2 Implementing methods

The @overload_method decorator similarly allows implementing a method on a type well-known to Numba.

numba.core.extending.overload_method (#yp, attr, **kwargs)
A decorator marking the decorated function as typing and implementing method attr for the given Numba type
in nopython mode.

kwargs are passed to the underlying @overload call.

Here is an example implementing .take() for array types:

@overload_method(types.Array, 'take')
def array_take(arr, indices):
if isinstance(indices, types.Array):
def take_impl(arr, indices):
n = indices.shape[0]
res = np.empty(n, arr.dtype)
for i in range(n):
res[i] = arr[indices[i]]
return res
return take_impl

5.1.3 Implementing classmethods
The @overload_classmethod decorator similarly allows implementing a classmethod on a type well-known to
Numba.

numba.core.extending.overload_classmethod(#yp, attr, **kwargs)
A decorator marking the decorated function as typing and implementing classmethod aztr for the given Numba
type in nopython mode.

Similar to overload_method.

Here is an example implementing a classmethod on the Array type to call np.arange():

@overload_classmethod(types.Array, "make')
def ov_make(cls, nitems):
def impl(cls, nitems):
return np.arange(nitems)
return impl

The above code will allow the following to work in jit-compiled code:

Gnjit
def foo(n):
return types.Array.make(n)
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5.1.4 Implementing attributes

The @overload_attribute decorator allows implementing a data attribute (or property) on a type. Only reading the
attribute is possible; writable attributes are only supported through the low-level API.

The following example implements the nbytes attribute on Numpy arrays:

@overload_attribute(types.Array, 'nbytes')
def array_nbytes(arr):
def get(arr):
return arr.size * arr.itemsize
return get

5.1.5 Importing Cython Functions

The function get_cython_function_address obtains the address of a C function in a Cython extension module.
The address can be used to access the C function via a ctypes.CFUNCTYPE() callback, thus allowing use of the C
function inside a Numba jitted function. For example, suppose that you have the file foo.pyx:

from libc.math cimport exp

cdef api double myexp(double x):
return exp(x)

You can access myexp from Numba in the following way:

import ctypes
from numba.extending import get_cython_function_address

addr = get_cython_function_address("foo", "myexp")
functype = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
myexp = functype(addr)

The function myexp can now be used inside jitted functions, for example:

OGnjit
def double_myexp(x):
return 2*myexp(x)

One caveat is that if your function uses Cython’s fused types, then the function’s name will be mangled. To find out
the mangled name of your function you can check the extension module’s __pyx_capi__ attribute.

5.1.6 Implementing intrinsics

The @intrinsic decorator is used for marking a function func as typing and implementing the function in nopython
mode using the llvmlite IRBuilder API. This is an escape hatch for expert users to build custom LLVM IR that will be
inlined into the caller, there is no safety net!

The first argument to func is the typing context. The rest of the arguments corresponds to the type of arguments of the
decorated function. These arguments are also used as the formal argument of the decorated function. If func has the
signature foo(typing_context, arg®, argl), the decorated function will have the signature foo(arg®, argl).

The return values of func should be a 2-tuple of expected type signature, and a code-generation function that will passed
to lower_builtin(). For an unsupported operation, return None.
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Here is an example that cast any integer to a byte pointer:

from numba import types
from numba.extending import intrinsic

@intrinsic
def cast_int_to_byte_ptr(typingctx, src):
# check for accepted types
if isinstance(src, types.Integer):
# create the expected type signature
result_type = types.CPointer(types.uint8)
sig = result_type(types.uintp)
# defines the custom code generation
def codegen(context, builder, signature, args):
# 11vm IRBuilder code here
[src] = args
rtype = signature.return_type
llrtype = context.get_value_type(rtype)
return builder.inttoptr(src, llrtype)
return sig, codegen

it may be used as follows:

from numba import njit
@Gnjit('void(int64)")
def foo(x):

y = cast_int_to_byte_ptr(x)

foo.inspect_types()

and the output of .inspect_types() demonstrates the cast (note the uint8%*):

def foo(x):
# x = arg(0®, name=x) :: int64
# $0.1 = global(cast_int_to_byte_ptr: <intrinsic cast_int_to_byte_ptr>) ::.

—Function(<intrinsic cast_int_to_byte_ptr>)
# $0.3 = call $0.1(x, func=$0.1, args=[Var(x, check_intrin.py (24))], kws=(),.
—vararg=None) :: (uint64,) -> uint8*
# del x
del $0.1
y = $0.3 :: uint8*
del y
del $0.3
$const0.4 = const(NoneType, None) :: none
$0.5 = cast(value=$const0.4) :: none
del $const0.4
return $0.5

HFHoFH R W W W R R

y = cast_int_to_byte_ptr(x)
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5.1.7 Implementing mutable structures

Warning: This is an experimental feature, the API may change without warning.

The numba . experimental . structref module provides utilities for defining mutable pass-by-reference structures,
a StructRef. The following example demonstrates how to define a basic mutable structure:

Defining a StructRef

Listing 1: from numba/tests/doc_examples/
test_structref_usage.py

import numpy as np

from numba import njit
from numba.core import types
from numba.experimental import structref

from numba.tests.support import skip_unless_scipy

# Define a StructRef.
# “structref.register’ associates the type with the default data model.
# This will also install getters and setters to the fields of
# the StructRef.
@structref.register
class MyStructType(types.StructRef):
def preprocess_fields(self, fields):
# This method is called by the type constructor for additional
# preprocessing on the fields.
# Here, we don't want the struct to take Literal types.
return tuple((name, types.unliteral(typ)) for name, typ in fields)

# Define a Python type that can be use as a proxy to the StructRef
# allocated inside Numba. Users can construct the StructRef via
# the constructor for this type in python code and jit-code.
class MyStruct(structref.StructRefProxy):
def __new__(cls, name, vector):
# Overriding the __new__ method is optional, doing so
# allows Python code to use keyword arguments,
# or add other customized behavior.
# The default __new__ takes "*args’.

# IMPORTANT: Users should not override __init__.
return structref.StructRefProxy.__new__(cls, name, vector)

# By default, the proxy type does not reflect the attributes or
# methods to the Python side. It is up to users to define
# these. (This may be automated in the future.)

(continues on next page)

5.1. High-level extension API 277




39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

63

64

65

66

67

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

(continued from previous page)

@property

def name(self):
# To access a field, we can define a function that simply
# return the field in jit-code.
# The definition of MyStruct_get_name is shown later.
return MyStruct_get_name(self)

@property

def vector(self):
# The definition of MyStruct_get_vector is shown later.
return MyStruct_get_vector(self)

@Gnjit

def MyStruct_get_name(self):
# In jit-code, the StructRef's attribute is exposed via
# structref.register
return self.name

@Gnjit
def MyStruct_get_vector(self):
return self.vector

# This associates the proxy with MyStructType for the given set of
# fields. Notice how we are not contraining the type of each field.
# Field types remain generic.

structref.define_proxy(MyStruct, MyStructType, ['name", "vector"])

The following demonstrates using the above mutable struct definition:

Listing 2: from test_type_definition of numba/tests/
doc_examples/test_structref_usage.py

# Let's test our new StructRef.

# Define one in Python
alice = MyStruct("Alice", vector=np.random.random(3))

# Define one in jit-code

@Gnjit

def make_bob():
bob = MyStruct("unnamed", vector=np.zeros(3))
# Mutate the attributes

bob.name = "Bob"
bob.vector = np.random.random(3)
return bob

bob = make_bob()

# Out: Alice: [0.5488135 0.71518937 0.60276338]

(continues on next page)
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(continued from previous page)

print(f"{alice.name}: {alice.vector}")
# Out: Bob: [0.88325739 0.73527629 0.87746707]
print(f" {bob.name}: {bob.vector}")

# Define a jit function to operate on the structs.
@njit
def distance(a, b):

return np.linalg.norm(a.vector - b.vector)

# Out: 0.4332647200356598
print(distance(alice, bob))

Defining a method on StructRef

Methods and attributes can be attached using @overload_* as shown in the previous sections.

The following demonstrates the use of @overload_method to insert a method for instances of MyStructType:

Listing 3: from test_overload_method of numba/tests/
doc_examples/test_structref_usage.py

from numba.core.extending import overload_method
from numba.core.errors import TypingError

# Use @overload_method to add a method for
# MyStructType.distance(other)
# where *other* is an instance of MyStructType.
@overload_method (MyStructType, "distance™)
def ol_distance(self, other):
# Guard that *other* is an instance of MyStructType
if not isinstance(other, MyStructType):
raise TypingError(
f"*other* must be a {MyStructType}; got {other}"
)

def impl(self, other):
return np.linalg.norm(self.vector - other.vector)

return impl

# Test
@Gnjit
def test(Q):
alice = MyStruct("Alice", vector=np.random.random(3))
bob = MyStruct("Bob", vector=np.random.random(3))
# Use the method
return alice.distance(bob)
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numba.experimental.structref APl Reference

Utilities for defining a mutable struct.
A mutable struct is passed by reference; hence, structref (a reference to a struct).

class numba.experimental.structref.StructRefProxy(*args)
A PyObiject proxy to the Numba allocated structref data structure.

Notes

¢ Subclasses should not define __init__.

¢ Subclasses can override __new

numba.experimental.structref.define_attributes(struct_typeclass)
Define attributes on struct_typeclass.

Defines both setters and getters in jit-code.
This is called directly in register().

numba.experimental.structref.define_boxing(struct_type, obj_class)
Define the boxing & unboxing logic for struct_type to obj_class.

Defines both boxing and unboxing.
* boxing turns an instance of struct_type into a PyObject of obj_class
* unboxing turns an instance of 0bj_class into an instance of struct_type in jit-code.
Use this directly instead of define_proxy() when the user does not want any constructor to be defined.

numba.experimental.structref.define_constructor (py_class, struct_typeclass, fields)
Define the jit-code constructor for struct_typeclass using the Python type py_class and the required fields.

Use this instead of define_proxy() if the user does not want boxing logic defined.

numba.experimental.structref.define_proxy(py_class, struct_typeclass, fields)
Defines a PyObject proxy for a structref.

This makes py_class a valid constructor for creating a instance of struct_typeclass that contains the members as
defined by fields.

Parameters
py_class [type] The Python class for constructing an instance of struct_typeclass.
struct_typeclass [numba.core.types.Type] The structref type class to bind to.
fields [Sequence[str]] A sequence of field names.

Returns
None

numba.experimental.structref.register(struct_type)
Register a numba.core.types.StructRef for use in jit-code.

This defines the data-model for lowering an instance of struct_type. This defines attributes accessor and mutator
for an instance of struct_type.

Parameters

struct_type [type] A subclass of numba.core.types.StructRef.
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Returns

struct_type [type] Returns the input argument so this can act like a decorator.

Examples

class MyStruct(numba.core.types.StructRef):
# the simplest subclass can be empty

numba.experimental.structref.register(MyStruct)

5.1.8 Determining if a function is already wrapped by a jit family decorator

The following function is provided for this purpose.

extending.is_jitted()
Returns True if a function is wrapped by one of the Numba @jit decorators, for example: numba.jit, numba.njit

The purpose of this function is to provide a means to check if a function is already JIT decorated.

5.2 Low-level extension API

This extension API is available through the numba . extending module. It allows you to hook directly into the Numba
compilation chain. As such, it distinguished between several compilation phases:

e The typing phase deduces the types of variables in a compiled function by looking at the operations performed.

* The lowering phase converts high-level Python operations into low-level LLVM code. This phase exploits the
typing information derived by the typing phase.

* Boxing and unboxing convert Python objects into native values, and vice-versa. They occur at the boundaries of
calling a Numba function from the Python interpreter.

5.2.1 Typing

Type inference — or simply #yping — is the process of assigning Numba types to all values involved in a function, so as
to enable efficient code generation. Broadly speaking, typing comes in two flavours: typing plain Python values (e.g.
function arguments or global variables) and typing operations (or functions) on known value types.

@typeof_impl.register(cls)
Register the decorated function as typing Python values of class cls. The decorated function will be called with
the signature (val, c) where val is the Python value being typed and c is a context object.

@type_callable (func)
Register the decorated function as typing the callable func. func can be either an actual Python callable or a
string denoting a operation internally known to Numba (for example 'getitem'). The decorated function is
called with a single context argument and must return a typer function. The typer function should have the same
signature as the function being typed, and it is called with the Numba types of the function arguments; it should
return either the Numba type of the function’s return value, or None if inference failed.

as_numba_type.register(py_type, numba_type)
Register that the Python type py_type corresponds with the Numba type numba_type. This can be used to register
anew type or overwrite the existing default (e.g. to treat f1oat as numba.float32 instead of numba. float64).
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@as_numba_type.register
Register the decorated function as a type inference function used by as_numba_type when trying to infer the
Numba type of a Python type. The decorated function is called with a single py_type argument and returns either
a corresponding Numba type, or None if it cannot infer that py_type.

5.2.2 Lowering
The following decorators all take a type specification of some kind. A type specification is usually a type class (such
as types.Float) or a specific type instance (such as types.float64). Some values have a special meaning:

* types.Any matches any type; this allows doing your own dispatching inside the implementation

e types.VarArg(<some type>) matches any number of arguments of the given type; it can only appear as the
last type specification when describing a function’s arguments.

A context argument in the following APIs is a target context providing various utility methods for code generation (such
as creating a constant, converting from a type to another, looking up the implementation of a specific function, etc.).
A builder argument is a 11vmlite.ir.IRBuilder instance for the LLVM code being generated.

A signature is an object specifying the concrete type of an operation. The args attribute of the signature is a tuple of
the argument types. The return_type attribute of the signature is the type that the operation should return.

Note: Numba always reasons on Numba types, but the values being passed around during lowering are LLVM values:
they don’t hold the required type information, which is why Numba types are passed explicitly too.

LLVM has its own, very low-level type system: you can access the LLVM type of a value by looking up its .type
attribute.

Native operations

@lower_builtin(func, typespec, ...)
Register the decorated function as implementing the callable func for the arguments described by the given
Numba typespecs. As with type_callable(), func can be either an actual Python callable or a string denoting
a operation internally known to Numba (for example 'getitem').

The decorated function is called with four arguments (context, builder, sig, args). sig is the concrete
signature the callable is being invoked with. args is a tuple of the values of the arguments the callable is
being invoked with; each value in args corresponds to a type in sig.args. The function must return a value
compatible with the type sig.return_type.

@lower_getattr (typespec, name)
Register the decorated function as implementing the attribute name of the given rypespec. The decorated function
is called with four arguments (context, builder, typ, value). ryp is the concrete type the attribute is
being looked up on. value is the value the attribute is being looked up on.

@lower_getattr_generic(typespec)
Register the decorated function as a fallback for attribute lookup on a given typespec. Any attribute that does
not have a corresponding Ilower_getattr() declaration will go through lower_getattr_generic(). The
decorated function is called with five arguments (context, builder, typ, value, name). ryp and value
are as in lower_getattr (). name is the name of the attribute being looked up.

@lower_cast (fromspec, tospec)
Register the decorated function as converting from types described by fromspec to types described by tospec.
The decorated function is called with five arguments (context, builder, fromty, toty, value). fromty
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and foty are the concrete types being converted from and to, respectively. value is the value being converted. The
function must return a value compatible with the type toty.

Constants

@lower_constant (typespec)
Register the decorated function as implementing the creation of constants for the Numba typespec. The decorated
function is called with four arguments (context, builder, ty, pyval). fy is the concrete type to create
a constant for. pyval is the Python value to convert into a LLVM constant. The function must return a value
compatible with the type ty.

Boxing and unboxing

In these functions, c is a convenience object with several attributes:
* its context attribute is a target context as above
e its builder attribute isa 11lvmlite.ir.IRBuilder as above
* its pyapi attribute is an object giving access to a subset of the Python interpreter’s C API

An object, as opposed to a native value, is a PyObject * pointer. Such pointers can be produced or processed by the
methods in the pyapi object.

@box (typespec)
Register the decorated function as boxing values matching the typespec. The decorated function is called with
three arguments (typ, val, c). fyp is the concrete type being boxed. val is the value being boxed. The
function should return a Python object, or NULL to signal an error.

@unbox (typespec)
Register the decorated function as unboxing values matching the fypespec. The decorated function is called with
three arguments (typ, obj, c). fyp is the concrete type being unboxed. obj is the Python object (a PyObject
* pointer, in C terms) being unboxed. The function should return a NativeValue object giving the unboxing
result value and an optional error bit.

5.3 Example: an interval type

We will extend the Numba frontend to support a class that it does not currently support so as to allow:
* Passing an instance of the class to a Numba function
» Accessing attributes of the class in a Numba function
» Constructing and returning a new instance of the class from a Numba function

(all the above in nopython mode)

We will mix APIs from the high-level extension API and the low-level extension API, depending on what is available
for a given task.

The starting point for our example is the following pure Python class:

class Interval(object):

o

A half-open interval on the real number line.

o

(continues on next page)
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def __init__(self, lo, hi):
self.lo = lo
self.hi = hi

def __repr__(self):
return 'Interval (%f, )" % (self.lo, self.hi)

@property
def width(self):
return self.hi - self.lo

5.3.1 Extending the typing layer

Creating a new Numba type

As the Interval class is not known to Numba, we must create a new Numba type to represent instances of it. Numba
does not deal with Python types directly: it has its own type system that allows a different level of granularity as well
as various meta-information not available with regular Python types.

We first create a type class IntervalType and, since we don’t need the type to be parametric, we instantiate a single
type instance interval_type:

from numba import types
class IntervalType(types.Type):
def __init__(self):

super (IntervalType, self).__init__(name="Interval')

interval_type = IntervalType()

Type inference for Python values

In itself, creating a Numba type doesn’t do anything. We must teach Numba how to infer some Python values as
instances of that type. In this example, it is trivial: any instance of the Interval class should be treated as belonging
to the type interval_type:

from numba.extending import typeof_impl

@typeof_impl.register(Interval)
def typeof_index(val, c):
return interval_type

Function arguments and global values will thusly be recognized as belonging to interval_type whenever they are
instances of Interval.
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Type inference for Python annotations

While typeof is used to infer the Numba type of Python objects, as_numba_type is used to infer the Numba type of
Python types. For simple cases, we can simply register that the Python type Interval corresponds with the Numba
type interval_type:

from numba.extending import as_numba_type

as_numba_type.register(Interval, interval_type)

Note that as_numba_type is only used to infer types from type annotations at compile time. The typeof registry
above is used to infer the type of objects at runtime.

Type inference for operations

We want to be able to construct interval objects from Numba functions, so we must teach Numba to recognize the
two-argument Interval (1o, hi) constructor. The arguments should be floating-point numbers:

from numba.extending import type_callable

@type_callable(Interval)
def type_interval(context):
def typer(lo, hi):
if isinstance(lo, types.Float) and isinstance(hi, types.Float):
return interval_type
return typer

The type_callable () decorator specifies that the decorated function should be invoked when running type inference
for the given callable object (here the Interval class itself). The decorated function must simply return a typer function
that will be called with the argument types. The reason for this seemingly convoluted setup is for the typer function to
have exactly the same signature as the typed callable. This allows handling keyword arguments correctly.

The context argument received by the decorated function is useful in more sophisticated cases where computing the
callable’s return type requires resolving other types.

5.3.2 Extending the lowering layer

We have finished teaching Numba about our type inference additions. We must now teach Numba how to actually
generated code and data for the new operations.

Defining the data model for native intervals

As a general rule, nopython mode does not work on Python objects as they are generated by the CPython interpreter.
The representations used by the interpreter are far too inefficient for fast native code. Each type supported in nopython
mode therefore has to define a tailored native representation, also called a data model.

A common case of data model is an immutable struct-like data model, that is akin to a C struct. Our interval datatype
conveniently falls in that category, and here is a possible data model for it:

from numba.extending import models, register_model

@register_model (IntervalType)

(continues on next page)
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class IntervalModel (models.StructModel):
def __init__(self, dmm, fe_type):
members = [
('"lo', types.float64),
('hi', types.float64),

]
models.StructModel.__init__(self, dmm, fe_type, members)

This instructs Numba that values of type IntervalType (or any instance thereof) are represented as a structure of two
fields 1o and hi, each of them a double-precision floating-point number (types.float64).

Note: Mutable types need more sophisticated data models to be able to persist their values after modification. They
typically cannot be stored and passed on the stack or in registers like immutable types do.

Exposing data model attributes

We want the data model attributes 1o and hi to be exposed under the same names for use in Numba functions. Numba
provides a convenience function to do exactly that:

from numba.extending import make_attribute_wrapper

make_attribute_wrapper(IntervalType, 'lo', 'lo")
make_attribute_wrapper(IntervalType, 'hi', 'hi')

This will expose the attributes in read-only mode. As mentioned above, writable attributes don’t fit in this model.

Exposing a property

As the width property is computed rather than stored in the structure, we cannot simply expose it like we did for 1o
and hi. We have to re-implement it explicitly:

from numba.extending import overload_attribute

@overload_attribute(IntervalType, "width")
def get_width(interval):
def getter(interval):
return interval.hi - interval.lo
return getter

You might ask why we didn’t need to expose a type inference hook for this attribute? The answer is that
@overload_attribute is part of the high-level API: it combines type inference and code generation in a single
APL

286 Chapter 5. Extending Numba




Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

Implementing the constructor

Now we want to implement the two-argument Interval constructor:

from numba.extending import lower_builtin
from numba.core import cgutils

@lower_builtin(Interval, types.Float, types.Float)
def impl_interval(context, builder, sig, args):
typ = sig.return_type
lo, hi = args
interval = cgutils.create_struct_proxy(typ) (context, builder)
interval.lo = lo
interval.hi = hi
return interval._getvalue()

There is a bit more going on here. @lower_builtin decorates the implementation of the given callable or operation
(here the Interval constructor) for some specific argument types. This allows defining type-specific implementations
of a given operation, which is important for heavily overloaded functions such as len().

types.Float is the class of all floating-point types (types.float64 is an instance of types.Float). It is generally
more future-proof to match argument types on their class rather than on specific instances (however, when returning a
type — chiefly during the type inference phase —, you must usually return a type instance).

cgutils.create_struct_proxy() and interval._getvalue() are a bit of boilerplate due to how Numba passes
values around. Values are passed as instances of 11vmlite.ir.Value, which can be too limited: LLVM structure
values especially are quite low-level. A struct proxy is a temporary wrapper around a LLVM structure value allowing
to easily get or set members of the structure. The _getvalue () call simply gets the LLVM value out of the wrapper.

