Numba Documentation
Release 0.53.0-py3.7-linux-x86x4.cqq

Anaconda

Mar 11, 2021

FOR ALL USERS

1 User Manual 3
1.1 A~Sminute guideto Numba L 3
1.2 OVErVIEW o o o e e e e e e e e e e 7
1.3 Inmstallation e e e e e 7
1.4 Compiling Python code with @51t e 12
1.5 Flexible specializations with @generated_Jit i i it vt i 15
1.6 Creating NumPy universal functions 17
1.7 Compiling Python classes with @jitclass o it 23
1.8 Creating C callbacks with @cfunc i 28
1.9 Compiling code ahead of time e 31
1.10 Automatic parallelization with @it e 33
I.11 Usingthe @stencildecorator ittt 41
1.12 Callback into the Python Interpreter from within JIT’edcode 45
1.13 Automatic module jitting with jit_module. Lo 46
1.14 Performance TipsS« o o o v e e e e e 48
1.15 The Threading Layers o 0 i i e e e e e e e e e e 52
1.16 Command lineinterface 57
1.17 Troubleshooting and tips e 60
1.18 Frequently Asked Questions L 78
1.19 Examples o o e e e e e 83
1.20 Talksand Tutorials o e 86

2 Reference Manual 89
2.1 Types and SIZNATUIES v v v v vt bt e 89
2.2 Just-in-Time compilation L L e e e e e e e e e e e e 95
2.3 Ahead-of-Time compilation L e e e e e 102
24 UtIties o oo e e e e e e 103
2.5 Environment variables oL L e e e e e e 103
2.6 Supported Python features e 109
2.7 Supported NumPy features e e e e e 135
2.8 Deviations from Python Semantics e 152
2.9 Floating-point pitfalls e 153
2.10 Deprecation NOtICES i it e e 154

3 Numba for CUDA GPUs 161
3.1 OVEIVIEW . . . o oot e e e e 161
3.2 Writing CUDA Kernels 0 e 162
3.3 Memory management oe i e 166
3.4 Writing Device Functions o e e e e e e e e e e e 171
3.5 Supported Python features in CUDA Python 171

3.6 Supported Atomic Operations v v v v v i e e e e e e e e e e e e e e e e e e e 176
3.7 Cooperative GIOUDPS .« v v v v v v v e 178
3.8 Random Number Generation« v v v v v vt i et e e e e e e e e e 181
3.9 Devicemanagement i e e e e e e e e e e e 184
3.10 TheDevice List o 0 e e e e 185
301 Examples oo e e e 185
3.12 Debugging CUDA Python with the the CUDA Simulator 186
3.13 GPUReduction o e e e e e 188
3.14 CUDA Ufuncs and Generalized Ufuncs o 0 i et 189
3.15 Sharing CUDAMemory ittt e e 190
3.16 CUDA Array Interface (Version 3) L it i e e 191
3.17 External Memory Management (EMM) Plugin interface 199
3.18 CUDA Frequently Asked Questions v i v i i it et e e e 207
CUDA Python Reference 209
4.1 CUDAHost APT o e e 209
42 CUDA Kernel API e e 214
4.3 Memory Managementl e e e e e 223
4.4 Libdevice functions oL e e e e e e e e e e e 226
Numba for AMD ROC GPUs 265
S50 OVEIVIEW .« o o ottt e e et e e e e e e e e e e e e 265
52 Writing HSA Kernels e 266
5.3 Memory management e e e e e e e e 269
5.4 Writing Device Functions e e e e e e e e 271
5.5 Supported Atomic Operations v v v v v it e e e e e e e e e e e e e e e e e 272
5.6 The Agents e e e e e e e e 273
5.7 ROC Ufuncs and Generalized Ufuncs o o e 273
5.8 Exampleso e 276
Extending Numba 279
6.1 High-level extension APL e 279
6.2 Low-level extension APL e 286
6.3 Example: aninterval type oL e e e e e e e e e e e e e e e e e e 288
6.4 Aguidetousing @Qoverload vttt e e e e e e 294
6.5 Registering Extensions with Entry Points oo oo 298
Developer Manual 301
7.1 Contributingto Numba e e 301
7.2 A Map of the Numba Repository e e e 308
7.3 Numba architecture o o it e e e e e e e e e e e e e e 319
7.4 Polymorphic dispatching L e 333
7.5 NOES ON ENETALOTS . v v v v v v v v e 336
7.6 NotesonNumbaRuntime 341
7.7 Using the Numba Rewrite Pass for Fun and Optimization 344
7.8 Live Variable Analysis L 349
7.9 LISHNES . . o o o o e e e e e e e e e e e 351
7.10 Notesonstencils L e e e e 519
7.11 Customizing the Compiler o 0 e e e e e e e 521
7.12 NotesonInlining L e e e e e e e e e 524
7.13 Environment Object 531
7.14 NotesonHashing 532
7.15 Noteson Caching e e e 533
7.16 Notes on Numba’s threading implementation i v i v v v 535
7.17 Noteson Literal Types o o o i e e e e e e e e 538