Boxing and unboxing

If you try to use an Interval instance at this point, you’ll certainly get the error “cannot convert Interval to native
value”. This is because Numba doesn’t yet know how to make a native interval value from a Python Interval instance.
Let’s teach it how to do it:

from numba.extending import unbox, NativeValue

@unbox (IntervalType)
def unbox_interval(typ, obj, c):

o

Convert a Interval object to a native interval structure.

lo_obj = c.pyapi.object_getattr_string(obj, "lo")

hi_obj = c.pyapi.object_getattr_string(obj, "hi")

interval = cgutils.create_struct_proxy(typ) (c.context, c.builder)
interval.lo = c.pyapi.float_as_double(lo_obj)

interval.hi = c.pyapi.float_as_double(hi_obj)
c.pyapi.decref(lo_obj)

c.pyapi.decref(hi_obj)

is_error = cgutils.is_not_null(c.builder, c.pyapi.err_occurred())
return NativeValue(interval._getvalue(), is_error=is_error)

Unbox is the other name for “convert a Python object to a native value” (it fits the idea of a Python object as a sophisti-
cated box containing a simple native value). The function returns a NativeValue object which gives its caller access
to the computed native value, the error bit and possibly other information.
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The snippet above makes abundant use of the c.pyapi object, which gives access to a subset of the Python interpreter’s
C API. Note the use of c.pyapi.err_occurred() to detect any errors that may have happened when unboxing the
object (try passing Interval('a', 'b') for example).

We also want to do the reverse operation, called boxing, so as to return interval values from Numba functions:

from numba.extending import box

@box (IntervalType)
def box_interval(typ, val, c):

e

Convert a native interval structure to an Interval object.

o

interval = cgutils.create_struct_proxy(typ) (c.context, c.builder, value=val)
lo_obj = c.pyapi.float_from double(interval.lo)
hi_obj = c.pyapi.float_from_double(interval.hi)

class_obj = c.pyapi.unserialize(c.pyapi.serialize_object(Interval))
res = c.pyapi.call_function_objargs(class_obj, (lo_obj, hi_obj))
c.pyapi.decref(lo_obj)

c.pyapi.decref(hi_obj)

c.pyapi.decref(class_obj)

return res

5.3.3 Using it

nopython mode functions are now able to make use of Interval objects and the various operations you have defined on
them. You can try for example the following functions:

from numba import jit

@jit(nopython=True)
def inside_interval(interval, x):
return interval.lo <= x < interval.hi

@jit(nopython=True)
def interval_width(interval):
return interval.width

@jit(nopython=True)
def sum_intervals(i, j):
return Interval(i.lo + j.lo, i.hi + j.hi)

5.3.4 Conclusion

‘We have shown how to do the following tasks:
* Define a new Numba type class by subclassing the Type class
* Define a singleton Numba type instance for a non-parametric type
* Teach Numba how to infer the Numba type of Python values of a certain class, using typeof_impl.register
e Teach Numba how to infer the Numba type of the Python type itself, using as_numba_type.register

* Define the data model for a Numba type using StructModel and register_model
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* Implementing a boxing function for a Numba type using the @box decorator

* Implementing an unboxing function for a Numba type using the @unbox decorator and the NativeValue class
* Type and implement a callable using the @type_callable and @lower_builtin decorators

» Expose a read-only structure attribute using the make_attribute_wrapper convenience function

* Implement a read-only property using the @overload_attribute decorator

5.4 A guide to using @overload

As mentioned in the high-level extension API, you can use the @overload decorator to create a Numba implementation
of a function that can be used in nopython mode functions. A common use case is to re-implement NumPy functions so
that they can be called in @jit decorated code. This section discusses how and when to use the @overload decorator
and what contributing such a function to the Numba code base might entail. This should help you get started when
needing to use the @overload decorator or when attempting to contribute new functions to Numba itself.

The @overload decorator and it’s variants are useful when you have a third-party library that you do not control and
you wish to provide Numba compatible implementations for specific functions from that library.

5.4.1 Concrete Example

Let’s assume that you are working on a minimization algorithm that makes use of scipy.linalg.normto find different
vector norms and the frobenius norm for matrices. You know that only integer and real numbers will be involved. (While
this may sound like an artificial example, especially because a Numba implementation of numpy.linalg.norm exists,
it is largely pedagogical and serves to illustrate how and when to use @overload).

The skeleton might look something like this:

def algorithm():

# setup

V= ...

while True:
# take a step
d = scipy.linalg.norm(v)
if d < tolerance:

break

Now, let’s further assume, that you have heard of Numba and you now wish to use it to accelerate your function. How-
ever, after adding the jit (nopython=True) decorator, Numba complains that scipy.linalg.normisn’t supported.
From looking at the documentation, you realize that a norm is probably fairly easy to implement using NumPy. A good
starting point is the following template.

# Declare that function ‘myfunc’ is going to be overloaded (have a

# substitutable Numba implementation)

@overload(myfunc)

# Define the overload function with formal arguments

# these arguments must be matched in the inner function implementation

def jit_myfunc(arg®, argl, arg2, ...):
# This scope is for typing, access is available to the *type* of all
# arguments. This information can be used to change the behaviour of the
# implementing function and check that the types are actually supported
# by the implementation.

(continues on next page)
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print(arg®) # this will show the Numba type of arg0®

# This is the definition of the function that implements the “myfunc’ work.
# It does whatever algorithm is needed to implement myfunc.
def myfunc_impl(arg®, argl, arg2, ...): # match arguments to jit_myfunc

# < Implementation goes here >

return # whatever needs to be returned by the algorithm

# return the implementation
return myfunc_impl

After some deliberation and tinkering, you end up with the following code:

import numpy as np

from numba import njit, types

from numba.extending import overload, register_jitable
from numba.core.errors import TypingError

import scipy.linalg

@register_jitable

def _oneD_norm_2(a):
# re-usable implementation of the 2-norm
val = np.abs(a)
return np.sqrt(np.sum(val * val))

@overload(scipy.linalg.norm)
def jit_norm(a, ord=None):
if isinstance(ord, types.Optional):
ord = ord.type
# Reject non integer, floating-point or None types for ord
if not isinstance(ord, (types.Integer, types.Float, types.NoneType)):
raise TypingError("'ord' must be either integer or floating-point™)
# Reject non-ndarray types
if not isinstance(a, types.Array):
raise TypingError("Only accepts NumPy ndarray")
# Reject ndarrays with non integer or floating-point dtype
if not isinstance(a.dtype, (types.Integer, types.Float)):
raise TypingError("Only integer and floating point types accepted")
# Reject ndarrays with unsupported dimensionality
if not (0 <= a.ndim <= 2):
raise TypingError('3D and beyond are not allowed')
# Implementation for scalars/0d-arrays
elif a.ndim == 0:
return a.item()
# Implementation for vectors
elif a.ndim ==
def _oneD_norm_x(a, ord=None):
if ord == 2 or ord is None:

(continues on next page)
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return _oneD_norm_2(a)
elif ord == np.inf:
return np.max(np.abs(a))

elif ord == -np.inf:

return np.min(np.abs(a))
elif ord == 0:

return np.sum(a != 0)
elif ord ==

return np.sum(np.abs(a))
else:

return np.sum(np.abs(a)**ord)**(1l. / ord)
return _oneD_norm_x
# Implementation for matrices
elif a.ndim ==
def _two_D_norm_2(a, ord=None):
return _oneD_norm_2(a.ravel())
return _two_D_norm_2

if __name__ == "__main__":
@Gnjit
def use(a, ord=None):
# simple test function to check that the overload works

return scipy.linalg.norm(a, ord)

# spot check for vectors

a = np.arange(10)
print(use(a))
print(scipy.linalg.norm(a))

# spot check for matrices

b = np.arange(9) .reshape((3, 3))
print(use(b))
print(scipy.linalg.norm(b))

As you can see, the implementation only supports what you need right now:
* Only supports integer and floating-point types
* All vector norms
* Only the Frobenius norm for matrices
* Code sharing between vector and matrix implementations using @register_jitable.

e Norms are implemented using NumPy syntax. (This is possible because Numba is very aware of NumPy and
many functions are supported.)

So what actually happens here? The overload decorator registers a suitable implementation for scipy.linalg.norm
in case a call to this is encountered in code that is being JIT-compiled, for example when you decorate your algorithm
function with @jit (nopython=True). In that case, the function jit_norm will be called with the currently encoun-
tered types and will then return either _oneD_norm_x in the vector case and _two_D_norm_2.

You can download the example code here: mynorm. py
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5.4.2 Implementing @overload for NumPy functions

Numba supports NumPy through the provision of @jit compatible re-implementations of NumPy functions. In such
cases @overload is a very convenient option for writing such implementations, however there are a few additional
things to watch out for.

e The Numba implementation should match the NumPy implementation as closely as feasible with respect to

accepted types, arguments, raised exceptions and algorithmic complexity (Big-O / Landau order).

When implementing supported argument types, bear in mind that, due to duck typing, NumPy does tend to accept
a multitude of argument types beyond NumPy arrays such as scalar, list, tuple, set, iterator, generator etc. You
will need to account for that during type inference and subsequently as part of the tests.

A NumPy function may return a scalar, array or a data structure which matches one of its inputs, you need to be
aware of type unification problems and dispatch to appropriate implementations. For example, np.corrcoef
may return an array or a scalar depending on its inputs.

If you are implementing a new function, you should always update the documentation. The sources can be found
in docs/source/reference/numpysupported.rst. Be sure to mention any limitations that your implemen-
tation has, e.g. no support for the axis keyword.

When writing tests for the functionality itself, it’s useful to include handling of non-finite values, arrays with
different shapes and layouts, complex inputs, scalar inputs, inputs with types for which support is not documented
(e.g. afunction which the NumPy docs say requires a float or int input might also ‘work” if given a bool or complex
input).

When writing tests for exceptions, for example if adding tests to numba/tests/test_np_functions.py, you
may encounter the following error message:

FAIL: test_foo (numba.tests.test_np_functions.TestNPFunctions)

Traceback (most recent call last):

File "<path>/numba/numba/tests/support.py", line 645, in tearDown
self.memory_leak_teardown()

File "<path>/numba/numba/tests/support.py"”, line 619, in memory_leak_teardown
self.assert_no_memory_leak()

File "<path>/numba/numba/tests/support.py"”, line 628, in assert_no_memory_leak
self.assertEqual (total_alloc, total_free)

AssertionError: 36 != 35

This occurs because raising exceptions from jitted code leads to reference leaks. Ideally, you will place all
exception testing in a separate test method and then add a call in each test to self.disable_leak_check() to
disable the leak-check (inherit from numba. tests. support.TestCase to make that available).

For many of the functions that are available in NumPy, there are corresponding methods defined on the NumPy
ndarray type. For example, the function repeat is available as a NumPy module level function and a member
function on the ndarray class.

import numpy as np
a = np.arange(10)
# function
np.repeat(a, 10)
# method
a.repeat(10)

Once you have written the function implementation, you can easily use @overload_method and reuse it. Just
be sure to check that NumPy doesn’t diverge in the implementations of its function/method.
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As an example, the repeat function/method:

@extending.overload_method(types.Array, 'repeat')
def array_repeat(a, repeats):
def array_repeat_impl(a, repeat):
# np.repeat has already been overloaded
return np.repeat(a, repeat)

return array_repeat_impl

* If you need to create ancillary functions, for example to re-use a small utility function or to split your implemen-
tation across functions for the sake of readability, you can make use of the @register_jitable decorator. This
will make those functions available from within your @jit and @overload decorated functions.

¢ The Numba continuous integration (CI) set up tests a wide variety of NumPy versions, you’ll sometimes be
alerted to a change in behaviour from some previous NumPy version. If you can find supporting evidence in the
NumPy change log / repository, then you’ll need to decide whether to create branches and attempt to replicate
the logic across versions, or use a version gate (with associated wording in the documentation) to advertise that
Numbea replicates NumPy from some particular version onwards.

* You can look at the Numba source code for inspiration, many of the overloaded NumPy functions and methods
are in numba/targets/arrayobj.py. Below, you will find a list of implementations to look at that are well
implemented in terms of accepted types and test coverage.

— hp.repeat

5.5 Registering Extensions with Entry Points

Often, third party packages will have a user-facing API as well as define extensions to the Numba compiler. In those
situations, the new types and overloads can registered with Numba when the package is imported by the user. However,
there are situations where a Numba extension would not normally be imported directly by the user, but must still be
registered with the Numba compiler. An example of this is the numba-scipy package, which adds support for some
SciPy functions to Numba. The end user does not need to import numba_scipy to enable compiler support for SciPy,
the extension only needs to be installed in the Python environment.

Numba discovers extensions using the entry points feature of setuptools. This allows a Python package to register
an initializer function that will be called before numba compiles for the first time. The delay ensures that the cost of
importing extensions is deferred until it is necessary.

5.5.1 Adding Support for the “Init” Entry Point

A package can register an initialization function with Numba by adding the entry_points argument to the setup()
function call in setup.py:

setup(
<y
entry_points={
"numba_extensions": [
"init = numba_scipy:_init_extension",
1,
1
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Numba currently only looks for the init entry point in the numba_extensions group. The entry point should be a
function (any name, as long as it matches what is listed in setup.py) that takes no arguments, and the return value is
ignored. This function should register types, overloads, or call other Numba extension APIs. The order of initialization
of extensions is undefined.

5.5.2 Testing your Entry Point

Numba loads all entry points when the first function is compiled. To test your entry point, it is not sufficient to just
import numba; you have to define and run a small function, like this:

import numba; numba.njit(lambda x: x + 1)(123)

It is not necessary to import your module: entry points are identified by the entry_points.txt file in your library’s
*.egg-info directory.

The setup.py build command does not create eggs, but setup.py sdist (for testing in a local directory) and
setup.py install do. All entry points registered in eggs that are on the Python path are loaded. Be sure to check
for stale entry_points.txt when debugging.
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CHAPTER
SIX

DEVELOPER MANUAL

6.1 Contributing to Numba

We welcome people who want to make contributions to Numba, big or small! Even simple documentation improve-
ments are encouraged. If you have questions, don’t hesitate to ask them (see below).

6.1.1 Communication
Real-time Chat

Numba uses Gitter for public real-time chat. To help improve the signal-to-noise ratio, we have two channels:
e numba/numba: General Numba discussion, questions, and debugging help.
* numba/numba-dev: Discussion of PRs, planning, release coordination, etc.

Both channels are public, but we may ask that discussions on numba-dev move to the numba channel. This is simply
to ensure that numba-dev is easy for core developers to keep up with.

Note that the Github issue tracker is the best place to report bugs. Bug reports in chat are difficult to track and likely to
be lost.

Forum

Numba uses Discourse as a forum for longer running threads such as design discussions and roadmap planning. There
are various categories available and it can be reached at: numba.discourse.group.

Mailing-list

We have a public mailing-list that you can e-mail at numba-users @anaconda.com. You can subscribe and read the
archives on Google Groups.
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Weekly Meetings

The core Numba developers have a weekly video conference to discuss roadmap, feature planning, and outstanding
issues. These meetings are invite only, but minutes will be taken and will be posted to the Numba wiki.

Bug tracker
We use the Github issue tracker to track both bug reports and feature requests. If you report an issue, please include
specifics:

* what you are trying to do;

* which operating system you have and which version of Numba you are running;

* how Numba is misbehaving, e.g. the full error traceback, or the unexpected results you are getting;

* as far as possible, a code snippet that allows full reproduction of your problem.

6.1.2 Getting set up
If you want to contribute, we recommend you fork our Github repository, then create a branch representing your work.
When your work is ready, you should submit it as a pull request from the Github interface.

If you want, you can submit a pull request even when you haven’t finished working. This can be useful to gather
feedback, or to stress your changes against the continuous integration platform. In this case, please prepend [WIP] to
your pull request’s title.

Build environment

Numba has a number of dependencies (mostly NumPy and llvmlite) with non-trivial build instructions. Unless you want
to build those dependencies yourself, we recommend you use conda to create a dedicated development environment
and install precompiled versions of those dependencies there.

First add the Anaconda Cloud numba channel so as to get development builds of the llvmlite library:

$ conda config --add channels numba

Then create an environment with the right dependencies:

$ conda create -n numbaenv python=3.8 llvmlite numpy scipy jinja2 cffi

Note: This installs an environment based on Python 3.8, but you can of course choose another version supported by
Numba. To test additional features, you may also need to install tbb and/or 11vm-openmp and intel-openmp.

To activate the environment for the current shell session:

$ conda activate numbaenv

Note: These instructions are for a standard Linux shell. You may need to adapt them for other platforms.

Once the environment is activated, you have a dedicated Python with the required dependencies:
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$ python

Python 3.8.5 (default, Sep 4 2020, 07:30:14)

[GCC 7.3.0] :: Anaconda, Inc. on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import llvmlite
>>> llvmlite.__version__
'0.35.0'

Building Numba

For a convenient development workflow, we recommend you build Numba inside its source checkout:

$ git clone git://github.com/numba/numba.git
$ cd numba
$ python setup.py build_ext --inplace

This assumes you have a working C compiler and runtime on your development system. You will have to run this
command again whenever you modify C files inside the Numba source tree.

The build_ext command in Numba’s setup also accepts the following arguments:

e --noopt: This disables optimization when compiling Numba’s CPython extensions, which makes debugging
them much easier. Recommended in conjunction with the standard build_ext option --debug.

* --werror: Compiles Numba’s CPython extensions with the -Werror flag.
e --wall: Compiles Numba’s CPython extensions with the -Wall flag.

Note that Numba’s CI and the conda recipe for Linux build with the --werror and --wall flags, so any contributions
that change the CPython extensions should be tested with these flags too.

Running tests
Numba is validated using a test suite comprised of various kind of tests (unit tests, functional tests). The test suite is
written using the standard unittest framework.

The tests can be executed via python -m numba.runtests. If you are running Numba from a source checkout, you
can type ./runtests.py as a shortcut. Various options are supported to influence test running and reporting. Pass
-h or --help to get a glimpse at those options. Examples:

« to list all available tests:

$ python -m numba.runtests -1

to list tests from a specific (sub-)suite:

$ python -m numba.runtests -1 numba.tests.test_usecases

to run those tests:

$ python -m numba.runtests numba.tests.test_usecases

* to run all tests in parallel, using multiple sub-processes:
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$ python -m numba.runtests -m

¢ For a detailed list of all options:

$ python -m numba.runtests -h

The numba test suite can take a long time to complete. When you want to avoid the long wait, it is useful to focus on
the failing tests first with the following test runner options:

e The --failed-first option is added to capture the list of failed tests and to re-execute them first:

$ python -m numba.runtests --failed-first -m -v -b

e The --last-failed option is used with --failed-first to execute the previously failed tests only:

$ python -m numba.runtests --last-failed -m -v -b

When debugging, it is useful to turn on logging. Numba logs using the standard 1ogging module. One can use the
standard ways (i.e. logging.basicConfig) to configure the logging behavior. To enable logging in the test runner,
there is a --1og flag for convenience:

$ python -m numba.runtests --log

To enable runtime type-checking, set the environment variable NUMBA_USE_TYPEGUARD=1 and use runtests.py from
the source root instead. For example:

$ NUMBA_USE_TYPEGUARD=1 python runtests.py

6.1.3 Development rules
Code reviews
Any non-trivial change should go through a code review by one or several of the core developers. The recommended
process is to submit a pull request on github.
A code review should try to assess the following criteria:
 general design and correctness
* code structure and maintainability
* coding conventions
* docstrings, comments

* test coverage
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Coding conventions

All Python code should follow PEP 8. Our C code doesn’t have a well-defined coding style (would it be nice to follow
PEP 77). Code and documentation should generally fit within 80 columns, for maximum readability with all existing
tools (such as code review Uls).

Numba uses Flake8 to ensure a consistent Python code format throughout the project. £lake8 can be installed with
pip or conda and then run from the root of the Numba repository:

flake8 numba

Optionally, you may wish to setup pre-commit hooks to automatically run flake8 when you make a git commit. This
can be done by installing pre-commit:

pip install pre-commit

and then running:

pre-commit install

from the root of the Numba repository. Now flake8 will be run each time you commit changes. You can skip this
check with git commit --no-verify.

Numba has started the process of using type hints in its code base. This will be a gradual process of extending the
number of files that use type hints, as well as going from voluntary to mandatory type hints for new features. Mypy is
used for automated static checking.

At the moment, only certain files are checked by mypy. The list can be found in mypy.ini. When making changes to
those files, it is necessary to add the required type hints such that mypy tests will pass. Only in exceptional circumstances
should type: ignore comments be used.

If you are contributing a new feature, we encourage you to use type hints, even if the file is not currently in the checklist.
If you want to contribute type hints to enable a new file to be in the checklist, please add the file to the files variable
in mypy.ini, and decide what level of compliance you are targetting. Level 3 is basic static checks, while levels 2 and
1 represent stricter checking. The levels are described in details in mypy.ini.

There is potential for confusion between the Numba module typing and Python built-in module typing used for type
hints, as well as between Numba types—such as Dict or Literal—and typing types of the same name. To mitigate
the risk of confusion we use a naming convention by which objects of the built-in typing module are imported with
an pt prefix. For example, typing.Dict is imported as from typing import Dict as ptDict.

Stability

The repository’s master branch is expected to be stable at all times. This translates into the fact that the test suite
passes without errors on all supported platforms (see below). This also means that a pull request also needs to pass the
test suite before it is merged in.
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Platform support

Every commit to the master branch is automatically tested on all of the platforms Numba supports. This includes
ARMvS, POWERS, and NVIDIA GPUs. The build system however is internal to Anaconda, so we also use Azure
to provide public continuous integration information for as many combinations as can be supported by the service.
Azure CI automatically tests all pull requests on Windows, OS X and Linux, as well as a sampling of different Python
and NumPy versions. If you see problems on platforms you are unfamiliar with, feel free to ask for help in your pull
request. The Numba core developers can help diagnose cross-platform compatibility issues. Also see the continuous
integration section on how public CI is implemented.

Continuous integration testing

The Numba test suite causes CI systems a lot of grief:
1. It’s huge, 9000+ tests.
2. In part because of 1. and that compilers are pretty involved, the test suite takes a long time to run.

3. There’s sections of the test suite that are deliberately designed to stress systems almost to the point of failure
(tests which concurrently compile and execute with threads and fork processes etc).

4. The combination of things that Numba has to test well exceeds the capacity of any public CI system, (Python
versions x NumPy versions x Operating systems x Architectures x feature libraries (e.g. SVML) x threading
backends (e.g. OpenMP, TBB)) and then there’s CUDA too and all its version variants.

As a result of the above, public CI is implemented as follows:

1. The combination of OS x Python x NumPy x Various Features in the testing matrix is designed to give a good
indicative result for whether “this pull request is probably ok™.

2. When public CI runs it:

1. Looks for files that contain tests that have been altered by the proposed change and runs these on the whole
testing matrix.

2. Runs a subset of the test suite on each part of the testing matrix. i.e. slice the test suite up by the number of
combinations in the testing matrix and each combination runs one chunk. This is done for speed, because
public CI cannot cope with the load else.

If a pull request is changing CUDA code (which cannot be tested on Public CI as there’s no hardware) or it is mak-
ing changes to something that the core developers consider risky, then it will also be run on the Numba farm just to
make sure. The Numba project’s private build and test farm will actually exercise all the applicable tests on all the
combinations noted above on real hardware!

Type annotation and runtime type checking

Numba is slowly gaining type annotations. To facilitate the review of pull requests that are incrementally adding type
annotations, the test suite uses typeguard to perform runtime type checking. This helps verify the validity of type
annotations.

To enable runtime type checking in the test suite, users can use runtests.py in the source root as the test runner and set
environment variable NUMBA_USE_TYPEGUARD=1. For example:

$ NUMBA_USE_TYPEGUARD=1 python runtests.py numba.tests
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Things that help with pull requests

Even with the mitigating design above public CI can get overloaded which causes a backlog of builds. It’s therefore
really helpful when opening pull requests if you can limit the frequency of pushing changes. Ideally, please squash
commits to reduce the number of patches and/or push as infrequently as possible. Also, once a pull request review
has started, please don’t rebase/force push/squash or do anything that rewrites history of the reviewed code as GitHub
cannot track this and it makes it very hard for reviewers to see what has changed.

The core developers thank everyone for their cooperation with the above!

Why is my pull request/issue seemingly being ignored?

Numba is an open source project and like many similar projects it has limited resources. As a result, it is unfortunately
necessary for the core developers to associate a priority with issues/pull requests (PR). A great way to move your
issue/PR up the priority queue is to help out somewhere else in the project so as to free up core developer time.
Examples of ways to help:

e Perform an initial review on a PR. This often doesn’t require compiler engineering knowledge and just involves
checking that the proposed patch is of good quality, fixes the problem/implements the feature, is well tested and
documented.

* Debug an issue, there are numerous issues which “need triage” which essentially involves debugging the reported
problem. Even if you cannot get right to the bottom of a problem, leaving notes about what was discovered for
someone else is also helpful.

* Answer questions/provide help for users on discourse and/or gitter.im.

The core developers thank everyone for their understanding with the above!

6.1.4 Documentation

The Numba documentation is split over two repositories:
* This documentation is in the docs directory inside the Numba repository.

* The Numba homepage has its sources in a separate repository at https://github.com/numba/numba-webpage

Main documentation

This documentation is under the docs directory of the Numba repository. It is built with Sphinx and numpydoc, which
are available using conda or pip; i.e. conda install sphinx numpydoc.

To build the documentation, you need the bootstrap theme:

$ pip install sphinx_bootstrap_theme

You can edit the source files under docs/source/, after which you can build and check the documentation:

$ make html
$ open _build/html/index.html

Core developers can upload this documentation to the Numba website at https://numba.pydata.org by using the
gh-pages.py script under docs:

$ python gh-pages.py version # version can be 'dev' or '0.16' etc

then verify the repository under the gh-pages directory and use git push.
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Web site homepage
The Numba homepage on https://numba.pydata.org can be fetched from here: https://github.com/numba/
numba-webpage
After pushing documentation to a new version, core developers will want to update the website. Some notable files:
e index.rst # Update main page
* _templates/sidebar_versions.html # Update sidebar links
* doc.rst # Update after adding a new version for numba docs
* download.rst # Updata after uploading new numba version to pypi

After updating run:

$ make html

and check out _build/html/index.html. To push updates to the Web site:

$ python _scripts/gh-pages.py

then verify the repository under the gh-pages directory. Make sure the CNAME file is present and contains a single line
for numba.pydata.org. Finally, use git push to update the website.

6.2 Numba Release Process

The goal of the Numba release process — from a high level perspective — is to publish source and binary artifacts that
correspond to a given version number. This usually involves a sequence of individual tasks that must be performed in
the correct order and with diligence. Numba and llvmlite are commonly released in lockstep since there is usually a
one-to-one mapping between a Numba version and a corresponding llvmlite version.

This section contains various notes and templates that can be used to create a Numba release checklist on the Numba
Github issue tracker. This is an aid for the maintainers during the release process and helps to ensure that all tasks are
completed in the correct order and that no tasks are accidentally omitted.

If new or additional items do appear during release, please do remember to add them to the checklist templates. Also
note that the release process itself is always a work in progress. This means that some of the information here may be
outdated. If you notice this please do remember to submit a pull-request to update this document.

All release checklists are available as Gitub issue templates. To create a new release checklist simply open a new issue
and select the correct template.

6.2.1 Primary Release Candidate Checklist

This is for the first/primary release candidate for minor release i.e. the first release of every series. It is special, because
during this release, the release branch will have to be created. Release candidate indexing begins at 1.

## Numba X.Y.Z

] Merge to master.

- [ ] "remaining Pull-Requests from milestone".
* [ ] Merge change log changes.

- [ 1 "PR with changelog entries".

] Create X.Y release branch.

(continues on next page)
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(continued from previous page)

Pin llvmlite to >=0.A.0rcl,<0.A+1.0".
Annotated tag X.Y.Zrcl on release branch.
Build and upload conda packages on buildfarm (check "upload").
Build wheels (" $PYTHON_VERSIONS ) on the buildfarm.
Upload wheels and sdist to PyPI (upload from "ci_artifacts’).
Verify packages uploaded to Anaconda Cloud and move to
numba/label/main" .

] Verify wheels for all platforms arrived on PyPi.
Verify ReadTheDocs build.
Clean up "ci_artifacts’.
Review, merge and check execution of release notebook.

Send RC announcement email / post announcement to discourse group.
Post link to Twitter.
Post link to python-announce-list@python.org.
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### Post Release:

* [ ] Tag X.Y+1.0dev® to start new development cycle on "master .

*# [ ] Update llvmlite dependency spec to match next version via PR to ‘master .

*# [ ] Update release checklist template with any additional bullet points that
may have arisen during the release.

* [ ] Close milestone (and then close this release issue).

Open a primary release checklist.

6.2.2 Subsequent Release Candidates, Final Releases and Patch Releases

Releases subsequent to the first release in a series usually involves a series of cherry-picks, the recipe is therefore
slightly different.

## numba X.Y.Z

Cherry-pick items from the X.Y.Z milestone into a PR.

Merge change log modifications and cherry-picks to X.Y release branch.
] https://github.com/numba/numba/pull/XXXX

Annotated tag X.Y.Z on release branch (no 'v' prefix).

Build and upload conda packages on buildfarm (check "upload").

Build wheels ( $PYTHON_VERSIONS ) on the buildfarm.

Upload wheels and sdist to PyPI (upload from "ci_artifacts’).

Verify packages uploaded to Anaconda Cloud and move to
“numba/label/main’ .

Verify wheels for all platforms arrived on PyPi.

Verify ReadTheDocs build.

Clean up "ci_artifacts’.

Send RC/FINAL announcement email / post announcement to discourse group.
Post link to Twitter.

Post link to python-announce-list@python.org.

*
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### Post release

* [ 1 Cherry-pick change-log modifications to main branch (‘master’) via PR.

(continues on next page)
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(continued from previous page)

* [ ] Update release checklist template.
* [ ] Ping Anaconda Distro team to trigger a build for “defaults’ (FINAL ONLY).
*# [ ] Close milestone (and then close this release issue).

Open a subsequent release checklist.

6.3 A Map of the Numba Repository

The Numba repository is quite large, and due to age has functionality spread around many locations. To help orient
developers, this document will try to summarize where different categories of functionality can be found.

6.3.1 Support Files

Build and Packaging

* setup.py - Standard Python distutils/setuptools script

* MANIFEST.in - Distutils packaging instructions

* requirements.txt - Pip package requirements, not used by conda

* versioneer.py - Handles automatic setting of version in installed package from git tags

» flake8 - Preferences for code formatting. Files should be fixed and removed from the exception list as time
allows.

e .pre-commit-config.yaml - Configuration file for pre-commit hooks.
e .readthedocs.yml - Configuration file for Read the Docs.
* buildscripts/condarecipe.local - Conda build recipe

* buildscripts/condarecipe_clone_icc_rt - Recipe to build a standalone icc_rt package.

Continuous Integration

* azure-pipelines.yml - Azure Pipelines CI config (active: Win/Mac/Linux)

e buildscripts/azure/ - Azure Pipeline configuration for specific platforms

* buildscripts/appveyor/ - Appveyor build scripts

* buildscripts/incremental/ - Generic scripts for building Numba on various CI systems

* codecov.yml - Codecov.io coverage reporting
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Documentation

LICENSE - License for Numba
LICENSES. .third-party - License for third party code vendored into Numba
README.rst - README for repo, also uploaded to PyPI

CONTRIBUTING.md - Documentation on how to contribute to project (out of date, should be updated to point
to Sphinx docs)

CHANGE_LOG - History of Numba releases, also directly embedded into Sphinx documentation
docs/ - Documentation source

docs/_templates/ - Directory for templates (to override defaults with Sphinx theme)
docs/Makefile - Used to build Sphinx docs with make

docs/source - ReST source for Numba documentation

docs/_static/ - Static CSS and image assets for Numba docs

docs/gh-pages.py - Utility script to update Numba docs (stored as gh-pages)

docs/make.bat - Not used (remove?)

docs/requirements.txt - Pip package requirements for building docs with Read the Docs.

numba/scripts/generate_lower_listing.py - Dump all registered implementations decorated with @lower* for
reference documentation. Currently misses implementations from the higher level extension API.

6.3.2 Numba Source Code

Numba ships with both the source code and tests in one package.

numba/ - all of the source code and tests

Public API

These define aspects of the public Numba interface.

numba/core/decorators.py - User-facing decorators for compiling regular functions on the CPU

numba/core/extending.py - Public decorators for extending Numba (overload, intrinsic, etc) -
numba/experimental/structref.py - Public API for defining a mutable struct

numba/core/ccallback.py - @cfunc decorator for compiling functions to a fixed C signature. Used to make
callbacks.

numba/np/ufunc/decorators.py - ufunc/gufunc compilation decorators
numba/core/config.py - Numba global config options and environment variable handling
numba/core/annotations - Gathering and printing type annotations of Numba IR

numba/core/annotations/pretty_annotate.py - Code highlighting of Numba functions and types (both ANSI ter-
minal and HTML)

numba/core/event.py - A simple event system for applications to listen to specific compiler events.
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Dispatching

» numba/core/dispatcher.py - Dispatcher objects are compiled functions produced by @jit. A dispatcher has dif-
ferent implementations for different type signatures.

* numba/_dispatcher.cpp - C++ dispatcher implementation (for speed on common data types)

* numba/core/retarget.py - Support for dispatcher objects to switch target via a specific with-context.

Compiler Pipeline

* numba/core/compiler.py - Compiler pipelines and flags

* numba/core/errors.py - Numba exception and warning classes

* numba/core/ir.py - Numba IR data structure objects

* numba/core/bytecode.py - Bytecode parsing and function identity (??)

* numba/core/interpreter.py - Translate Python interpreter bytecode to Numba IR

* numba/core/analysis.py - Utility functions to analyze Numba IR (variable lifetime, prune branches, etc)
* numba/core/dataflow.py - Dataflow analysis for Python bytecode (used in analysis.py)

* numba/core/controlflow.py - Control flow analysis of Numba IR and Python bytecode

e numba/core/typeinfer.py - Type inference algorithm

* numba/core/transforms.py - Numba IR transformations

* numba/core/rewrites - Rewrite passes used by compiler

» numba/core/rewrites/__init__.py - Loads all rewrite passes so they are put into the registry
* numba/core/rewrites/registry.py - Registry object for collecting rewrite passes

* numba/core/rewrites/ir_print.py - Write print() calls into special print nodes in the IR

* numba/core/rewrites/static_raise.py - Converts exceptions with static arguments into a special form that can be
lowered

* numba/core/rewrites/static_getitem.py - Rewrites getitem and setitem with constant arguments to allow type
inference

* numba/core/rewrites/static_binop.py - Rewrites binary operations (specifically **) with constant arguments so
faster code can be generated

e numba/core/inline_closurecall.py - Inlines body of closure functions to call site. Support for array comprehen-
sions, reduction inlining, and stencil inlining.

e numba/core/postproc.py - Postprocessor for Numba IR that computes variable lifetime, inserts del operations,
and handles generators

* numba/core/lowering.py - General implementation of lowering Numba IR to LLVM numba/core/environment.py
- Runtime environment object

* numba/core/withcontexts.py - General scaffolding for implementing context managers in nopython mode, and
the objectmode context manager

* numba/core/pylowering.py - Lowering of Numba IR in object mode
» numba/core/pythonapi.py - LLVM IR code generation to interface with CPython API

* numba/core/targetconfig.py - Utils for target configurations such as compiler flags.
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Type Management

numba/core/typeconv/ - Implementation of type casting and type signature matching in both C++ and Python
numba/capsulethunk.h - Used by typeconv

numba/core/types/ - definition of the Numba type hierarchy, used everywhere in compiler to select implementa-
tions

numba/core/consts.py - Constant inference (used to make constant values available during codegen when possi-
ble)

numba/core/datamodel - LLVM IR representations of data types in different contexts
numba/core/datamodel/models.py - Models for most standard types
numba/core/datamodel/registry.py - Decorator to register new data models
numba/core/datamodel/packer.py - Pack typed values into a data structure
numba/core/datamodel/testing.py - Data model tests (this should move??)

numba/core/datamodel/manager.py - Map types to data models

Compiled Extensions

Numba uses a small amount of compiled C/C++ code for core functionality, like dispatching and type matching where
performance matters, and it is more convenient to encapsulate direct interaction with CPython APISs.

numba/_arraystruct.h - Struct for holding NumPy array attributes. Used in helperlib and the Numba Runtime.

numba/_helperlib.c - C functions required by Numba compiled code at runtime. Linked into ahead-of-time
compiled modules

numba/_helpermod.c - Python extension module with pointers to functions from _helperlib.c and
_npymath_exports.c

numba/_npymath_exports.c - Export function pointer table to NumPy C math functions
numba/_dynfuncmod.c - Python extension module exporting _dynfunc.c functionality
numba/_dynfunc.c - C level Environment and Closure objects (keep in sync with numba/target/base.py)
numba/mathnames.h - Macros for defining names of math functions

numba/_pymodule.h - C macros for Python 2/3 portable naming of C API functions
numba/mviewbuf.c - Handles Python memoryviews

numba/_typeof.h | numba/_typeof.c - C implementation of type fingerprinting, used by dispatcher

numba/_numba_common.h - Portable C macro for marking symbols that can be shared between object files, but
not outside the library.
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Misc Support

» numba/_version.py - Updated by versioneer

e numba/core/runtime - Language runtime. Currently manages reference-counted memory allocated on the heap
by Numba-compiled functions

» numba/core/ir_utils.py - Utility functions for working with Numba IR data structures

» numba/core/cgutils.py - Utility functions for generating common code patterns in LLVM IR

» numba/core/utils.py - Python 2 backports of Python 3 functionality (also imports local copy of six)

* numba/core/overload_glue.py - Functions for wrapping split typing and lowering API use cases into overloads.
» numba/misc/appdirs.py - Vendored package for determining application config directories on every platform
* numba/core/compiler_lock.py - Global compiler lock because Numba’s usage of LLVM is not thread-safe

* numba/misc/special.py - Python stub implementations of special Numba functions (prange, gdb*)

e numba/core/itanium_mangler.py - Python implementation of Itanium C++ name mangling

» numba/misc/findlib.py - Helper function for locating shared libraries on all platforms

* numba/core/debuginfo.py - Helper functions to construct LLVM IR debug info

* numba/core/unsafe/refcount.py - Read reference count of object

* numba/core/unsafe/eh.py - Exception handling helpers

* numba/core/unsafe/nrt.py - Numba runtime (NRT) helpers

» numba/cpython/unsafe/tuple.py - Replace a value in a tuple slot

e numba/np/unsafe/ndarray.py - NumPy array helpers

» numba/core/unsafe/bytes.py - Copying and dereferencing data from void pointers

e numba/misc/dummyarray.py - Used by GPU backends to hold array information on the host, but not the data.

* numba/core/callwrapper.py - Handles argument unboxing and releasing the GIL when moving from Python to
nopython mode

* numba/np/numpy_support.py - Helper functions for working with NumPy and translating Numba types to and
from NumPy dtypes.

e numba/core/tracing.py - Decorator for tracing Python calls and emitting log messages

* numba/core/funcdesc.py - Classes for describing function metadata (used in the compiler)

» numba/core/sigutils.py - Helper functions for parsing and normalizing Numba type signatures
» numba/core/serialize.py - Support for pickling compiled functions

* numba/core/caching.py - Disk cache for compiled functions

* numba/np/npdatetime.py - Helper functions for implementing NumPy datetime64 support

e numba/misc/llvm_pass_timings.py - Helper to record timings of LLVM passes.

* numba/cloudpickle - Vendored cloudpickle subpackage
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Core Python Data Types

Math

numba/_hashtable.h | numba/_hashtable.c - Adaptation of the Python 3.7 hash table implementation
numba/cext/dictobject.h | numba/cext/dictobject.c - C level implementation of typed dictionary
numba/typed/dictobject.py - Nopython mode wrapper for typed dictionary
numba/cext/listobject.h | numba/cext/listobject.c - C level implementation of typed list
numba/typed/listobject.py - Nopython mode wrapper for typed list
numba/typed/typedobjectutils.py - Common utilities for typed dictionary and list
numba/cpython/unicode.py - Unicode strings (Python 3.5 and later)

numba/typed - Python interfaces to statically typed containers

numba/typed/typeddict.py - Python interface to typed dictionary

numba/typed/typedlist.py - Python interface to typed list

numba/experimental/jitclass - Implementation of experimental JIT compilation of Python classes

numba/core/generators.py - Support for lowering Python generators

numba/_random.c - Reimplementation of NumPy / CPython random number generator

numba/_lapack.c - Wrappers for calling BLAS and LAPACK functions (requires SciPy)

ParallelAccelerator

Code transformation passes that extract parallelizable code from a function and convert it into multithreaded gufunc

calls.

numba/parfors/parfor.py - General Parallel Accelerator
numba/parfors/parfor_lowering.py - gufunc lowering for ParallelAccelerator

numba/parfors/array_analysis.py - Array analysis passes used in Parallel Accelerator

Stencil

Implementation of @stencil:

numba/stencils/stencil.py - Stencil function decorator (implemented without Parallel Accelerator)

numba/stencils/stencilparfor.py - ParallelAccelerator implementation of stencil
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Debugging Support

* numba/misc/gdb_hook.py - Hooks to jump into GDB from nopython mode

e numba/misc/cmdlang.gdb - Commands to setup GDB for setting explicit breakpoints from Python

Type Signatures (CPU)

Some (usually older) Numba supported functionality separates the declaration of allowed type signatures from the
definition of implementations. This package contains registries of type signatures that must be matched during type
inference.

* numba/core/typing - Type signature module

* numba/core/typing/templates.py - Base classes for type signature templates

* numba/core/typing/cmathdecl.py - Python complex math (cmath) module

* numba/core/typing/bufproto.py - Interpreting objects supporting the buffer protocol
* numba/core/typing/mathdecl.py - Python math module

* numba/core/typing/listdecl.py - Python lists

* numba/core/typing/builtins.py - Python builtin global functions and operators

* numba/core/typing/randomdecl.py - Python and NumPy random modules

» numba/core/typing/setdecl.py - Python sets

¢ numba/core/typing/npydecl.py - NumPy ndarray (and operators), NumPy functions
* numba/core/typing/arraydecl.py - Python array module

e numba/core/typing/context.py - Implementation of typing context (class that collects methods used in type infer-
ence)

* numba/core/typing/collections.py - Generic container operations and namedtuples

* numba/core/typing/ctypes_utils.py - Typing ctypes-wrapped function pointers

e numba/core/typing/enumdecl.py - Enum types

» numba/core/typing/cfhi_utils.py - Typing of CFFI objects

* numba/core/typing/typeof.py - Implementation of typeof operations (maps Python object to Numba type)

e numba/core/typing/asnumbatype.py - Implementation of as_numba_type operations (maps Python types to
Numba type)

* numba/core/typing/npdatetime.py - Datetime dtype support for NumPy arrays

Target Implementations (CPU)

Implementations of Python / NumPy functions and some data models. These modules are responsible for generating
LLVM IR during lowering. Note that some of these modules do not have counterparts in the typing package because
newer Numba extension APIs (like overload) allow typing and implementation to be specified together.

e numba/core/cpu.py - Context for code gen on CPU
e numba/core/base.py - Base class for all target contexts

* numba/core/codegen.py - Driver for code generation
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* numba/core/boxing.py - Boxing and unboxing for most data types

* numba/core/intrinsics.py - Utilities for converting LLVM intrinsics to other math calls

* numba/core/callconv.py - Implements different calling conventions for Numba-compiled functions
* numba/core/options.py - Container for options that control lowering

e numba/core/optional.py - Special type representing value or None

* numba/core/registry.py - Registry object for collecting implementations for a specific target
e numba/core/imputils.py - Helper functions for lowering

* numba/core/externals.py - Registers external C functions needed to link generated code

* numba/core/fastmathpass.py - Rewrite pass to add fastmath attributes to function call sites and binary operations
* numba/core/removerefctpass.py - Rewrite pass to remove unnecessary incref/decref pairs
» numba/core/descriptors.py - empty base class for all target descriptors (is this needed?)