10

7.18 Noteson timing LLVM o . e e e e e e e e e e
7.19 Noteson Debugg@ing o . e e e e e e e e
7.20 Event APL L e e
7.21 NumbaProject Roadmap

8.2 Other proposals o o e e e e e e e e e e e
Glossary

Release Notes

10.1 Version 0.53.0 (11 March, 2021) 0 e e e e e e e
10.2 Version 0.52.0 (30 November, 2020) 0 i i e e e e e e e
10.3 Version 0.51.2 (September 2, 2020) Lo e e e e e e e
10.4 Version 0.51.1 (August 26, 2020) oL e e e e e e e e
10.5 Version 0.51.0 (August 12,2020) o o vt e e e
10.6 Version 0.50.1 (Jun 24, 2020) e e e
10.7 Version 0.50.0 (Jun 10, 2020) o o e e e e e e
10.8 Version 0.49.1 (May 7,2020) i i e e e e e e e e e e
10.9 Version 0.49.0 (Apr 16,2020) o o i e e
10.10 Version 0.48.0 (Jan 27,2020) o e e e
10.11 Version 0.47.0 (Jan 2,2020) 0 0 i e e s
10.12 Version 0.46.0 e e e
10.13 Version 0.45.1 e e e e e e
10.14 Version 0.45.0 L e e e e e e e
10.15 Version 0.44.1 L e
10.16 Version 0.44.0 L e e e e
10.17 Version 0.43.1 o e e
10.18 Version 0.43.0 e e e
10.19 Version 0.42.1 o e e e e e e e e e e e e e
10.20 Version 0.42.0 L e e e e e e e
10.21 Version 0.41.0 L e e e e e e e
10.22 Version 0.40.1 e e
10.23 Version 0.40.0 e e e e
10.24 Version 0.39.0 e e e e e e e e e e
10.25 Version 0.38.1 L e e e
10.26 Version 0.38.0 L e
10.27 Version 0.37.0 L e e e e e e
10.28 Version 0.36.2 e e e e
10.29 Version 0.36.1 e e e e e e
10.30 Version 0.35.0 L e e e e
10.31 Version 0.34.0 L e e
10.32 Version 0.33.0 L L e e e e
10.33 Version 0.32.0 L e e
10.34 Version 0.31.0 e e e
10.35 Version 0.30.1 o . L e e e e e e e e e e e
10.36 Version 0.30.0 L e e e e e
10.37 Version 0.29.0 L e e e e
10.38 Version 0.28.1 e e e
10.39 Version 0.28.0 e e e
10.40 Version 0.27.0 e e e e e e
10.41 Version 0.26.0 L e e e e e e
10.42 Version 0.25.0 e e e

10.43 Version 0.24.0 o e 669

10.44 Version 0.23.1 e e 670
10.45 Version 0.23.0 L e e e e e 671
10.46 Version 0.22.1 L e e e e e e 672
10.47 Version 0.22.0 L e e 672
10.48 Version 0.21.0 L e e e 673
10.49 Version 0.20.0 e e 674
10.50 Version 0.19.2 e e 675
10.51 Version 0.19.1 o . L e e e e e e e e e 675
10.52 Version 0.19.0 L e e e e 675
10.53 Version 0.18.2 L e e e 676
10.54 Version 0.18.1 e e e 676
10.55 Version 0.17.0 o o e e e e 678
10.56 Version 0.16.0 e e e 679
10.57 Version 0.15.1 o o e e e e e e e 679
10.58 Version 0.15 L e e e e 679
10.59 Version 0.14 L . L e e e e e e e 680
10.60 Version 0.13.4 L e e e e 681
10.61 Version 0.13.3 e e e 682
10.62 Version 0.13.2 L e e e e e e 682
10.63 Version 0.13.1 e e e e e e e 682
10.64 Version 0.13 L e e e 683
10.65 Version 0.12.2 L e e 683
10.66 Version 0.12.1 e e e 683
10.67 Version 0.12 L e e e e e e e e e e e e e e 684
10.68 Version 0.11 e e e e e e e e 684
10.69 Version 0.10 e e 685
10.70 Version 0.9 e e 685
10.71 Version 0.8 e e e e 685
10.72 Version 0.7.2 o o o e e e e e e e e e e e e e 685
10.73 Version 0.7.1 e e e e e e e e 686
10.74 Version 0.7 L e e e 686
10.75 Version 0.6.1 L e e e e e e e 686
10.76 Version 0.6 L e e e e e 687
10.77 Version 0.5 o o e e e 687
10.78 Version 0.4 L e e e e e e 687
10.79 Version 0.3.2 L e e e e e e e e e 687
10.80 Version 0.3 L e e 688
10.81 Version 0.2 o e e e 688
Python Module Index 689
Index 691