» numba/cpython/builtins.py - Python builtin functions and operators

* numba/cpython/cmathimpl.py - Python complex math module

* numba/cpython/enumimpl.py - Enum objects

* numba/cpython/hashing.py - Hashing algorithms

* numba/cpython/heapq.py - Python heapq module

* numba/cpython/iterators.py - Iterable data types and iterators

* numba/cpython/listobj.py - Python lists

* numba/cpython/mathimpl.py - Python math module

* numba/cpython/numbers.py - Numeric values (int, float, etc)

* numba/cpython/printimpl.py - Print function

* numba/cpython/randomimpl.py - Python and NumPy random modules

* numba/cpython/rangeobj.py - Python range objects

» numba/cpython/slicing.py - Slice objects, and index calculations used in slicing

* numba/cpython/setobj.py - Python set type

* numba/cpython/tupleobj.py - Tuples (statically typed as immutable struct)

» numba/misc/cfliimpl.py - CFFI functions

* numba/misc/quicksort.py - Quicksort implementation used with list and array objects

* numba/misc/mergesort.py - Mergesort implementation used with array objects

e numba/np/arraymath.py - Math operations on arrays (both Python and NumPy)

* numba/np/arrayobj.py - Array operations (both NumPy and buffer protocol)

* numba/np/linalg.py - NumPy linear algebra operations

* numba/np/npdatetime.py - NumPy datetime operations

» numba/np/npyfuncs.py - Kernels used in generating some NumPy ufuncs

* numba/np/npyimpl.py - Implementations of most NumPy ufuncs

e numba/np/polynomial.py - numpy . roots function
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numba/np/ufunc_db.py - Big table mapping types to ufunc implementations

Ufunc Compiler and Runtime

numba/np/ufunc - ufunc compiler implementation

numba/np/ufunc/_internal.h | numba/np/ufunc/_internal.c - Python extension module with helper functions that
use CPython & NumPy C API

numba/np/ufunc/_ufunc.c - Used by _internal.c

numba/np/ufunc/deviceufunc.py - Custom ufunc dispatch for non-CPU targets
numba/np/ufunc/gufunc_scheduler.h | numba/np/ufunc/gufunc_scheduler.cpp - Schedule work chunks to threads
numba/np/ufunc/dufunc.py - Special ufunc that can compile new implementations at call time
numba/np/ufunc/ufuncbuilder.py - Top-level orchestration of ufunc/gufunc compiler pipeline
numba/np/ufunc/sigparse.py - Parser for generalized ufunc indexing signatures

numba/np/ufunc/parallel.py - Codegen for parallel target

numba/np/ufunc/array_exprs.py - Rewrite pass for turning array expressions in regular functions into ufuncs
numba/np/ufunc/wrappers.py - Wrap scalar function kernel with loops

numba/np/ufunc/workqueue.h | numba/np/ufunc/workqueue.c - Threading backend based on pthreads/Windows
threads and queues

numba/np/ufunc/omppool.cpp - Threading backend based on OpenMP
numba/np/ufunc/tbbpool.cpp - Threading backend based on TBB

Unit Tests (CPU)

CPU unit tests (GPU target unit tests listed in later sections

runtests.py - Convenience script that launches test runner and turns on full compiler tracebacks
run_coverage.py - Runs test suite with coverage tracking enabled

.coveragerc - Coverage.py configuration

numba/runtests.py - Entry point to unittest runner

numba/testing/_runtests.py - Implementation of custom test runner command line interface
numba/tests/test_* - Test cases

numba/tests/*_usecases.py - Python functions compiled by some unit tests
numba/tests/support.py - Helper functions for testing and special TestCase implementation
numba/tests/dummy_module.py - Module used in test_dispatcher.py
numba/tests/npyufunc - ufunc / gufunc compiler tests

numba/testing - Support code for testing

numba/testing/loader.py - Find tests on disk

numba/testing/notebook.py - Support for testing notebooks

numba/testing/main.py - Numba test runner
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Command Line Utilities

bin/numba - Command line stub, delegates to main in numba_entry.py
numba/misc/numba_entry.py - Main function for numba command line tool

numba/pycc - Ahead of time compilation of functions to shared library extension
numba/pycc/__init__.py - Main function for pycc command line tool

numba/pycc/cc.py - User-facing API for tagging functions to compile ahead of time
numba/pycc/compiler.py - Compiler pipeline for creating standalone Python extension modules
numba/pycc/llvm_types.py - Aliases to LLVM data types used by compiler.py
numba/pycc/pycc - Stub to call main function. Is this still used?

numba/pycc/modulemixin.c - C file compiled into every compiled extension. Pulls in C source from Numba core
that is needed to make extension standalone

numba/pycc/platform.py - Portable interface to platform-specific compiler toolchains

numba/pycc/decorators.py - Deprecated decorators for tagging functions to compile. Use cc.py instead.

CUDA GPU Target

Note that the CUDA target does reuse some parts of the CPU target.

numba/cuda/ - The implementation of the CUDA (NVIDIA GPU) target and associated unit tests
numba/cuda/decorators.py - Compiler decorators for CUDA kernels and device functions
numba/cuda/dispatcher.py - Dispatcher for CUDA JIT functions

numba/cuda/printimpl.py - Special implementation of device printing

numba/cuda/libdevice.py - Registers libdevice functions

numba/cuda/kernels/ - Custom kernels for reduction and transpose

numba/cuda/device_init.py - Initializes the CUDA target when imported
numba/cuda/compiler.py - Compiler pipeline for CUDA target

numba/cuda/intrinsic_wrapper.py - CUDA device intrinsics (shuffle, ballot, etc)

numba/cuda/initialize.py - Defered initialization of the CUDA device and subsystem. Called only when user
imports numba.cuda

numba/cuda/simulator_init.py - Initalizes the CUDA simulator subsystem (only when user requests it with env
var)

numba/cuda/random.py - Implementation of random number generator

numba/cuda/api.py - User facing APIs imported into numba.cuda.*

numba/cuda/stubs.py - Python placeholders for functions that only can be used in GPU device code
numba/cuda/simulator/ - Simulate execution of CUDA kernels in Python interpreter
numba/cuda/vectorizers.py - Subclasses of ufunc/gufunc compilers for CUDA

numba/cuda/args.py - Management of kernel arguments, including host<->device transfers
numba/cuda/target.py - Typing and target contexts for GPU

numba/cuda/cudamath.py - Type signatures for math functions in CUDA Python
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* numba/cuda/errors.py - Validation of kernel launch configuration

* numba/cuda/nvvmutils.py - Helper functions for generating NVVM-specific IR

» numba/cuda/testing.py - Support code for creating CUDA unit tests and capturing standard out
e numba/cuda/cudadecl.py - Type signatures of CUDA API (threadldx, blockldx, atomics) in Python on GPU
e numba/cuda/cudaimpl.py - Implementations of CUDA API functions on GPU

* numba/cuda/codegen.py - Code generator object for CUDA target

* numba/cuda/cudadrv/ - Wrapper around CUDA driver API

* numba/cuda/tests/ - CUDA unit tests, skipped when CUDA is not detected

» numba/cuda/tests/cudasim/ - Tests of CUDA simulator

» numba/cuda/tests/nocuda/ - Tests for NVVM functionality when CUDA not present

e numba/cuda/tests/cudapy/ - Tests of compiling Python functions for GPU

* numba/cuda/tests/cudadrv/ - Tests of Python wrapper around CUDA API

6.4 Numba architecture

6.4.1 Introduction

Numba is a compiler for Python bytecode with optional type-specialization.

Suppose you enter a function like this into the standard Python interpreter (henceforward referred to as “CPython”):

def add(a, b):
return a + b

The interpreter will immediately parse the function and convert it into a bytecode representation that describes how the
CPython interpreter should execute the function at a low level. For the example above, it looks something like this:

>>> import dis

>>> dis.dis(add)

2 O LOAD_FAST 0 (a)
3 LOAD_FAST 1 (b)
6 BINARY_ADD
7 RETURN_VALUE

CPython uses a stack-based interpreter (much like an HP calculator), so the code first pushes two local variables onto
the stack. The BINARY_ADD opcode pops the top two arguments off the stack and makes a Python C API function call
that is equivalent to calling a.__add__(b). The result is then pushed onto the top of the interpreter stack. Finally, the
RETURN_VALUE opcode returns value on the top of the stack as the result of the function call.

Numba can take this bytecode and compile it to machine code that performs the same operations as the CPython
interpreter, treating a and b as generic Python objects. The full semantics of Python are preserved, and the compiled
function can be used with any kind of objects that have the add operator defined. When a Numba function is compiled
this way, we say that it has been compiled in object mode, because the code still manipulates Python objects.

Numba code compiled in object mode is not much faster than executing the original Python function in the CPython
interpreter. However, if we specialize the function to only run with certain data types, Numba can generate much
shorter and more efficient code that manipulates the data natively without any calls into the Python C API. When code
has been compiled for specific data types so that the function body no longer relies on the Python runtime, we say the
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function has been compiled in nopython mode. Numeric code compiled in nopython mode can be hundreds of times
faster than the original Python.

6.4.2 Compiler architecture

Like many compilers, Numba can be conceptually divided into a frontend and a backend.

The Numba frontend comprises the stages which analyze the Python bytecode, translate it to Numba IR and perform
various transformations and analysis steps on the IR. One of the key steps is 7ype inference. The frontend must succeed
in typing all variables unambiguously in order for the backend to generate code in nopython mode, because the backend
uses type information to match appropriate code generators with the values they operate on.

The Numba backend walks the Numba IR resulting from the frontend analyses and exploits the type information de-
duced by the type inference phase to produce the right LLVM code for each encountered operation. After LLVM code
is produced, the LLVM library is asked to optimize it and generate native processor code for the final, native function.

There are other pieces besides the compiler frontend and backend, such as the caching machinery for JIT functions.
Those pieces are not considered in this document.

6.4.3 Contexts

Numba is quite flexible, allowing it to generate code for different hardware architectures like CPUs and GPUs. In order
to support these different applications, Numba uses a typing context and a target context.

A typing context is used in the compiler frontend to perform type inference on operations and values in the function.
Similar typing contexts could be used for many architectures because for nearly all cases, typing inference is hardware-
independent. However, Numba currently has a different typing context for each target.

A target context is used to generate the specific instruction sequence required to operate on the Numba types identified
during type inference. Target contexts are architecture-specific and are flexible in defining the execution model and
available Python APIs. For example, Numba has a “cpu” and a “cuda” context for those two kinds of architecture, and
a “parallel” context which produces multithreaded CPU code.

6.4.4 Compiler stages

The jit() decorator in Numba ultimately calls numba.compiler.compile_extra() which compiles the Python
function in a multi-stage process, described below.

Stage 1: Analyze bytecode

At the start of compilation, the function bytecode is passed to an instance of the Numba interpreter (numba.
interpreter). The interpreter object analyzes the bytecode to find the control flow graph (numba.controlflow).
The control flow graph (CFG) describes the ways that execution can move from one block to the next inside the function
as a result of loops and branches.

The data flow analysis (numba .dataflow) takes the control flow graph and traces how values get pushed and popped
off the Python interpreter stack for different code paths. This is important to understand the lifetimes of variables on
the stack, which are needed in Stage 2.

If you set the environment variable NUMBA_DUMP_CFG to 1, Numba will dump the results of the control flow graph
analysis to the screen. Our add () example is pretty boring, since there is only one statement block:
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CFG adjacency lists:
{0: 13

CFG dominators:

{0: set([0])}

CFG post-dominators:
{0: set([0])}

CFG back edges: []
CFG loops:

{1

CFG node-to-loops:
{0: [1}

A function with more complex flow control will have a more interesting control flow graph. This function:

def doloops(n):
acc = 0
for i in range(n):
acc += 1
if n == 10:
break
return acc

compiles to this bytecode:

9 0 LOAD_CONST
3 STORE_FAST

10 6 SETUP_LOOP
9 LOAD_GLOBAL
12 LOAD_FAST
15 CALL_FUNCTION
18 GET_ITER
>> 19 FOR_ITER
22 STORE_FAST

11 25 LOAD_FAST
28 LOAD_CONST
31 INPLACE_ADD
32 STORE_FAST

12 35 LOAD_FAST
38 LOAD_CONST
41 COMPARE_OP
44 POP_JUMP_IF_FALSE

13 47 BREAK_LOOP
48 JUMP_ABSOLUTE
51 JUMP_ABSOLUTE

>> 54 POP_BLOCK

14 >> 55 LOAD_FAST
58 RETURN_VALUE

®

(acc)
(to 55)

(range)

m)

(to 54)
@

(acc)

2 (D

O N WS

19
19

(acc)
m

(10)
=)

(acc)

The corresponding CFG for this bytecode is:
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CFG
{0:

adjacency lists:
[6], 6: [19], 19:
CFG dominators:
{0: set([0D]),

6: set([®, 6]),

19: set ([0, 6,

22: set([0, 6,

47: set ([0, 6,

54: set([®, 6, 19, 54]),

55: set([0, 6, 19, 551)}
CFG post-dominators:

{0: set([0®, 6, 19, 55]),

6: set([6, 19, 55]),

19: set([19, 551),

22: set([22, 551),

47: set([47, 551D,

54: set([54, 551),

55: set([55]1)}
CFG back edges:
CFG loops:

{19: Loop(entries=set([6]), exits=set([54, 47]), header=19, body=set([19, 22]))}
CFG node-to-loops:
{0: [1, 6: [1, 19:

[54, 22], 22: [19, 47], 47: [55], 54: [55], 55: [1}

191),
19, 221D,
19, 22, 471D,

(22, 19]

[19], 22: [19], 47: [1, 54: [1, 55: [1}

The numbers in the CFG refer to the bytecode offsets shown just to the left of the opcode names above.

Stage 2: Generate the Numba IR

Once the control flow and data analyses are complete, the Numba interpreter can step through the bytecode and translate
it into an Numba-internal intermediate representation. This translation process changes the function from a stack
machine representation (used by the Python interpreter) to a register machine representation (used by LLVM).

Although the IR is stored in memory as a tree of objects, it can be serialized to a string for debugging. If you set the
environment variable NUMBA_DUMP_IR equal to 1, the Numba IR will be dumped to the screen. For the add () function
described above, the Numba IR looks like:

label 0:
a = arg(0®, name=a) ['a']
b = arg(l, name=b) ['b']
§0.3 =a+b ['$06.3', 'a', 'b']
del b [1]
del a []
$0.4 = cast(value=$0.3) ['$0.3", '$0.4']
del $0.3 []
return $0.4 ['$0.4']

The del instructions are produced by Live Variable Analysis. Those instructions ensure references are not leaked. In
nopython mode, some objects are tracked by the Numba runtime and some are not. For tracked objects, a dereference
operation is emitted; otherwise, the instruction is an no-op. In object mode each variable contains an owned reference
to a PyObject.
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Stage 3: Rewrite untyped IR

Before running type inference, it may be desired to run certain transformations on the Numba IR. One such example is
to detect raise statements which have an implicitly constant argument, so as to support them in nopython mode. Let’s
say you compile the following function with Numba:

def f(x):
if x ==
raise ValueError("x cannot be zero")

If you set the NUMBA_DUMP_IR environment variable to 1, you’ll see the IR being rewritten before the type inference
phase:

REWRITING:
del $0.3 []
$12.1 = global(ValueError: <class 'ValueError'>) ['$12.1']
$constl2.2 = const(str, x cannot be zero) ['$constl2.2']

$12.3 = call $12.1($constl2.2) ['$12.1"', '$12.3', '$constl2.2']
del $constl2.2 []

del $12.1 [1]

raise $12.3 ['$12.3']

del $0.3 [1]

$12.1 = global(ValueError: <class 'ValueError'>) ['$12.1']
$constl2.2 = const(str, x cannot be zero) ['$constl2.2']

$12.3 = call $12.1($constl12.2) ['$12.1", "$12.3", '$constl2.2']
del $constl2.2 [1
del $12.1 [1]

raise <class 'ValueError'>('x cannot be zero') []

Stage 4: Infer types

Now that the Numba IR has been generated, type analysis can be performed. The types of the function arguments can
be taken either from the explicit function signature given in the @jit decorator (such as @jit('float64(float64,
float64) ")), or they can be taken from the types of the actual function arguments if compilation is happening when
the function is first called.

The type inference engine is found in numba. typeinfer. Its job is to assign a type to every intermediate variable in
the Numba IR. The result of this pass can be seen by setting the NUMBA_DUMP_ANNOTATION environment variable to

# File: archex.py
# --- LINE 4 ---

@jit(nopython=True)
# --- LINE 5 ---
def add(a, b):

# --—- LINE 6 —--
# label 0

(continues on next page)
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(continued from previous page)

# a = arg(0, name=a) :: int64

# b = arg(1, name=b) :: int64

# $0.3 =a + b :: int64

# del b

# del a

# $0.4 = cast(value=$0.3) :: int64
# del $0.3

# return $0.4

return a + b

If type inference fails to find a consistent type assignment for all the intermediate variables, it will label every variable
as type pyobject and fall back to object mode. Type inference can fail when unsupported Python types, language
features, or functions are used in the function body.

Stage 5a: Rewrite typed IR

This pass’s purpose is to perform any high-level optimizations that still require, or could at least benefit from, Numba
IR type information.

One example of a problem domain that isn’t as easily optimized once lowered is the domain of multidimensional array
operations. When Numba lowers an array operation, Numba treats the operation like a full ufunc kernel. During
lowering a single array operation, Numba generates an inline broadcasting loop that creates a new result array. Then
Numba generates an application loop that applies the operator over the array inputs. Recognizing and rewriting these
loops once they are lowered into LLVM is hard, if not impossible.

An example pair of optimizations in the domain of array operators is loop fusion and shortcut deforestation. When the
optimizer recognizes that the output of one array operator is being fed into another array operator, and only to that array
operator, it can fuse the two loops into a single loop. The optimizer can further eliminate the temporary array allocated
for the initial operation by directly feeding the result of the first operation into the second, skipping the store and load
to the intermediate array. This elimination is known as shortcut deforestation. Numba currently uses the rewrite pass
to implement these array optimizations. For more information, please consult the “Case study: Array Expressions”
subsection, later in this document.

One can see the result of rewriting by setting the NUMBA_DUMP_IR environment variable to a non-zero value (such as
1). The following example shows the output of the rewrite pass as it recognizes an array expression consisting of a
multiply and add, and outputs a fused kernel as a special operator, arrayexpr():

REWRITING:

a® = arg(®, name=a0) ['a®']

al = arg(l, name=al) ['al']

a2 = arg(2, name=a2) ['a2']

$0.3 = a® * al ['$0.3"', 'a®', 'al']
del a1l [1]

del a0 []

$0.5 = $0.3 + a2 ['$06.3', '$0.5"', 'a2']
del a2 []

del $0.3 []

$0.6 = cast(value=$0.5) ['$0.5", '$0.6']

del $0.5 []

return $0.6 ['$0.6']

(continues on next page)
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(continued from previous page)

a0 = arg(®, name=a0®) ['a®']

al = arg(l, name=al) ['al']

a2 = arg(2, name=a2) ['a2']

$0.5 = arrayexpr(ty=array(float64, 1d, C), expr=C'+', [('*', [Var(a®, test.py (14)),.
—Var(al, test.py (14))]1), Var(a2, test.py (14))1)) ['$6.5', 'a®', 'al', 'a2']
del a0 [1]

del al []

del a2 [1

$0.6 = cast(value=$0.5) ['$0.5", '$0.6']

del $0.5 []

return $0.6 ['$0.6']

Following this rewrite, Numba lowers the array expression into a new ufunc-like function that is inlined into a single
loop that only allocates a single result array.

Stage 5b: Perform Automatic Parallelization

This pass is only performed if the parallel option in the jit () decorator is set to True. This pass finds parallelism
implicit in the semantics of operations in the Numba IR and replaces those operations with explicitly parallel repre-
sentations of those operations using a special parfor operator. Then, optimizations are performed to maximize the
number of parfors that are adjacent to each other such that they can then be fused together into one parfor that takes
only one pass over the data and will thus typically have better cache performance. Finally, during lowering, these parfor
operators are converted to a form similar to guvectorize to implement the actual parallelism.

The automatic parallelization pass has a number of sub-passes, many of which are controllable using a dictionary of
options passed via the parallel keyword argument to jit ():

{ 'comprehension': True/False, # parallel comprehension

'prange’: True/False, # parallel for-loop
'numpy ' : True/False, # parallel numpy calls
'reduction’: True/False, # parallel reduce calls
'setitem': True/False, # parallel setitem
'stencil': True/False, # parallel stencils
'fusion': True/False, # enable fusion or not

The default is set to True for all of them. The sub-passes are described in more detail in the following paragraphs.

1. CFG Simplification Sometimes Numba IR will contain chains of blocks containing no loops which are merged
in this sub-pass into single blocks. This sub-pass simplifies subsequent analysis of the IR.

2. Numpy canonicalization Some Numpy operations can be written as operations on Numpy objects (e.g. arr.
sum()), or as calls to Numpy taking those objects (e.g. numpy . sum(arr)). This sub-pass converts all such
operations to the latter form for cleaner subsequent analysis.

3. Array analysis A critical requirement for later parfor fusion is that parfors have identical iteration spaces and
these iteration spaces typically correspond to the sizes of the dimensions of Numpy arrays. In this sub-
pass, the IR is analyzed to determine equivalence classes for the dimensions of Numpy arrays. Consider
the example, a = b + 1, where a and b are both Numpy arrays. Here, we know that each dimension of
a must have the same equivalence class as the corresponding dimension of b. Typically, routines rich in
Numpy operations will enable equivalence classes to be fully known for all arrays created within a function.

Array analysis will also reason about size equivalence for slice selection, and boolean array masking (one
dimensional only). For example, it is able to infer that a[1 : n-1] is of the same size asb[0® : n-2].
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Array analysis may also insert safety assumptions to ensure pre-conditions related to array sizes are met
before an operation can be parallelized. For example, np.dot (X, w) between a 2-D matrix X and a 1-D
vector w requires that the second dimension of X is of the same size as w. Usually this kind of runtime check
is automatically inserted, but if array analysis can infer such equivalence, it will skip them.

Users can even help array analysis by turning implicit knowledge about array sizes into explicit assertions.
For example, in the code below:

@numba.njit(parallel=True)
def logistic_regression(Y, X, w, iterations):
assert(X.shape == (Y.shape[0], w.shape[0]))
for i in range(iterations):
w -= np.dot(((1.0 / (1.0 + np.exp(-Y * np.dot(X, w))) - 1.0) * Y), X)
return w

Making the explicit assertion helps eliminate all bounds checks in the rest of the function.

4. prange() to parfor The use of prange (Explicit Parallel Loops) in a for loop is an explicit indication from the
programmer that all iterations of the for loop can execute in parallel. In this sub-pass, we analyze the CFG
to locate loops and to convert those loops controlled by a prange object to the explicit parfor operator. Each
explicit parfor operator consists of:

a. A list of loop nest information that describes the iteration space of the parfor. Each entry in the loop
nest list contains an indexing variable, the start of the range, the end of the range, and the step value
for each iteration.

b. An initialization (init) block which contains instructions to be executed one time before the parfor
begins executing.

c. Aloop body comprising a set of basic blocks that correspond to the body of the loop and compute one
point in the iteration space.

d. The index variables used for each dimension of the iteration space.

For parfor pranges, the loop nest is a single entry where the start, stop, and step fields come from the
specified prange. The init block is empty for prange parfors and the loop body is the set of blocks in the
loop minus the loop header.

With parallelization on, array comprehensions (List comprehension) will also be translated to prange so as
to run in parallel. This behavior be disabled by setting parallel={'comprehension': False}.

Likewise, the overall prange to parfor translation can be disabled by setting parallel={'prange':
False}, in which case prange is treated the same as range.

5. Numpy to parfor In this sub-pass, Numpy functions such as ones, zeros, dot, most of the random number
generating functions, arrayexprs (from Section Stage 5a: Rewrite typed IR), and Numpy reductions are
converted to parfors. Generally, this conversion creates the loop nest list, whose length is equal to the
number of dimensions of the left-hand side of the assignment instruction in the IR. The number and size
of the dimensions of the left-hand-side array is taken from the array analysis information generated in sub-
pass 3 above. An instruction to create the result Numpy array is generated and stored in the new parfor’s
init block. A basic block is created for the loop body and an instruction is generated and added to the end
of that block to store the result of the computation into the array at the current point in the iteration space.
The result stored into the array depends on the operation that is being converted. For example, for ones,
the value stored is a constant 1. For calls to generate a random array, the value comes from a call to the
same random number function but with the size parameter dropped and therefore returning a scalar. For
arrayexpr operators, the arrayexpr tree is converted to Numba IR and the value at the root of that expression
tree is used to write into the output array. The translation from Numpy functions and arrayexpr operators
to parfor can be disabled by setting parallel={"'numpy': False}.
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For reductions, the loop nest list is similarly created using the array analysis information for the array being
reduced. In the init block, the initial value is assigned to the reduction variable. The loop body consists
of a single block in which the next value in the iteration space is fetched and the reduction operation is
applied to that value and the current reduction value and the result stored back into the reduction value.
The translation of reduction functions to parfor can be disabled by setting parallel={"'reduction':
False}.

Setting the NUMBA_DEBUG_ARRAY_OPT_STATS environment variable to 1 will show some statistics about
parfor conversions in general.

6. Setitem to parfor Setting a range of array elements using a slice or boolean array selection can also run in

parallel. Statement such as A[P] = B[Q] (or a simpler case A[P] = c, where c is a scalar) is translated
to parfor if one of the following conditions is met:

a. P and Q are slices or multi-dimensional selector involving scalar and slices, and A[P] and B[Q] are
considered size equivalent by array analysis. Only 2-value slice/range is supported, 3-value with a step
will not be translated to parfor.

b. P and Q are the same boolean array.

This translation can be disabled by setting parallel={'setitem': False}.

7. Simplification Performs a copy propagation and dead code elimination pass.

8. Fusion This sub-pass first processes each basic block and does a reordering of the instructions within the block

with the goal of pushing parfors lower in the block and lifting non-parfors towards the start of the block. In
practice, this approach does a good job of getting parfors adjacent to each other in the IR, which enables
more parfors to then be fused. During parfor fusion, each basic block is repeatedly scanned until no further
fusion is possible. During this scan, each set of adjacent instructions are considered. Adjacent instructions
are fused together if:

a. they are both parfors

b. the parfors’ loop nests are the same size and the array equivalence classes for each dimension of the
loop nests are the same, and

c. the first parfor does not create a reduction variable used by the second parfor.

The two parfors are fused together by adding the second parfor’s init block to the first’s, merging the two
parfors’ loop bodies together and replacing the instances of the second parfor’s loop index variables in the
second parfor’s body with the loop index variables for the first parfor. Fusion can be disabled by setting
parallel={"fusion': False}.

Setting the NUMBA_DEBUG_ARRAY_OPT_STATS environment variable to 1 will show some statistics about
parfor fusions.

9. Push call objects and compute parfor parameters In the lowering phase described in Section Stage 6a: Gen-

erate nopython LLVM IR, each parfor becomes a separate function executed in parallel in guvectorize
(The @ guvectorize decorator) style. Since parfors may use variables defined previously in a function, when
those parfors become separate functions, those variables must be passed to the parfor function as param-
eters. In this sub-pass, a use-def scan is made over each parfor body and liveness information is used to
determine which variables are used but not defined by the parfor. That list of variables is stored here in the
parfor for use during lowering. Function variables are a special case in this process since function variables
cannot be passed to functions compiled in nopython mode. Instead, for function variables, this sub-pass
pushes the assignment instruction to the function variable into the parfor body so that those do not need to
be passed as parameters.

To see the intermediate IR between the above sub-passes and other debugging information, set the
NUMBA_DEBUG_ARRAY_OPT environment variable to 1. For the example in Section Stage 5a: Rewrite typed
IR, the following IR with a parfor is generated during this stage:
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label 0:
a® = arg(0®, name=a0)

$consta®0.1 = const(int, 0)

al = arg(l, name=al)

$constal®.4 = const(int, 0)

a2 = arg(2, name=a2)
$consta20.7 = const(int, 0)
---begin parfor 0---
index_var = parfor_index.9

init block:

—attr.11', "$np_g_var.10']

< '"$np_typ_var.12"']

—'a®sized.2']
label 1:

~"', 'a®', 'parfor_index.9']

~"', 'al', 'parfor_index.9']

—', 'a2', 'parfor_index.9']

- 'parfor_index.9']

----end parfor 0----
$0.6 = cast(value=$0.5)
return $0.6

~typ_var.12, test2.py (7))]1) ['$0.5",

$arg_out_var.14 = $arg_out_var.15
—.$arg_out_var.15', '$arg_out_var.16']
$arg_out_var.17 = getitem(value=a2, index=parfor_index.9) ['$arg_out_var.17

* $arg_out_var.16 ['$arg_out_var.14',

$expr_out_var.13 = $arg_out_var.14 + $arg_out_var.1l7 ['$arg_out_var.14',
—$%arg_out_var.17', 'S$expr_out_var.13']
$0.5[parfor_index.9] = $expr_out_var.13 ['$0.5', 'S$expr_out_var.13',

['a0']

a0_sh_attr®.0 = getattr(attr=shape, value=a®) ['a®', 'a®_sh_attr0.0']

['$consta®0.1']

a®size0.2 = static_getitem(value=a®_sh_attr0.0, index_var=$constad®0.1,.
—index=0) ['$consta®0.1', 'al®_sh_attr0®.0', 'a®size0.2']

['al']

al_sh_attr®.3 = getattr(attr=shape, value=al) ['al', 'al_sh_attr0.3']

['$constal®.4']

alsize0.5 = static_getitem(value=al_sh_attr0.3, index_var=$constal®.4,.
—index=0) ['$constal®.4', 'al_sh_attr®.3', 'alsize0.5']

['a2']

a2_sh_attr0.6 = getattr(attr=shape, value=a2) ['a2', 'a2_sh_attr0.6']

['$consta20.7']

a2size0.8 = static_getitem(value=a2_sh_attr0.6, index_var=$consta20.7,.
—index=0) ['$consta20.7', 'a2_sh_attr®.6', 'a2size0.8']
LoopNest (index_variable=parfor_index.9, range=0,a0size0.2,1 correlation=5)
$np_g_var.10 = global(np: <module 'numpy' from '/usr/local/lib/python3.5/
—.dist-packages/numpy/__init__.py'>) ['$np_g_var.10']
fempty_attr_attr.11 = getattr(attr=empty, value=$np_g_var.10) ['§empty_attr_
$np_typ_var.12 = getattr(attr=float64, value=$np_g var.10) ['$np_g_var.10',
$0.5 = call S$empty_attr_attr.11(a®size0.2, $np_typ_var.12, kws=(), func=
—$empty_attr_attr.11, vararg=None, args=[Var(a0size®.2, test2.py (7)), Var($np_
'$empty_attr_attr.11', '$np_typ_var.12',

$arg_out_var.15 = getitem(value=a®, index=parfor_index.9) ['$arg_out_var.15

$arg_out_var.16 = getitem(value=al, index=parfor_index.9) ['$arg_out_var.1l6

['$0.5", '$0.6']
['$0.6']
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Stage 6a: Generate nopython LLVM IR

If type inference succeeds in finding a Numba type for every intermediate variable, then Numba can (potentially)
generate specialized native code. This process is called lowering. The Numba IR tree is translated into LLVM IR by
using helper classes from llvmlite. The machine-generated LLVM IR can seem unnecessarily verbose, but the LLVM
toolchain is able to optimize it quite easily into compact, efficient code.

The basic lowering algorithm is generic, but the specifics of how particular Numba IR nodes are translated to LLVM
instructions is handled by the target context selected for compilation. The default target context is the “cpu” context,
defined in numba. targets.cpu.

The LLVM IR can be displayed by setting the NUMBA_DUMP_LLVHM environment variable to 1. For the “cpu” context,
our add () example would look like:

define i32 @"__main__.add$1.int64.int64"(i64* %"retptr",
{i8*, i32}** %"excinfo",
i8* %"env",
i64 %"arg.a", i64 %"arg.b")

entry:
%"a" = alloca i64
%"b" = alloca 164
%"$0.3" = alloca i64
%"$0.4" = alloca i64
br label %"B0"

BO:
store i64 %"arg.a", i164* %"a"
store i64 %"arg.b", i64* %"b"
%".8" = load i64* %"a"
%".9" = load i64* %"b"
%".10" = add i64 %".8", %".9"
store i64 %".10", i64* %"$0.3"
%".12" = load i64* %"$0.3"
store i64 %".12", i64* %"$0.4"
%".14" = load i64* %"$0.4"
store i64 %".14", i64* %"retptr"
ret 132 0

The post-optimization LLVM IR can be output by setting NUMBA_DUMP_OPTIMIZED to 1. The optimizer shortens the
code generated above quite significantly:

define i32 @"__main__.add$1.int64.int64"(i64* nocapture %retptr,
{ i8*, 132 }** nocapture readnone %excinfo,
i8* nocapture readnone %env,
i64 %arg.a, i64 %arg.b)

{
entry:
%.10 = add i64 %arg.b, %arg.a
store i64 %.10, i64* %retptr, align 8
ret i32 0
}

If created during Stage 5b: Perform Automatic Parallelization, parfor operations are lowered in the following manner.
First, instructions in the parfor’s init block are lowered into the existing function using the normal lowering code.
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Second, the loop body of the parfor is turned into a separate GUFunc. Third, code is emitted for the current function
to call the parallel GUFunc.

To create a GUFunc from the parfor body, the signature of the GUFunc is created by taking the parfor parameters as
identified in step 9 of Stage Stage 5b: Perform Automatic Parallelization and adding to that a special schedule parameter,
across which the GUFunc will be parallelized. The schedule parameter is in effect a static schedule mapping portions
of the parfor iteration space to Numba threads and so the length of the schedule array is the same as the number of
configured Numba threads. To make this process easier and somewhat less dependent on changes to Numba IR, this
stage creates a Python function as text that contains the parameters to the GUFunc and iteration code that takes the
current schedule entry and loops through the specified portion of the iteration space. In the body of that loop, a special
sentinel is inserted for subsequent easy location. This code that handles the processing of the iteration space is then
eval’ed into existence and the Numba compiler’s run_frontend function is called to generate IR. That IR is scanned
to locate the sentinel and the sentinel is replaced with the loop body of the parfor. Then, the process of creating the
parallel GUFunc is completed by compiling this merged IR with the Numba compiler’s compile_ir function.

To call the parallel GUFunc, the static schedule must be created. Code is inserted to call a function named
do_scheduling. This function is called with the size of each of the parfor’s dimensions and the number N of con-
figured Numba threads (NUMBA_NUM_THREADS). The do_scheduling function will divide the iteration space into N
approximately equal sized regions (linear for 1D, rectangular for 2D, or hyperrectangles for 3+D) and the resulting
schedule is passed to the parallel GUFunc. The number of threads dedicated to a given dimension of the full iteration
space is roughly proportional to the ratio of the size of the given dimension to the sum of the sizes of all the dimensions
of the iteration space.

Parallel reductions are not natively provided by GUFuncs but the parfor lowering strategy allows us to use GUFuncs
in a way that reductions can be performed in parallel. To accomplish this, for each reduction variable computed by a
parfor, the parallel GUFunc and the code that calls it are modified to make the scalar reduction variable into an array
of reduction variables whose length is equal to the number of Numba threads. In addition, the GUFunc still contains
a scalar version of the reduction variable that is updated by the parfor body during each iteration. One time at the
end of the GUFunc this local reduction variable is copied into the reduction array. In this way, false sharing of the
reduction array is prevented. Code is also inserted into the main function after the parallel GUFunc has returned that
does a reduction across this smaller reduction array and this final reduction value is then stored into the original scalar
reduction variable.

The GUFunc corresponding to the example from Section Stage 5b: Perform Automatic Parallelization can be seen
below:

label 0:

sched.29 = arg(®, name=sched) ['sched.29']

a® = arg(l, name=a®) ['a®']

al = arg(2, name=al) ['al']

a2 = arg(3, name=a2) ['a2']

_0_5 = arg(4, name=_0_5) ['_0_5"]

$3.1.24 = global(range: <class 'range'>) ['$3.1.24']

$const3.3.21 = const(int, O) ['"$const3.3.21"]

$3.4.23 = getitem(value=sched.29, index=$const3.3.21) ['$3.4.23', '$const3.3.21',
— "sched.29']

$const3.6.28 = const(int, 1) ['$const3.6.28"]

$3.7.27 = getitem(value=sched.29, index=$const3.6.28) ['$3.7.27', '$const3.6.28',
—'sched.29']

$const3.8.32 = const(int, 1) ['$const3.8.32"]

$3.9.31 = $3.7.27 + $const3.8.32 ['$3.7.27", "$3.9.31', '$const3.8.32']

$3.10.36 = call $3.1.24($3.4.23, $3.9.31, kws=[], func=$3.1.24, vararg=None,.
—.args=[Var($3.4.23, <string> (2)), Var($3.9.31, <string> (2))]1) ['$3.1.24"', '$3.10.36",
~'$3.4.23", '$3.9.31']

(continues on next page)
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$3.11.30 = getiter(value=$3.10.36) ['$3.10.36', '"$3.11.30']
jump 1 [1

label 1:
$28.2.35 = iternext(value=$3.11.30) ['$28.2.35", '$3.11.30']

$28.3.25 = pair_first(value=$28.2.35) ['$28.2.35", '$28.3.25"']

$28.4.40 = pair_second(value=$28.2.35) ['$28.2.35"', '$28.4.40']

branch $28.4.40, 2, 3 ['$28.4.40"']
label 2:

$arg_out_var.1l5 = getitem(value=a®, index=$28.3.25) ['$28.3.25', '$arg_out_var.15',
~'a0']

$arg_out_var.16 = getitem(value=al, index=$28.3.25) ['$28.3.25', '$arg_ out_var.16',
f%'al']

$arg_out_var.14 = $arg_out_var.1l5 * $arg_out_var.16 ['$arg_out_var.14', 'S$arg_out_
—var.15', '$arg_out_var.16']

$arg_out_var.17 = getitem(value=a2, index=$28.3.25) ['$28.3.25', '$arg out_var.17',
~'a2']

$expr_out_var.13 = $arg_out_var.14 + $arg_out_var.17 ['$arg_out_var.14', '$arg_out_
—var.17', 'S$expr_out_var.13']

_0_5[%$28.3.25] = $expr_out_var.13 ['$28.3.25', 'S$expr_out_var.13', '_0_5']

jump 1 [1
label 3:

$const44.1.33 = const(NoneType, None) ['$const44.1.33']

$44.2.39 = cast(value=$const44.1.33) ['$44.2.39', '$const44.1.33']

return $44.2.39 ['$44.2.39']

Stage 6b: Generate object mode LLVM IR

If type inference fails to find Numba types for all values inside a function, the function will be compiled in object mode.
The generated LLVM will be significantly longer, as the compiled code will need to make calls to the Python C API to
perform basically all operations. The optimized LLVM for our example add () function is:

@PyExc_SystemError = external global i8
@".const.Numba_internal_error:_object_mode_function_called_without_an_environment" =,
—»internal constant [73 x i8] c"Numba internal error: object mode function called.
—without an environment\00"

@".const.name_'a'_is_not_defined" = internal constant [24 x i8] c'name 'a' is not.,
—defined\00"

@PyExc_NameError = external global i8

@".const.name_'b'_is_not_defined" = internal constant [24 x i8] c'"name 'b' is not.
—defined\00"

define i32 @"__main__.add$1.pyobject.pyobject”(i8** nocapture %retptr, { i8%, i32 }*¥*_
—nocapture readnone %excinfo, i8* readnone %env, i8+* %arg.a, i8* %arg.b) {
entry:

%.6 = icmp eq i8* %env, null

br il %.6, label %entry.if, label %entry.endif, !prof !0

entry.if: ; preds = %entry
tail call void @PyErr_SetString(i8* @PyExc_SystemError, i18* getelementptr inbounds..
- ([73 x i8]* @".const.Numba_internal_error:_object_mode_function_called_without_an_

" NN
—environment'; 1646, 1646)) (continues on next page)
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ret i32 -1

entry.endif: ; preds = %entry
tail call void @Py_IncRef(i8* %arg.a)
tail call void @Py_IncRef(i8%* %arg.b)
%.21 = icmp eq i8* %arg.a, null
br il %.21, label %B0.if, label %B0.endif, !prof !0

BO.if: ; preds = %entry.endif

tail call void @PyErr_SetString(i8* @PyExc_NameError, i8* getelementptr inbounds ([24.
X 18]* @".const.name_'a'_is_not_defined", i64 0, 164 0))

tail call void @Py_DecRef(i8* null)

tail call void @Py_DecRef(i8* %arg.b)

ret i32 -1

BO®.endif: ; preds = %entry.endif
%.30 = icmp eq i8* %arg.b, null
br il %.30, label %B0®.endifl, label %BO®.endifl.1, !prof !0

BO®.endifl: ; preds = %B0.endif

tail call void @PyErr_SetString(i8* @PyExc_NameError, i8* getelementptr inbounds ([24.
X 18]* @".const.name_'b'_is_not_defined", i64 0, 164 0))

tail call void @Py_DecRef(i8* %arg.a)

tail call void @Py_DecRef(i8* null)

ret i32 -1

BO®.endifl.1: ; preds = %B0.endif
%.38 = tail call i8* @PyNumber_Add(i8* %arg.a, i8* %arg.b)
%.39 = icmp eq i8* %.38, null
br il %.39, label %BO.endif1l.1.if, label %BO.endifl.l.endif, !prof !0

BO®.endifl.1.if: ; preds = %B0.endifl.1
tail call void @Py_DecRef(i8* %arg.a)
tail call void @Py_DecRef(i8* %arg.b)
ret i32 -1

BO®.endifl.1l.endif: ; preds = %B0.endifl.1
tail call void @Py_DecRef(i8* %arg.b)
tail call void @Py_DecRef(i8* %arg.a)
tail call void @Py_IncRef(i8* %.38)
tail call void @Py_DecRef(i8%* %.38)
store i8* %.38, i18** %retptr, align 8
ret i32 0
}

declare void @PyErr_SetString(i8%*, i8%*)
declare void @Py_IncRef(i8%)
declare void @Py_DecRef(i8%)

declare i8* @PyNumber_Add(i8*, i8%)

6.4. Numba architecture 327



Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

The careful reader might notice several unnecessary calls to Py_IncRef and Py_DecRef in the generated code. Cur-
rently Numba isn’t able to optimize those away.

Object mode compilation will also attempt to identify loops which can be extracted and statically-typed for “nopython”
compilation. This process is called loop-lifting, and results in the creation of a hidden nopython mode function just
containing the loop which is then called from the original function. Loop-lifting helps improve the performance of
functions that need to access uncompilable code (such as I/O or plotting code) but still contain a time-intensive section
of compilable code.

Stage 7: Compile LLVM IR to machine code

In both object mode and nopython mode, the generated LLVM IR is compiled by the LLVM JIT compiler and the
machine code is loaded into memory. A Python wrapper is also created (defined in numba .dispatcher.Dispatcher)
which can do the dynamic dispatch to the correct version of the compiled function if multiple type specializations were
generated (for example, for both float32 and float64 versions of the same function).

The machine assembly code generated by LLVM can be dumped to the screen by setting the NUMBA_DUMP_ASSEMBLY
environment variable to 1:

.globl

.align 16, 0x90

.type ,@function
_main__.add$1.int64.int64:

addq %r8, %rcx

movq %rcx, (%rdi)
xorl %eax, %eax
retq

The assembly output will also include the generated wrapper function that translates the Python arguments to native
data types.

6.5 Polymorphic dispatching

Functions compiled using jit () or vectorize() are open-ended: they can be called with many different input types
and have to select (possibly compile on-the-fly) the right low-level specialization. We hereby explain how this mecha-
nism is implemented.

6.5.1 Requirements

JIT-compiled functions can take several arguments and each of them is taken into account when selecting a specializa-
tion. Thus it is a form of multiple dispatch, more complex than single dispatch.

Each argument weighs in the selection based on its Numba type. Numba types are often more granular than Python
types: for example, Numba types Numpy arrays differently depending on their dimensionality and their layout (C-
contiguous, etc.).

Once a Numba type is inferred for each argument, a specialization must be chosen amongst the available ones; or, if
not suitable specialization is found, a new one must be compiled. This is not a trivial decision: there can be multi-
ple specializations compatible with a given concrete signature (for example, say a two-argument function has com-
piled specializations for (float64, float64) and (complex64, complex64), and it is called with (float32,
float32)).

Therefore, there are two crucial steps in the dispatch mechanism:
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1. infer the Numba types of the concrete arguments

2. select the best available specialization (or choose to compile a new one) for the inferred Numba types

Compile-time vs. run-time

This document discusses dispatching when it is done at runtime, i.e. when a JIT-compiled function is called from pure
Python. In that context, performance is important. To stay in the realm of normal function call overhead in Python, the
overhead of dispatching should stay under a microsecond. Of course, the faster the better. ..

When a JIT-compiled function is called from another JIT-compiled function (in nopython mode), the polymorphism is
resolved at compile-time, using a non-performance critical mechanism, bearing zero runtime performance overhead.

Note: In practice, the performance-critical parts described here are coded in C.

6.5.2 Type resolution

The first step is therefore to infer, at call-time, a Numba type for each of the function’s concrete arguments. Given
the finer granularity of Numba types compared to Python types, one cannot simply lookup an object’s class and key a
dictionary with it to obtain the corresponding Numba type.

Instead, there is a machinery to inspect the object and, based on its Python type, query various properties to infer the
appropriate Numba type. This can be more or less complex: for example, a Python int argument will always infer to
a Numba intp (a pointer-sized integer), but a Python tuple argument can infer to multiple Numba types (depending
on the tuple’s size and the concrete type of each of its elements).

The Numba type system is high-level and written in pure Python; there is a pure Python machinery, based on a generic
function, to do said inference (in numba.typing.typeof). That machinery is used for compile-time inference, e.g.
on constants. Unfortunately, it is too slow for run-time value-based dispatching. It is only used as a fallback for rarely
used (or difficult to infer) types, and exhibits multiple-microsecond overhead.

Typecodes

The Numba type system is really too high-level to be manipulated efficiently from C code. Therefore, the C dispatching
layer uses another representation based on integer typecodes. Each Numba type gets a unique integer typecode when
constructed; also, an interning system ensure no two instances of same type are created. The dispatching layer is
therefore able to eschew the overhead of the Numba type system by working with simple integer typecodes, amenable
to well-known optimizations (fast hash tables, etc.).

The goal of the type resolution step becomes: infer a Numba typecode for each of the function’s concrete arguments.
Ideally, it doesn’t deal with Numba types anymore. . .

Hard-coded fast paths

While eschewing the abstraction and object-orientation overhead of the type system, the integer typecodes still have
the same conceptual complexity. Therefore, an important technique to speed up inference is to first go through checks
for the most important types, and hard-code a fast resolution for each of them.

Several types benefit from such an optimization, notably:
¢ basic Python scalars (bool, int, float, complex);

* basic Numpy scalars (the various kinds of integer, floating-point, complex numbers);

6.5. Polymorphic dispatching 329



Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

* Numpy arrays of certain dimensionalities and basic element types.
Each of those fast paths ideally uses a hard-coded result value or a direct table lookup after a few simple checks.

However, we can’t apply that technique to all argument types; there would be an explosion of ad-hoc internal caches, and
it would become difficult to maintain. Besides, the recursive application of hard-coded fast paths would not necessarily
combine into a low overhead (in the nested tuple case, for example).

Fingerprint-based typecode cache

For non-so-trivial types (imagine a tuple, or a Numpy datetime64 array, for example), the hard-coded fast paths don’t
match. Another mechanism then kicks in, more generic.

The principle here is to examine each argument value, as the pure Python machinery would do, and to describe its
Numba type unambiguously. The difference is that we don’t actually compute a Numba type. Instead, we compute a
simple bytestring, a low-level possible denotation of that Numba type: a fingerprint. The fingerprint format is designed
to be short and extremely simple to compute from C code (in practice, it has a bytecode-like format).

Once the fingerprint is computed, it is looked up in a cache mapping fingerprints to typecodes. The cache is a hash
table, and the lookup is fast thanks to the fingerprints being generally very short (rarely more than 20 bytes).

If the cache lookup fails, the typecode must first be computed using the slow pure Python machinery. Luckily, this
would only happen once: on subsequent calls, the cached typecode would be returned for the given fingerprint.

In rare cases, a fingerprint cannot be computed efficiently. This is the case for some types which cannot be easily
inspected from C: for example cf£fi function pointers. Then, the slow Pure Python machinery is invoked at each
function call with such an argument.

Note: Two fingerprints may denote a single Numba type. This does not make the mechanism incorrect; it only creates
more cache entries.

Summary

Type resolution of a function argument involves the following mechanisms in order:
* Try a few hard-coded fast paths, for common simple types.
* If the above failed, compute a fingerprint for the argument and lookup its typecode in a cache.

* If all the above failed, invoke the pure Python machinery which will determine a Numba type for the argument
(and look up its typecode).

6.5.3 Specialization selection

At the previous step, an integer typecode has been determined for each concrete argument to the JIT-compiled function.
Now it remains to match that concrete signature against each of the available specializations for the function. There
can be three outcomes:

* There is a satisfying best match: the corresponding specialization is then invoked (it will handle argument un-
boxing and other details).

 There is a tie between two or more “best matches”: an exception is raised, refusing to solve the ambiguity.

* There is no satisfying match: a new specialization is compiled tailored for the concrete argument types that were
inferred.
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The selection works by looping over all available specializations, and computing the compatibility of each concrete
argument type with the corresponding type in the specialization’s intended signature. Specifically, we are interested in:

1. Whether the concrete argument type is allowed to convert implicitly to the specialization’s argument type;

2. If so, at what semantic (user-visible) cost the conversion comes.

Implicit conversion rules

There are five possible kinds of implicit conversion from a source type to a destination type (note this is an asymmetric
relationship):

1. exact match: the two types are identical; this is the ideal case, since the specialization would behave exactly as
intended;

2. same-kind promotion: the two types belong to the same “kind” (for example int32 and int64 are two integer
types), and the source type can be converted losslessly to the destination type (e.g. from int32 to int64, but
not the reverse);

3. safe conversion: the two types belong to different kinds, but the source type can be reasonably converted to the
destination type (e.g. from int32 to float64, but not the reverse);

4. unsafe conversion: a conversion is available from the source type to the destination type, but it may lose precision,
magnitude, or another desirable quality.

5. no conversion: there is no correct or reasonably efficient way to convert between the two types (for example
between an int64 and a datetime64, or a C-contiguous array and a Fortran-contiguous array).

When a specialization is examined, the latter two cases eliminate it from the final choice: i.e. when at least one argument
has no conversion or only an unsafe conversion to the signature’s argument type.

Note: However, if the function is compiled with explicit signatures in the jit () call (and therefore it is not allowed
to compile new specializations), unsafe conversion is allowed.

Candidates and best match

If a specialization is not eliminated by the rule above, it enters the list of candidates for the final choice. Those
candidates are ranked by an ordered 4-uple of integers: (number of unsafe conversions, number of safe
conversions, number of same-kind promotions, number of exact matches) (note the sum of the tuple’s
elements is equal to the number of arguments). The best match is then the #1 result in sorted ascending order, thereby
preferring exact matches over promotions, promotions over safe conversions, safe conversions over unsafe conversions.

Implementation

The above-described mechanism works on integer typecodes, not on Numba types. It uses an internal hash table storing
the possible conversion kind for each pair of compatible types. The internal hash table is in part built at startup (for
built-in trivial types such as int32, int64 etc.), in part filled dynamically (for arbitrarily complex types such as array
types: for example to allow using a C-contiguous 2D array where a function expects a non-contiguous 2D array).
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Summary

Selecting the right specialization involves the following steps:

* Examine each available specialization and match it against the concrete argument types.

« Eliminate any specialization where at least one argument doesn’t offer sufficient compatibility.

* If there are remaining candidates, choose the best one in terms of preserving the types’ semantics.

6.5.4 Miscellaneous

Some benchmarks of dispatch performance exist in the Numba benchmarks repository.

Some unit tests of specific aspects of the machinery are available in numba.tests.test_typeinfer and numba.
tests.test_typeof. Higher-level dispatching tests are in numba. tests.test_dispatcher.

6.6 Notes on generators

Numba recently gained support for compiling generator functions. This document explains some of the implementation

choices.

6.6.1 Terminology

For clarity, we distinguish between generator functions and generators. A generator function is a function containing
one or several yield statements. A generator (sometimes also called “generator iterator”) is the return value of a
generator function; it resumes execution inside its frame each time next () is called.

A yield point is the place where a yield statement is called. A resumption point is the place just after a yield point
where execution is resumed when next () is called again.

6.6.2 Function analysis

Suppose we have the following simple generator function:

def gen(x, y)
yield x +
yield x -

y
y

Here is its CPython bytecode, as printed out using dis.dis():

7

0 NOWwWe

12
15
16
17

LOAD_FAST
LOAD_FAST
BINARY_ADD
YIELD_VALUE
POP_TOP

LOAD_FAST
LOAD_FAST
BINARY_SUBTRACT
YIELD_VALUE
POP_TOP

0 x)
1 ()

0 (x)
1y

(continues on next page)
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18 LOAD_CONST 0 (None)
21 RETURN_VALUE

When compiling this function with NUMBA_DUMP_IR set to 1, the following information is printed out:

—————————————————————————————————— IR DUMP: gen---------————-——————-————————~———————
label 0:

x = arg(®, name=x) ['x"]

y = arg(l, name=y) ['y']

$§0.3 =x +y ['$06.3', 'x', 'y']

$0.4 = yield $0.3 ['$0.3", '$0.4']

del $0.4 M1

del $60.3 []

$0.7 = x - y ['$0.7", 'x', 'y']

del y []

del x [1]

$0.8 = yield $0.7 ['$0.7', '$0.8']

del $0.8 []

del $0.7 []

$const0.9 = const(NoneType, None) ['$const0.9']

$0.10 = cast(value=$const0.9) ['$0.10"', '$const0.9']

del $const®.9 []

return $0.10 ['$0.10"]
—————————————————————————————— GENERATOR INFO: gen---------—-—-—--———-—--—————————————
generator state variables: ['$0.3', '$0.7', 'x', 'y'l]

yield point #1: live variables ['x", 'y'], weak live variables = ['$0.3']
yield point #2: live variables = [], weak live variables = ['$0.7']

What does it mean? The first part is the Numba IR, as already seen in Stage 2: Generate the Numba IR. We can see
the two yield points (yield $0.3 and yield $0.7).

The second part shows generator-specific information. To understand it we have to understand what suspending and
resuming a generator means.

When suspending a generator, we are not merely returning a value to the caller (the operand of the yield statement).
We also have to save the generator’s current state in order to resume execution. In trivial use cases, perhaps the
CPU’s register values or stack slots would be preserved until the next call to next(). However, any non-trivial case will
hopelessly clobber those values, so we have to save them in a well-defined place.

What are the values we need to save? Well, in the context of the Numba Intermediate Representation, we must save all
live variables at each yield point. These live variables are computed thanks to the control flow graph.

Once live variables are saved and the generator is suspended, resuming the generator simply involves the inverse oper-
ation: the live variables are restored from the saved generator state.

Note: It is the same analysis which helps insert Numba del instructions where appropriate.

Let’s go over the generator info again:

generator state variables: ['$0.3', '$0.7', 'x', 'y']
yield point #1: live variables = [x', 'v'], weak live variables = ['$0.3']
yield point #2: live variables = [], weak live variables = ['$0.7']
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Numba has computed the union of all live variables (denoted as “state variables™). This will help define the layout of
the generator structure. Also, for each yield point, we have computed two sets of variables:

* the live variables are the variables which are used by code following the resumption point (i.e. after the yield
statement)

o the weak live variables are variables which are del’ed immediately after the resumption point; they have to be
saved in object mode, to ensure proper reference cleanup

6.6.3 The generator structure

Layout

Function analysis helps us gather enough information to define the layout of the generator structure, which will store
the entire execution state of a generator. Here is a sketch of the generator structure’s layout, in pseudo-code:

struct gen_struct_t {
int32_t resume_index;
struct gen_args_t {
arg_0_t arg0;
arg_1l_t argl;

arg_N_t argN;

}

struct gen_state_t {
state_0_t state_var0;
state_1_t state_varl;

state_N_t state_varN;

Let’s describe those fields in order.

* The first member, the resume index, is an integer telling the generator at which resumption point execution
must resume. By convention, it can have two special values: 0 means execution must start at the beginning of
the generator (i.e. the first time next () is called); -1 means the generator is exhausted and resumption must
immediately raise Stoplteration. Other values indicate the yield point’s index starting from 1 (corresponding to
the indices shown in the generator info above).

* The second member, the arguments structure is read-only after it is first initialized. It stores the values of the
arguments the generator function was called with. In our example, these are the values of x and y.

* The third member, the state structure, stores the live variables as computed above.

Concretely, our example’s generator structure (assuming the generator function is called with floating-point numbers)
is then:

struct gen_struct_t {
int32_t resume_index;
struct gen_args_t {
double arg0;
double argl;
}

struct gen_state_t {

(continues on next page)
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double $0.3;
double $0.7;
double x;
double y;

Note that here, saving x and y is redundant: Numba isn’t able to recognize that the state variables x and y have the
same value as arg0® and argl.

Allocation

How does Numba ensure the generator structure is preserved long enough? There are two cases:

* When a Numba-compiled generator function is called from a Numba-compiled function, the structure is allocated
on the stack by the callee. In this case, generator instantiation is practically costless.

e When a Numba-compiled generator function is called from regular Python code, a CPython-compatible wrapper
is instantiated that has the right amount of allocated space to store the structure, and whose tp_iternext slot
is a wrapper around the generator’s native code.

6.6.4 Compiling to native code

When compiling a generator function, three native functions are actually generated by Numba:

* An initialization function. This is the function corresponding to the generator function itself: it receives the
function arguments and stores them inside the generator structure (which is passed by pointer). It also initialized
the resume index to 0, indicating that the generator hasn’t started yet.

* A next() function. This is the function called to resume execution inside the generator. Its single argument is
a pointer to the generator structure and it returns the next yielded value (or a special exit code is used if the
generator is exhausted, for quick checking when called from Numba-compiled functions).

* An optional finalizer. In object mode, this function ensures that all live variables stored in the generator state are
decref’ed, even if the generator is destroyed without having been exhausted.

The next() function

The next() function is the least straight-forward of the three native functions. It starts with a trampoline which dispatches
execution to the right resume point depending on the resume index stored in the generator structure. Here is how the
function start may look like in our example:

define i32 @"__main__.gen.next"(
double* nocapture %retptr,
{ i8*%, i32 }** nocapture readnone %excinfo,
i8* nocapture readnone %env,
{ i32, { double, double }, { double, double, double, double } }* nocapture %arg.gen)

entry:
%gen.resume_index = getelementptr { i32, { double, double }, { double, double,.
—.double, double } }* %arg.gen, i64 0, i32 0
%.47 = load 132* %gen.resume_index, align 4

(continues on next page)
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switch i32 %.47, label %stop_iteration [
i32 0, label %BO
i32 1, label %generator_resumel
i32 2, label %generator_resume?2

]

; rest of the function snipped

(uninteresting stuff trimmed from the LLVM IR to make it more readable)

We recognize the pointer to the generator structure in %arg.gen. The trampoline switch has three targets (one for each
resume index 0, 1 and 2), and a fallback target label named stop_iteration. Label B® represents the function’s start,
generator_resumel (resp. generator_resume2) is the resumption point after the first (resp. second) yield point.

After generation by LLVM, the whole native assembly code for this function may look like this (on x86-64):

.globl
.align 16, 0x90
__main__.gen.next:

movl (%rcx), %eax
cmpl , %eax

je

cmpl , %eax

jne

movsd 40 (%rcx), %xmm®
subsd 48 (%rcx), %xmm®

movl , (Urex)
movsd  %xmm0, (%rdi)
xorl %eax, %eax
retq

.LBB1_5:
movl , (Brex)
jmp

.LBB1_2:

testl  %eax, %eax

jne

movsd 8(%rcx), %xmm®
movsd 16(%rcx), %xmml
movaps %xmm0, %xmm?2
addsd  %xmml, %xmm2
movsd  %xmml, 48(%rcx)
movsd  %xmm0, 40(%rcx)

movl , (Urcx)
movsd  %xmm2, (%rdi)
xorl %eax, %eax
retq

.LBB1_6:
movl , %eax
retq

Note the function returns O to indicate a value is yielded, -3 to indicate Stoplteration. %rcx points to the start of the
generator structure, where the resume index is stored.
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6.7 Notes on Numba Runtime

The Numba Runtime (NRT) provides the language runtime to the nopython mode Python subset. NRT is a standalone
C library with a Python binding. This allows NPM runtime feature to be used without the GIL. Currently, the only
language feature implemented in NRT is memory management.

6.7.1 Memory Management

NRT implements memory management for NPM code. It uses atomic reference count for threadsafe, deterministic
memory management. NRT maintains a separate MemInfo structure for storing information about each allocation.

Cooperating with CPython

For NRT to cooperate with CPython, the NRT python binding provides adaptors for converting python objects that
export a memory region. When such an object is used as an argument to a NPM function, a new MemInfo is created
and it acquires a reference to the Python object. When a NPM value is returned to the Python interpreter, the associated
MemInfo (if any) is checked. If the MemInfo references a Python object, the underlying Python object is released and
returned instead. Otherwise, the MemInfo is wrapped in a Python object and returned. Additional process maybe
required depending on the type.

The current implementation supports Numpy array and any buffer-exporting types.

Compiler-side Cooperation

NRT reference counting requires the compiler to emit incref/decref operations according to the usage. When the
reference count drops to zero, the compiler must call the destructor routine in NRT.

Optimizations

The compiler is allowed to emit incref/decref operations naively. It relies on an optimization pass to remove redundant
reference count operations.

A new optimization pass is implemented in version 0.52.0 to remove reference count operations that fall into the follow-
ing four categories of control-flow structure—per basic-block, diamond, fanout, fanout+raise. See the documentation
for NUMBA_LLVM_REFPRUNE_FLAGS for their descriptions.

The old optimization pass runs at block level to avoid control flow analysis. It depends on LLVM function optimization
pass to simplify the control flow, stack-to-register, and simplify instructions. It works by matching and removing incref
and decref pairs within each block. The old pass can be enabled by setting NUMBA_LLVM_REFPRUNE_PASS to 0.

Important assumptions

Both the old (pre-0.52.0) and the new (post-0.52.0) optimization passes assume that the only function that can consume
a reference is NRT_decref. It is important that there are no other functions that will consume references. Since the
passes operate on LLVM IR, the “functions” here are referring to any callee in a LLVM call instruction.

To summarize, all functions exposed to the refcount optimization pass must not consume counted references unless
done so via NRT_decref.
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Quirks of the old optimization pass

Since the pre-0.52.0 refcount optimization pass requires the LLVM function optimization pass, the pass works on the
LLVM IR as text. The optimized IR is then materialized again as a new LLVM in-memory bitcode object.

Debugging Leaks

To debug reference leaks in NRT Memlnfo, each MemInfo python object has a . refcount attribute for inspection. To
get the MemlInfo from a ndarray allocated by NRT, use the .base attribute.

To debug memory leaks in NRT, the numba.core.runtime.rtsys defines .get_allocation_stats(). It returns
a namedtuple containing the number of allocation and deallocation since the start of the program. Checking that the
allocation and deallocation counters are matching is the simplest way to know if the NRT is leaking.

Debugging Leaks in C

The start of numba/core/runtime/nrt.h has these lines:

/% Debugging facilities - enabled at compile-time */
/* #undef NDEBUG */

#1f 0

# define NRT_Debug(X) X

#else

# define NRT Debug(X) if (0) { X; }

#endif

Undefining NDEBUG (uncomment the #undef NDEBUG line) enables the assertion check in NRT.
Enabling the NRT_Debug (replace #if 0 with #if 1) turns on debug print inside NRT.

6.7.2 Recursion Support

During the compilation of a pair of mutually recursive functions, one of the functions will contain unresolved symbol
references since the compiler handles one function at a time. The memory for the unresolved symbols is allocated and
initialized to the address of the unresolved symbol abort function (nrt_unresolved_abort) just before the machine
code is generated by LLVM. These symbols are tracked and resolved as new functions are compiled. If a bug prevents
the resolution of these symbols, the abort function will be called, raising a RuntimeError exception.

The unresolved symbol abort function is defined in the NRT with a zero-argument signature. The caller is safe to call
it with arbitrary number of arguments. Therefore, it is safe to be used inplace of the intended callee.

6.7.3 Using the NRT from C code
Externally compiled C code should use the NRT_api_functions struct as a function table to access the NRT APL
The struct is defined in numba/core/runtime/nrt_external.h. Users can use the utility function numba.extending.

include_path() to determine the include directory for Numba provided C headers.

Listing 1: numba/core/runtime/nrt_external.h

#ifndef NUMBA_NRT_EXTERNAL_H_
#define NUMBA_NRT_EXTERNAL_H_

(continues on next page)
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(continued from previous page)

#include <stdlib.h>

typedef struct MemInfo NRT_MemInfo;

typedef void NRT_managed_dtor(void *data);

typedef void *(*NRT_external_malloc_func) (size_t size, void *opaque_data);

typedef void *(*NRT_external_realloc_func)(void *ptr, size_t new_size, void *opaque_
—data);

typedef void (*NRT_external_free_func) (void *ptr, void *opaque_data);

struct ExternalMemAllocator {

1

NRT_external_malloc_func malloc;
NRT_external_realloc_func realloc;
NRT_external_free_func free;

void *opaque_data;

typedef struct ExternalMemAllocator NRT_ExternalAllocator;

typedef struct {

/* Methods to create MemInfos.

MemInfos are like smart pointers for objects that are managed by the Numba.

:':/
/* Allocate memory
*nbytes* is the number of bytes to be allocated

Returning a new reference.

:':/

NRT_MemInfo* (*allocate)(size_t nbytes);

/% Allocates memory using an external allocator but still using Numba's MemInfo.

:':/
NRT_MemInfo* (*allocate_external)(size_t nbytes, NRT_ExternalAllocator *allocator);

/% Convert externally allocated memory into a MemInfo.
*data* is the memory pointer

*dtor* is the deallocator of the memory

:':/

NRT_MemInfo* (*manage_memory) (void *data, NRT_managed_dtor dtor);

/% Acquire a reference */
void (*acquire) (NRT_MemInfo* mi);

/* Release a reference */
void (*release) (NRT_MemInfo* mi);

/% Get MemInfo data pointer */

(continues on next page)
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(continued from previous page)

void* (*get_data) (NRT_MemInfo* mi);

} NRT_api_functions;

#endif /* NUMBA_NRT_EXTERNAL_H_ */

Inside Numba compiled code, the numba.core.unsafe.nrt.NRT_get_api() intrinsic can be used to obtain a
pointer to the NRT_api_functions.

Here is an example that uses the nrt_external .h:

#include <stdio.h>
#include "numba/core/runtime/nrt_external.h"

void my_dtor(void *ptr) {
free(ptr);
}

NRT_MemInfo* my_allocate(NRT_api_functions *nrt) {
/* heap allocate some memory */
void * data = malloc(10);
/% wrap the allocated memory; yield a new reference */
NRT_MemInfo *mi = nrt->manage_memory(data, my_dtor);
/* acquire reference */
nrt->acquire(mi);
/* release reference */
nrt->release(mi);
return mi;

It is important to ensure that the NRT is initialized prior to making calls to it, calling numba.core.runtime.nrt.
rtsys.initialize(context) from Python will have the desired effect. Similarly the code snippet:

from numba.core.registry import cpu_target # Get the CPU target singleton
cpu_target.target_context # Access the target_context property to initialize

will achieve the same specifically for Numba’s CPU target (the default). Failure to initialize the NRT will result in
access violations as function pointers for various internal atomic operations will be missing in the NRT_MemSys struct.

6.7.4 Future Plan

The plan for NRT is to make a standalone shared library that can be linked to Numba compiled code, including use
within the Python interpreter and without the Python interpreter. To make that work, we will be doing some refactoring:

* numba NPM code references statically compiled code in “helperlib.c”. Those functions should be moved to NRT.
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6.8 Using the Numba Rewrite Pass for Fun and Optimization

6.8.1 Overview

This section introduces intermediate representation (IR) rewrites, and how they can be used to implement optimizations.

As discussed earlier in “Stage 5a: Rewrite typed IR”, rewriting the Numba IR allows us to perform optimizations that
would be much more difficult to perform at the lower LLVM level. Similar to the Numba type and lowering subsystems,
the rewrite subsystem is user extensible. This extensibility affords Numba the possibility of supporting a wide variety
of domain-specific optimizations (DSQO’s).

The remaining subsections detail the mechanics of implementing a rewrite, registering a rewrite with the rewrite reg-
istry, and provide examples of adding new rewrites, as well as internals of the array expression optimization pass. We
conclude by reviewing some use cases exposed in the examples, as well as reviewing any points where developers
should take care.

6.8.2 Rewriting Passes

Rewriting passes have a simple match () and apply () interface. The division between matching and rewriting follows
how one would define a term rewrite in a declarative domain-specific languages (DSL’s). In such DSL’s, one may write
a rewrite as follows:

<match> => <replacement>

The <match> and <replacement> symbols represent IR term expressions, where the left-hand side presents a pattern
to match, and the right-hand side an IR term constructor to build upon matching. Whenever the rewrite matches an
IR pattern, any free variables in the left-hand side are bound within a custom environment. When applied, the rewrite
uses the pattern matching environment to bind any free variables in the right-hand side.

As Python is not commonly used in a declarative capacity, Numba uses object state to handle the transfer of information
between the matching and application steps.

The Rewrite Base Class

class Rewrite
The Rewrite class simply defines an abstract base class for Numba rewrites. Developers should define rewrites
as subclasses of this base type, overloading the match () and apply () methods.

pipeline
The pipeline attribute contains the numba.compiler.Pipeline instance that is currently compiling the
function under consideration for rewriting.

__init__(self, pipeline, *args, **kws)
The base constructor for rewrites simply stashes its arguments into attributes of the same name. Unless
being used in debugging or testing, rewrites should only be constructed by the RewriteRegistry in the
RewriteRegistry.apply() method, and the construction interface should remain stable (though the
pipeline will commonly contain just about everything there is to know).

match (self, block, typemap, callmap)
The match () method takes four arguments other than self:

* func_ir: This is an instance of numba.ir.FunctionIR for the function being rewritten.

* block: This is an instance of numba.ir.Block. The matching method should iterate over the instruc-
tions contained in the numba.ir.Block.body member.
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* typemap: This is a Python dict instance mapping from symbol names in the IR, represented as strings,
to Numba types.

* callmap: This is another dict instance mapping from calls, represented as numba.ir.Expr in-
stances, to their corresponding call site type signatures, represented as a numba. typing.templates.
Signature instance.

The match () method should return a bool result. A True result should indicate that one or more matches
were found, and the apply () method will return a new replacement numba.ir.Block instance. A False
result should indicate that no matches were found, and subsequent calls to apply () will return undefined
or invalid results.

apply (self)
The apply () method should only be invoked following a successful call to match(). This method takes
no additional parameters other than self, and should return a replacement numba . ir.Block instance.

As mentioned above, the behavior of calling apply () is undefined unless match () has already been called
and returned True.

Subclassing Rewrite

Before going into the expectations for the overloaded methods any Rewrite subclass must have, let’s step back a
minute to review what is taking place here. By providing an extensible compiler, Numba opens itself to user-defined
code generators which may be incomplete, or worse, incorrect. When a code generator goes awry, it can cause abnormal
program behavior or early termination. User-defined rewrites add a new level of complexity because they must not only
generate correct code, but the code they generate should ensure that the compiler does not get stuck in a match/apply
loop. Non-termination by the compiler will directly lead to non-termination of user function calls.

There are several ways to help ensure that a rewrite terminates:

* Typing: A rewrite should generally attempt to decompose composite types, and avoid composing new types. If
the rewrite is matching a specific type, changing expression types to a lower-level type will ensure they will no
long match after the rewrite is applied.

* Special instructions: A rewrite may synthesize custom operators or use special functions in the target IR. This
technique again generates code that is no longer within the domain of the original match, and the rewrite will
terminate.

In the “Case study: Array Expressions” subsection, below, we’ll see how the array expression rewriter uses both of
these techniques.

Overloading Rewrite.match()

Every rewrite developer should seek to have their implementation of match() return a False value as quickly as
possible. Numba is a just-in-time compiler, and adding compilation time ultimately adds to the user’s run time. When
a rewrite returns False for a given block, the registry will no longer process that block with that rewrite, and the
compiler is that much closer to proceeding to lowering.

This need for timeliness has to be balanced against collecting the necessary information to make a match for a rewrite.
Rewrite developers should be comfortable adding dynamic attributes to their subclasses, and then having these new
attributes guide construction of the replacement basic block.
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Overloading Rewrite.apply()

The apply () method should return a replacement numba . ir.Block instance to replace the basic block that contained
a match for the rewrite. As mentioned above, the IR built by apply () methods should preserve the semantics of the
user’s code, but also seek to avoid generating another match for the same rewrite or set of rewrites.

6.8.3 The Rewrite Registry

When you want to include a rewrite in the rewrite pass, you should register it with the rewrite registry. The numba.
rewrites module provides both the abstract base class and a class decorator for hooking into the Numba rewrite
subsystem. The following illustrates a stub definition of a new rewrite:

from numba import rewrites

@rewrites.register_rewrite
class MyRewrite(rewrites.Rewrite):

def match(self, block, typemap, calltypes):
raise NotImplementedError("FIXME™)

def apply(self):
raise NotImplementedError("FIXME")

Developers should note that using the class decorator as shown above will register a rewrite at import time. It is the
developer’s responsibility to ensure their extensions are loaded before compilation starts.

6.8.4 Case study: Array Expressions

This subsection looks at the array expression rewriter in more depth. The array expression rewriter, and most of its
support functionality, are found in the numba.npyufunc.array_exprs module. The rewriting pass itself is imple-
mented in the RewriteArrayExprs class. In addition to the rewriter, the array_exprs module includes a function
for lowering array expressions, _lower_array_expr (). The overall optimization process is as follows:

* RewriteArrayExprs.match(): The rewrite pass looks for two or more array operations that form an array
expression.

e RewriteArrayExprs.apply(): Once an array expression is found, the rewriter replaces the individual array
operations with a new kind of IR expression, the arrayexpr.

e numba.npyufunc.array_exprs._lower_array_expr(): During lowering, the code generator calls
_lower_array_expr () whenever it finds an arrayexpr IR expression.

More details on each step of the optimization are given below.
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The RewriteArrayExprs.match() method

The array expression optimization pass starts by looking for array operations, including calls to supported ufunc's and
user-defined DUFunc's. Numba IR follows the conventions of a static single assignment (SSA) language, meaning that
the search for array operators begins with looking for assignment instructions.

When the rewriting pass calls the RewriteArrayExprs.match() method, it first checks to see if it can trivially reject
the basic block. If the method determines the block to be a candidate for matching, it sets up the following state variables
in the rewrite object:

 crnt_block: The current basic block being matched.
* typemap: The typemap for the function being matched.
» matches: A list of variable names that reference array expressions.

* array_assigns: A map from assignment variable names to the actual assignment instructions that define the given
variable.

* const_assigns: A map from assignment variable names to the constant valued expression that defines the constant
variable.

At this point, the match method iterates over the assignment instructions in the input basic block. For each assignment
instruction, the matcher looks for one of two things:

* Array operations: If the right-hand side of the assignment instruction is an expression, and the result of that
expression is an array type, the matcher checks to see if the expression is either a known array operation, or a
call to a universal function. If an array operator is found, the matcher stores the left-hand variable name and
the whole instruction in the array_assigns member. Finally, the matcher tests to see if any operands of the array
operation have also been identified as targets of other array operations. If one or more operands are also targets
of array operations, then the matcher will also append the left-hand side variable name to the matches member.

» Constants: Constants (even scalars) can be operands to array operations. Without worrying about the constant
being apart of an array expression, the matcher stores constant names and values in the const_assigns member.

The end of the matching method simply checks for a non-empty matches list, returning True if there were one or more
matches, and False when matches is empty.

The RewriteArrayExprs.apply() method

When one or matching array expressions are found by RewriteArrayExprs.match(), the rewriting pass will call
RewriteArrayExprs.apply(). The apply method works in two passes. The first pass iterates over the matches
found, and builds a map from instructions in the old basic block to new instructions in the new basic block. The second
pass iterates over the instructions in the old basic block, copying instructions that are not changed by the rewrite, and
replacing or deleting instructions that were identified by the first pass.

The RewriteArrayExprs._handle_matches() implements the first pass of the code generation portion of the
rewrite. For each match, this method builds a special IR expression that contains an expression tree for the array
expression. To compute the leaves of the expression tree, the _handle_matches() method iterates over the operands
of the identified root operation. If the operand is another array operation, it is translated into an expression sub-tree. If
the operand is a constant, _handle_matches () copies the constant value. Otherwise, the operand is marked as being
used by an array expression. As the method builds array expression nodes, it builds a map from old instructions to new
instructions (replace_map), as well as sets of variables that may have moved (used_vars), and variables that should be
removed altogether (dead_vars). These three data structures are returned back to the calling RewriteArrayExprs.
apply () method.

The remaining part of the RewriteArrayExprs.apply() method iterates over the instructions in the old basic
block. For each instruction, this method either replaces, deletes, or duplicates that instruction based on the results
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of RewriteArrayExprs._handle_matches(). The following list describes how the optimization handles individ-
ual instructions:

* When an instruction is an assignment, apply () checks to see if it is in the replacement instruction map. When
an assignment instruction is found in the instruction map, apply () must then check to see if the replacement
instruction is also in the replacement map. The optimizer continues this check until it either arrives at a None
value or an instruction that isn’t in the replacement map. Instructions that have a replacement that is None
are deleted. Instructions that have a non-None replacement are replaced. Assignment instructions not in the
replacement map are appended to the new basic block with no changes made.

¢ When the instruction is a delete instruction, the rewrite checks to see if it deletes a variable that may still be used
by a later array expression, or if it deletes a dead variable. Delete instructions for used variables are added to
a map of deferred delete instructions that apply () uses to move them past any uses of that variable. The loop
copies delete instructions for non-dead variables, and ignores delete instructions for dead variables (effectively
removing them from the basic block).

» All other instructions are appended to the new basic block.

Finally, the apply () method returns the new basic block for lowering.

The _lower_array_expr() function

If we left things at just the rewrite, then the lowering stage of the compiler would fail, complaining it doesn’t
know how to lower arrayexpr operations. We start by hooking a lowering function into the target context when-
ever the RewriteArrayExprs class is instantiated by the compiler. This hook causes the lowering pass to call
_lower_array_expr () whenever it encounters an arrayexr operator.

This function has two steps:

 Synthesize a Python function that implements the array expression: This new Python function essentially behaves
like a Numpy ufunc, returning the result of the expression on scalar values in the broadcasted array arguments.
The lowering function accomplishes this by translating from the array expression tree into a Python AST.

» Compile the synthetic Python function into a kernel: At this point, the lowering function relies on existing code
for lowering ufunc and DUFunc kernels, calling numba. targets.numpyimpl .numpy_ufunc_kernel () after
defining how to lower calls to the synthetic function.

The end result is similar to loop lifting in Numba’s object mode.

6.8.5 Conclusions and Caveats
We have seen how to implement rewrites in Numba, starting with the interface, and ending with an actual optimization.
The key points of this section are:

e When writing a good plug-in, the matcher should try to get a go/no-go result as soon as possible.

» The rewrite application portion can be more computationally expensive, but should still generate code that won’t
cause infinite loops in the compiler.

* We use object state to communicate any results of matching to the rewrite application pass.
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6.9 Live Variable Analysis

(Related issue https://github.com/numba/numba/pull/1611)

Numba uses reference-counting for garbage collection, a technique that requires cooperation by the compiler. The
Numba IR encodes the location where a decref must be inserted. These locations are determined by live variable
analysis. The corresponding source code is the _insert_var_dels() method in https://github.com/numba/numba/
blob/master/numba/interpreter.py.

In Python semantic, once a variable is defined inside a function, it is alive until the variable is explicitly deleted or the
function scope is ended. However, Numba analyzes the code to determine the minimum bound of the lifetime of each
variable by its definition and usages during compilation. As soon as a variable is unreachable, a del instruction is
inserted at the closest basic-block (either at the start of the next block(s) or at the end of the current block). This means
variables can be released earlier than in regular Python code.

The behavior of the live variable analysis affects memory usage of the compiled code. Internally, Numba does not
differentiate temporary variables and user variables. Since each operation generates at least one temporary variable,
a function can accumulate a high number of temporary variables if they are not released as soon as possible. Our
generator implementation can benefit from early releasing of variables, which reduces the size of the state to suspend
at each yield point.

6.9.1 Notes on behavior of the live variable analysis

Variable deleted before definition

(Related issue: https://github.com/numba/numba/pull/1738)

When a variable lifetime is confined within the loop body (its definition and usage does not escape the loop body), like:

def f(arr):
# BB 0
res = 0
# BB 1
for i in (0, 1):
# BB 2
t = arr[i]
if t[i] > 1:
# BB 3
res += t[i]
# BB 4
return res

Variable t is never referenced outside of the loop. A del instruction is emitted for t at the head of the loop (BB 1)
before a variable is defined. The reason is obvious once we know the control flow graph:

BB® -->BB1 --> BB 2 ---> BB 3

A | I

| v v

Variable t is defined in BB 1. In BB 2, the evaluation of t[1i] > 1 uses t, which is the last use if execution takes the
false branch and goto BB 1. In BB 3, t is only used in res += t[i], which is the last use if execution takes the true
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branch. Because BB 3, an outgoing branch of BB 2 uses t, t must be deleted at the common predecessor. The closest

point is BB

1, which does not have t defined from the incoming edge of BB 0.

Alternatively, if t is deleted at BB 4, we will still have to delete the variable before its definition because BB4 can be
executed without executing the loop body (BB 2 and BB 3), where the variable is defined.

6.10 Listings

This shows

listings from compiler internal registries (e.g. lowering definitions). The information is provided as devel-

oper reference. When possible, links to source code are provided via github links.

6.10.1 New style listings

The following listings are generated from numba.help.inspector.write_listings(). Users canrun python -m
numba.help.inspector --format=rst <package> to recreate the the documentation

Listings for builtins

builtins

builtins.

builtins.

builtins.

builtins.

builtins.

builtins.

abs()

defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

chr(

defined by o1_chr (i) at numba/cpython/unicode.py:2370-2375
divmod )

defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

hash(Q

defined by hash_overload(obj) at numba/cpython/hashing.py:46-50

iter()

defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

len()

defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
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defined by unicode_len(s) at numba/cpython/unicode.py:442-447

defined by charseq_len(s) at numba/cpython/charseq.py:348-369

defined by literal_list_len(lst) at numba/cpython/listobj.py:1227-1232

defined by impl_len(d) at numba/typed/dictobject.py:661-671

defined by literalstrkeydict_impl_len(d) at numba/typed/dictobject.py:1255-1260
defined by impl_len(1) at numba/typed/listobject.py:402-410

defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

builtins.max()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
¢ defined by indval_max(indvall, indval2) at numba/cpython/builtins.py:544-552
¢ defined by iterable_max(iterable) at numba/cpython/builtins.py:577-579
builtins.min()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
* defined by indval_min(indvall, indval2) at numba/cpython/builtins.py:533-541
¢ defined by iterable_min(iterable) at numba/cpython/builtins.py:572-574
builtins.next()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
builtins.ord()
¢ defined by ol_ord(c) at numba/cpython/unicode.py:2330-2339
builtins.pow()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
builtins.print()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
builtins.round()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
builtins.sorted()
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¢ defined by ol_sorted(iterable, key=None, reverse=False) at numba/cpython/listobj.py:1109-

1122

builtins.sum()

e defined by ol_sum(iterable, start=0) at numba/cpython/builtins.py:614-647

Not showing 26 unsupported functions.

supported = 15/ 41 = 36.59%

Listings for math

math
math.acos()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
math.acosh()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
math.asin()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
math.asinh()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
math.atan()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
math.atan2()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
math.atanh()
e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
math.ceil()
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e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.copysign()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.cos()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.cosh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.degrees()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.erf()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.erfc()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.exp()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.expml()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.fabs()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.floor()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
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math. frexp(

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.gamma()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.gcd()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.hypot()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.isfinite()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.isinf()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.isnan()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.ldexp()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.lgamma()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.log()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.logl®()
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e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.loglp()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.pow()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.radians()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.sin()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.sinh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.sqrt()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.tan()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.tanh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

math.trunc()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

Not showing 7 unsupported functions.

supported = 38 / 45 = 84.44%
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Listings for cmath

cmath

cmath.acos()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.acosh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.asin()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.asinh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.atan()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.atanh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.cos()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.cosh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.exp()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.isfinite()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>
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cmath.isinf (O

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.isnan()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.log()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.logl®()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.phase()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.polar()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.rect()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.sin(Q)

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.sinh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.sqrt()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.tan()
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e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

cmath.tanh()

e defined by <class 'numba.core.typing.templates.Registry.register_global.<locals>.
decorate.<locals>.Template'>

Not showing 1 unsupported functions.

supported = 22 /23 = 95.65%

Listings for numpy

numpy

numpy .all()

* defined by np_all(a) at numba/np/arraymath.py:827-836

numpy . amax ()

* defined by <class 'abc.Numpy_redirect_max'>

numpy . amin ()

¢ defined by <class 'abc.Numpy_redirect_min'>

numpy .angle()

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . any ()

¢ defined by np_any(a) at numba/np/arraymath.py:839-848
numpy . append ()

¢ defined by np_append(arr, values, axis=None) at numba/np/arrayobj.py:1737-1760

numpy . arange ()
¢ defined by np_arange(start, stop=None, step=None, dtype=None) at
numba/np/arrayobj.py:3987-4052

numpy . argmax ()

¢ defined by array_argmax(arr, axis=None) at numba/np/arraymath.py:774-824
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numpy .

numpy .

numpy .

numpy

numpy .

numpy .

numpy

numpy

numpy .

argmin()
* defined by <class 'abc.Numpy_redirect_argmin'>
argsort()
¢ defined by <class 'abc.Numpy_redirect_argsort'>
argwhere()
¢ defined by np_argwhere(a) at numba/np/arraymath.py:2923-2955
.around ()
¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
array()
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
array_equal O

* defined by np_array_equal(a, b) at numba/np/arraymath.py:3568-3587

.array_split()

e defined by np_array_split(ary, indices_or_sections, axis=0) at numba/np/arrayobj.py:5116-
5174

.asarray()

e defined by np_asarray(a, dtype=None) at numba/np/arraymath.py:4196-4248

asarray_chkfinite()

¢ defined by np_asarray_chkfinite(a, dtype=None) at numba/np/arraymath.py:4343-4365

numpy . ascontiguousarray ()
¢ defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
numpy . asfarray ()
356 Chapter 6. Developer Manual


https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L2923-L2955
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L3568-L3587
https://github.com/numba/numba/blob/master/numba/np/arrayobj.py#L5116-L5174
https://github.com/numba/numba/blob/master/numba/np/arrayobj.py#L5116-L5174
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4196-L4248
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4343-L4365
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

numpy .

numpy

numpy .

numpy .

numpy

numpy .

numpy .

numpy

numpy .

e defined by np_asfarray(a, dtype=<class 'numpy.float64'>) at numba/np/arraymath.py:4251-

4263

asfortranarray()

¢ defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

.atleast_1dO

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180
atleast_2d0O

¢ defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

atleast_3d()

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

.bartlett()

ol_generated(*ol_args,

ol_generated(*ol_args,

ol_generated(*ol_args,

ol_generated(*ol_args,

ol_generated(*ol_args,

ol_generated(*ol_args,

ol_generated(*ol_args,

ol_generated(*ol_args,

**0l_kwargs)

**0l_kwargs)

**0l_kwargs)

**0l_kwargs)

**0l_kwargs)

**0l_kwargs)

**0l_kwargs)

**0l_kwargs)

at

at

at

at

at

at

at

at

* defined by window_generator.<locals>.window_overload(lM) at numba/np/arraymath.py:4420-

4432

bincount ()

¢ defined by np_bincount(a, weights=None, minlength=0) at numba/np/arraymath.py:3623-3678

blackman()

¢ defined by window_generator.<locals>.window_overload(M) at numba/np/arraymath.py:4420-

4432

.clipQ

e defined by np_clip(a, a_min, a_max, out=None) at numba/np/arrayobj.py:1805-1845

column_stack()
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* defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args,
numba/core/overload_glue.py:131-180

numpy . concatenate ()

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args,
numba/core/overload_glue.py:131-180

numpy . convolve ()

¢ defined by np_convolve(a, v) at numba/np/arraymath.py:4172-4193

numpy . copy OO

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args,
numba/core/overload_glue.py:131-180

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args,
numba/core/overload_glue.py:131-180

numpy . corrcoef ()

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

¢ defined by np_corrcoef(x, y=None, rowvar=True) at numba/np/arraymath.py:2886-2916

numpy . correlate()

¢ defined by _np_correlate(a, v) at numba/np/arraymath.py:4124-4169

numpy . count_nonzero()

¢ defined by np_count_nonzero(arr, axis=None) at numba/np/arraymath.py:3461-3475
numpy .cov()
o defined by np_cov(m, y=None, rowvar=True, bias=False, ddof=None) at

numba/np/arraymath.py:2827-2883

numpy . cross ()

e defined by np_cross(a, b) at numba/np/arraymath.py:4601-4623

numpy . cumprod ()

¢ defined by <class 'abc.Numpy_redirect_cumprod'>

numpy . cumsum()

¢ defined by <class 'abc.Numpy_redirect_cumsum'>
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numpy .delete()

¢ defined by np_delete(arr, obj) at numba/np/arraymath.py:3482-3526
numpy .diag()

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy .diff ()

¢ defined by np_diff_impl(a, n=1) at numba/np/arraymath.py:3529-3565

numpy.digitize()

e defined by np_digitize(x, bins, right=False) at numba/np/arraymath.py:3746-3872
numpy .dot ()

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy .dstack()

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy .ediff1d ()

¢ defined by np_ediffld(ary, to_end=None, to_begin=None) at numba/np/arraymath.py:1875-1930

numpy . empty O

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . empty_like()

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
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numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

expand_dims ()

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

extract()

¢ defined by np_extract(condition, arr) at numba/np/arraymath.py:4266-4289
eye(Q)
¢ defined by numpy_eye(N, M=None, k=0, dtype=<class 'float'>) at numba/np/arrayobj.py:3827-
3850
fill_diagonal O

e defined by np_fill_diagonal(a, val, wrap=False) at numba/np/arraymath.py:3060-3090

flatnonzero()
¢ defined by np_flatnonzero(a) at numba/np/arraymath.py:2958-2973
flipO
¢ defined by np_£f1ip(a) at numba/np/arrayobj.py:5102-5113
fliplr(
¢ defined by np_£f1lip_lr(a) at numba/np/arrayobj.py:5040-5054
flipud O
* defined by np_flip_ud(a) at numba/np/arrayobj.py:5057-5071
frombuffer ()
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
full

* defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

full_like(O
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numpy

numpy

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

.hamming ()

* defined by window_generator.<locals>.window_overload(M) at numba/np/arraymath.py:4420-
4432

.hanning )

¢ defined by window_generator.<locals>.window_overload(M) at numba/np/arraymath.py:4420-
4432

histogram()

¢ defined by np_histogram(a, bins=10, range=None) at numba/np/arraymath.py:3878-3958
hstack()

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

identity()
¢ defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
 defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
imag OO
¢ defined by np_imag(a) at numba/np/arraymath.py:3436-3441
interp()
* defined by np_interp(x, xp, £fp) at numba/np/arraymath.py:2578-2639
intersectld()
e defined by jit_np_intersectld(arl, ar2) at numba/np/arraymath.py:3590-3610
iscomplex()
¢ defined by np_iscomplex(x) at numba/np/arraymath.py:864-869
iscomplexobj ()

¢ defined by iscomplexobj(x) at numba/np/arraymath.py:880-897

6.10. Listings 361


https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4420-L4432
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4420-L4432
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4420-L4432
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4420-L4432
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L3878-L3958
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L3436-L3441
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L2578-L2639
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L3590-L3610
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L864-L869
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L880-L897

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

numpy . isneginf ()

* defined by isneginf(x, out=None) at numba/np/arraymath.py:932-935

numpy . isposinf ()

¢ defined by isposinf(x, out=None) at numba/np/arraymath.py:938-941

numpy .isreal ()

¢ defined by np_isreal (x) at numba/np/arraymath.py:872-877

numpy . isrealobj ()

¢ defined by isrealobj(x) at numba/np/arraymath.py:900-907

numpy .isscalar()

¢ defined by np_isscalar (num) at numba/np/arraymath.py:910-916

numpy .kaiser()

 defined by np_kaiser (M, beta) at numba/np/arraymath.py:4538-4557

numpy .kron()

¢ defined by kron_impl (a, b) at numba/np/linalg.py:2709-2763

numpy . linspace()

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy .max()
Alias to: numpy . amax

e defined by <class 'abc.Numpy_redirect_max'>

numpy .mean ()

¢ defined by <class 'abc.Numpy_redirect_mean'>

numpy .median()

¢ defined by np_median(a) at numba/np/arraymath.py:1386-1398

numpy .min()
Alias to: numpy . amin

¢ defined by <class 'abc.Numpy_redirect_min'>

numpy . nancumprod ()
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¢ defined by np_nancumprod(a) at numba/np/arraymath.py:1131-1153

numpy . nancumsum ()

¢ defined by np_nancumsum(a) at numba/np/arraymath.py:1156-1178

numpy . nanmax ()

¢ defined by np_nanmax (a) at numba/np/arraymath.py:1022-1028

numpy . nanmean ()

¢ defined by np_nanmean(a) at numba/np/arraymath.py:1031-1048

numpy .nanmedian ()

¢ defined by np_nanmedian(a) at numba/np/arraymath.py:1572-1594

numpy .nanmin ()

¢ defined by np_nanmin(a) at numba/np/arraymath.py:1013-1019

numpy .nanpercentile()

* defined by np_nanpercentile(a, q) at numba/np/arraymath.py:1551-1555

numpy .nanprod ()

¢ defined by np_nanprod(a) at numba/np/arraymath.py:1109-1128

numpy .nanquantile()

¢ defined by np_nanquantile(a, q) at numba/np/arraymath.py:1565-1569

numpy .nanstd ()

¢ defined by np_nanstd(a) at numba/np/arraymath.py:1076-1084

numpy . nansum()

¢ defined by np_nansum(a) at numba/np/arraymath.py:1087-1106

numpy .nanvar ()

¢ defined by np_nanvar(a) at numba/np/arraymath.py:1051-1073

numpy .nonzero ()

¢ defined by <class 'abc.Numpy_redirect_nonzero'>

numpy .ones ()

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
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numpy .

* defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,
numba/core/overload_glue.py:131-180

ones_like()

¢ defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,
numba/core/overload_glue.py:131-180

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

numpy .outer ()

* defined by outer_impl(a, b, out=None) at numba/np/linalg.py:2632-2643
numpy .partition()

¢ defined by np_partition(a, kth) at numba/np/arraymath.py:1653-1675
numpy .percentile()

¢ defined by np_percentile(a, ) at numba/np/arraymath.py:1544-1548
numpy . prod ()

¢ defined by <class 'abc.Numpy_redirect_prod'>
numpy .ptp()

e defined by np_ptp(a) at numba/np/arraymath.py:1240-1266
numpy .quantile()

¢ defined by np_quantile(a, q) at numba/np/arraymath.py:1558-1562
numpy .ravel ()

¢ defined by <class 'abc.Numpy_redirect_ravel'>
numpy .real )

* defined by np_real (a) at numba/np/arraymath.py:3428-3433
numpy .repeat ()

* defined by np_repeat(a, repeats) at numba/np/arrayobj.py:2003-2045
numpy . reshape ()

¢ defined by np_reshape(a, shape) at numba/np/arrayobj.py:1730-1734
numpy .roll()

¢ defined by np_roll(a, shift) at numba/np/arraymath.py:2065-2085
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numpy .

numpy .

numpy .

numpy .

roots()
* defined by roots_impl (p) at numba/np/polynomial.py:14-59
rot90()
¢ defined by numpy_rot90 (arr, k=1) at numba/np/arrayobj.py:1566-1590
round ()
* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
round_()

Alias to: numpy . round

numpy .

numpy .

numpy .

numpy .

numpy .

numpy .

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

row_stack()

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

searchsorted()
¢ defined by searchsorted(a, v, side='left') at numba/np/arraymath.py:3711-3743
select()
¢ defined by np_select(condlist, choicelist, default=0) at numba/np/arraymath.py:4292-4340
shape()
¢ defined by np_shape(a) at numba/np/arrayobj.py:1981-1988
sinc(Q)
¢ defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
 defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
sort()

6.10. Listings 365


https://github.com/numba/numba/blob/master/numba/np/polynomial.py#L14-L59
https://github.com/numba/numba/blob/master/numba/np/arrayobj.py#L1566-L1590
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L3711-L3743
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4292-L4340
https://github.com/numba/numba/blob/master/numba/np/arrayobj.py#L1981-L1988
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

numpy .

numpy .

numpy .

numpy .

numpy .

numpy.

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

split()
e defined by np_split(ary, indices_or_sections, axis=0) at numba/np/arrayobj.py:5177-5201
stack()
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
std(Q)
* defined by <class 'abc.Numpy_redirect_std'>
sum()
* defined by <class 'abc.Numpy_redirect_sum'>
swapaxes()
¢ defined by numpy_swapaxes(arr, axisl, axis2) at numba/np/arrayobj.py:5408-5441
take()

* defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . trace()
e defined by matrix_trace_impl(a, offset=0) at numba/np/linalg.py:2566-2594
numpy . transpose ()
¢ defined by numpy_transpose(a, axes=None) at numba/np/arrayobj.py:1531-1543
numpy . trapz ()
¢ defined by np_trapz(y, x=None, dx=1.0) at numba/np/arraymath.py:1967-1986
numpy . tri()
e defined by np_tri (N, M=None, k=0) at numba/np/arraymath.py:1694-1705
numpy . tril )
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numpy

numpy

numpy .

numpy

numpy .

e defined by my_tril(m, k=0) at numba/np/arraymath.py:1731-1755

.tril_indices()

¢ defined by np_tril_indices(n, k=0, m=None) at numba/np/arraymath.py:1758-1769

.tril_indices_from()

e defined by np_tril_indices_from(arr, k=0) at numba/np/arraymath.py:1772-1783

triu(Q)

e defined by my_triu(m, k=0) at numba/np/arraymath.py:1792-1815

.triu_indices(

¢ defined by np_triu_indices(n, k=0, m=None) at numba/np/arraymath.py:1818-1829

triu_indices_from()

¢ defined by np_triu_indices_from(arr, k=0) at numba/np/arraymath.py:1832-1843

numpy .unique ()
* defined by np_unique(a) at numba/np/arrayobj.py:1993-2000
numpy . vander ()
¢ defined by np_vander(x, N=None, increasing=False) at numba/np/arraymath.py:2025-2062
numpy .var()
¢ defined by <class 'abc.Numpy_redirect_var'>
numpy . vdot ()
¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
numpy . vstack()
Alias to: numpy.row_stack
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
numpy .where()
e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
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¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at

numba/core/overload_glue.py:131-180

numpy . zeros ()

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args, **ol_kwargs) at

numba/core/overload_glue.py:131-180

numpy . zeros_like()

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at

numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at

numba/core/overload_glue.py:131-180
Not showing 170 unsupported functions.

supported = 140 /310 = 45.16%

numpy.compat

This module is not supported.

numpy.compat.py3k

This module is not supported.

numpy.compat.setup

This module is not supported.

numpy.core

numpy.core.all()
Alias to: numpy.all

e defined by np_all(a) at numba/np/arraymath.py:827-836

numpy . core.amax()
Alias to: numpy . amax

¢ defined by <class 'abc.Numpy_redirect_max'>

numpy . core.amin()
Alias to: numpy . amin

* defined by <class 'abc.Numpy_redirect_min'>

numpy.core.any()
Alias to: numpy . any
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¢ defined by np_any(a) at numba/np/arraymath.py:839-848

numpy . core.arange()
Alias to: numpy.arange

¢ defined by np_arange(start, stop=None, step=None, dtype=None) at
numba/np/arrayobj.py:3987-4052

numpy . core.argmax()
Alias to: numpy . argmax

¢ defined by array_argmax(arr, axis=None) at numba/np/arraymath.py:774-824

numpy . core.argmin()
Alias to: numpy.argmin

* defined by <class 'abc.Numpy_redirect_argmin'>

numpy.core.argsort()
Alias to: numpy .argsort

e defined by <class 'abc.Numpy_redirect_argsort'>

numpy . core.argwhere ()
Alias to: numpy . argwhere

¢ defined by np_argwhere(a) at numba/np/arraymath.py:2923-2955

numpy . core.around()
Alias to: numpy . around

¢ defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy.core.array()
Alias to: numpy.array

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy.core.array_equal ()
Alias to: numpy.array_equal

* defined by np_array_equal(a, b) at numba/np/arraymath.py:3568-3587

numpy.core.asarray()
Alias to: numpy .asarray

* defined by np_asarray(a, dtype=None) at numba/np/arraymath.py:4196-4248

numpy . core.ascontiguousarray ()
Alias to: numpy . ascontiguousarray

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
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numpy . core.asfortranarray()
Alias to: numpy.asfortranarray

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

¢ defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

numpy .core.atleast_1d()
Alias to: numpy.atleast_1d

¢ defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

numpy .core.atleast_2d()
Alias to: numpy.atleast_2d

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

¢ defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

numpy . core.atleast_3d()
Alias to: numpy.atleast_3d

¢ defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

numpy . core.clip()
Alias to: numpy.clip

¢ defined by np_clip(a, a_min, a_max, out=None)

numpy . core.concatenate()
Alias to: numpy.concatenate

* defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.

numba/core/overload_glue.py:131-180

numpy . core.convolve()
Alias to: numpy.convolve

ol_generated(*ol_args, **ol_kwargs)

ol_generated(*ol_args, **ol_kwargs)

ol_generated(*ol_args, **ol_kwargs)

ol_generated(*ol_args, **ol_kwargs)

ol_generated(*ol_args, **ol_kwargs)

ol_generated(*ol_args, **ol_kwargs)

ol_generated(*ol_args, **ol_kwargs)

ol_generated(*ol_args, **ol_kwargs)

at numba/np/arrayobj.py: 1805-1845

ol_generated(*ol_args, **ol_kwargs)

ol_generated(*ol_args, **ol_kwargs)

¢ defined by np_convolve(a, v) at numba/np/arraymath.py:4172-4193

numpy . core.correlate()
Alias to: numpy.correlate

¢ defined by _np_correlate(a, v) at numba/np/arraymath.py:4124-4169

numpy . core . count_nonzero ()
Alias to: numpy . count_nonzero

¢ defined by np_count_nonzero(arr, axis=None) at numba/np/arraymath.py:3461-3475

at

at

at

at

at

at

at

at

at

at

370

Chapter 6. Developer Manual


https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/np/arrayobj.py#L1805-L1845
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/core/overload_glue.py#L131-L180
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4172-L4193
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L4124-L4169
https://github.com/numba/numba/blob/master/numba/np/arraymath.py#L3461-L3475

Numba Documentation, Release 0.54.1+0.g39aef3deb.dirty-py3.7-linux-x86_64.egg

numpy .core.cross()
Alias to: numpy.cross

e defined by np_cross(a, b) at numba/np/arraymath.py:4601-4623

numpy . core . cumprod()
Alias to: numpy . cumprod

¢ defined by <class 'abc.Numpy_redirect_cumprod'>

numpy . core.cumsum()
Alias to: numpy . cumsum

¢ defined by <class 'abc.Numpy_redirect_cumsum'>

numpy . core.dot ()
Alias to: numpy.dot

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.empty()
Alias to: numpy . empty

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.empty_like()
Alias to: numpy.empty_like

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core. flatnonzero()
Alias to: numpy . flatnonzero

¢ defined by np_flatnonzero(a) at numba/np/arraymath.py:2958-2973

numpy . core . frombuffer ()
Alias to: numpy . frombuffer

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.full()
Alias to: numpy. full

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180
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numpy . core. full_like()
Alias to: numpy . full_like

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args,

numba/core/overload_glue.py:131-180

¢ defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,

numba/core/overload_glue.py:131-180

numpy . core.hstack()
Alias to: numpy.hstack

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,

numba/core/overload_glue.py:131-180

numpy .core.identity()
Alias to: numpy.identity

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,

numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args,

numba/core/overload_glue.py:131-180

numpy . core.isscalar()
Alias to: numpy.isscalar

¢ defined by np_isscalar(num) at numba/np/arraymath.py:910-916

numpy . core.linspace()
Alias to: numpy.linspace

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

**0l_kwargs) at

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.max()
Alias to: numpy . amax

¢ defined by <class 'abc

numpy . core.mean()
Alias to: numpy .mean

* defined by <class 'abc

numpy .core.min()
Alias to: numpy . amin

* defined by <class 'abc

numpy . core.nonzero()
Alias to: numpy.nonzero

¢ defined by <class 'abc

numpy . core.ones ()
Alias to: numpy .ones

.Numpy_redirect_max'>

.Numpy_redirect_mean'>

.Numpy_redirect_min'>

.Numpy_redirect_nonzero'>
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¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.ones_like()
Alias to: numpy .ones_like

e defined by _OverloadWrapper._build.<locals>.0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.outer ()
Alias to: numpy .outer

¢ defined by outer_impl(a, b, out=None) at numba/np/linalg.py:2632-2643

numpy . core.partition()
Alias to: numpy.partition

* defined by np_partition(a, kth) at numba/np/arraymath.py:1653-1675

numpy . core.prod()
Alias to: numpy . prod

¢ defined by <class 'abc.Numpy_redirect_prod'>

numpy.core.ptp()
Alias to: numpy.ptp

¢ defined by np_ptp(a) at numba/np/arraymath.py:1240-1266

numpy . core.ravel()
Alias to: numpy.ravel

¢ defined by <class 'abc.Numpy_redirect_ravel'>

numpy .core.repeat()
Alias to: numpy .repeat

* defined by np_repeat(a, repeats) at numba/np/arrayobj.py:2003-2045

numpy . core.reshape()
Alias to: numpy . reshape

¢ defined by np_reshape(a, shape) at numba/np/arrayobj.py:1730-1734

numpy . core.roll()
Alias to: numpy.roll

e defined by np_roll(a, shift) at numba/np/arraymath.py:2065-2085

numpy . core.round()
Alias to: numpy . round

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.round_()
Alias to: numpy . round
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¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.searchsorted()
Alias to: numpy . searchsorted

¢ defined by searchsorted(a, v, side='left') at numba/np/arraymath.py:3711-3743

numpy . core.shape()
Alias to: numpy . shape

¢ defined by np_shape (a) at numba/np/arrayobj.py:1981-1988

numpy . core.sort()
Alias to: numpy . sort

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.stack()
Alias to: numpy.stack

e defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

¢ defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy . core.std()
Alias to: numpy.std

¢ defined by <class 'abc.Numpy_redirect_std'>

numpy .core.sum()
Alias to: numpy . sum

* defined by <class 'abc.Numpy_redirect_sum'>

numpy . core.swapaxes()
Alias to: numpy . swapaxes

¢ defined by numpy_swapaxes(arr, axisl, axis2) at numba/np/arrayobj.py:5408-5441

numpy . core.take()
Alias to: numpy . take

* defined by _OverloadWrapper._build.<locals>.ol_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

¢ defined by _OverloadWrapper._build.<locals>.o0l_generated(*ol_args, **ol_kwargs) at
numba/core/overload_glue.py:131-180

numpy.core.trace()
Alias to: numpy . trace

¢ defined by matrix_trace_impl(a, offset=0) at numba/np/linalg.py:2566-2594

numpy . core.transpose()
Alias to: numpy . transpose
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¢ defined by numpy_transpose(a, axes=None) at numba/np/arrayobj.py:1531-1543

numpy . core.var()
Alias to: numpy.var

¢ defined by <class 'abc.Numpy_redirect_var'>

numpy . core.vdot()
Alias to: numpy.vdot

e defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

¢ defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

numpy . core.vstack()
Alias to: numpy.row_stack

* defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

numpy . core.where()
Alias to: numpy .where

e defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

* defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

numpy . core.zeros()
Alias to: numpy . zeros

¢ defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

numpy . core.zeros_like()
Alias to: numpy.zeros_like

e defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

e defined by _OverloadWrapper._build.
numba/core/overload_glue.py:131-180

Not showing 78 unsupported functions.

supported = 69 / 147 = 46.94%
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ol_generated(*ol_args,

ol_generated(*ol_args,

ol_generated(*ol_args,
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