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

This is the Numba documentation. Unless you are already acquainted with Numba, we suggest you start with the User
manual.

FOR ALL USERS 1

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

2 FOR ALL USERS

CHAPTER
ONE

USER MANUAL

1.1 A ~5 minute guide to Numba

Numbea is a just-in-time compiler for Python that works best on code that uses NumPy arrays and functions, and loops.
The most common way to use Numba is through its collection of decorators that can be applied to your functions to
instruct Numba to compile them. When a call is made to a Numba-decorated function it is compiled to machine code
“just-in-time” for execution and all or part of your code can subsequently run at native machine code speed!

Out of the box Numba works with the following:
* OS: Windows (32 and 64 bit), OSX, Linux (32 and 64 bit). Unofficial support on *BSD.
* Architecture: x86, x86_64, ppc64le, armv7l, armv8l (aarch64). Unofficial support on M1/Arm64.
* GPUs: Nvidia CUDA. Experimental on AMD ROC.
¢ CPython
e NumPy 1.15 - latest

1.1.1 How do | get it?

Numba is available as a conda package for the Anaconda Python distribution:

’$ conda install numba

Numba also has wheels available:

’$ pip install numba

Numbea can also be compiled from source, although we do not recommend it for first-time Numba users.

Numbea is often used as a core package so its dependencies are kept to an absolute minimum, however, extra packages
can be installed as follows to provide additional functionality:

* scipy - enables support for compiling numpy . 1inalg functions.
* colorama - enables support for color highlighting in backtraces/error messages.
e pyyaml - enables configuration of Numba via a YAML config file.

e icc_rt - allows the use of the Intel SVML (high performance short vector math library, x86_64 only). Instal-
lation instructions are in the performance tips.

https://conda.io/docs/
https://www.anaconda.com/

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.1.2 Will Numba work for my code?

This depends on what your code looks like, if your code is numerically orientated (does a lot of math), uses NumPy a
lot and/or has a lot of loops, then Numba is often a good choice. In these examples we’ll apply the most fundamental
of Numba’s JIT decorators, @ jit, to try and speed up some functions to demonstrate what works well and what does
not.

Numba works well on code that looks like this:

from numba import jit
import numpy as np

x = np.arange (100) .reshape (10, 10)

@jit (nopython=True) # Set "nopython" mode for best performance, equivalent to (@njit

def go_fast(a): # Function is compiled to machine code when called the first time
trace = 0.0
for i in range(a.shape[0]): # Numba likes loops
trace += np.tanh(ali, 1i]) # Numba likes NumPy functions
return a + trace # Numba likes NumPy broadcasting

print (go_fast (x))

It won’t work very well, if at all, on code that looks like this:

from numba import jit
import pandas as pd

x = {'a': [1, 2, 3], 'b': [20, 30, 401}

@jit

def use_pandas(a): # Function will not benefit from Numba jit
df = pd.DataFrame.from_dict (a) # Numba doesn't know about pd.DataFrame
df += 1 # Numba doesn't understand what this is
return df.cov () # or this!

print (use_pandas (x))

Note that Pandas is not understood by Numba and as a result Numba would simply run this code via the interpreter
but with the added cost of the Numba internal overheads!

1.1.3 What is nopython mode?

The Numba @ jit decorator fundamentally operates in two compilation modes, nopython mode and ob ject mode.
In the go__fast example above, nopython=True is set in the @ jit decorator; this is instructing Numba to operate
in nopython mode. The behaviour of the nopython compilation mode is to essentially compile the decorated
function so that it will run entirely without the involvement of the Python interpreter. This is the recommended and
best-practice way to use the Numba jit decorator as it leads to the best performance.

Should the compilation in nopython mode fail, Numba can compile using ob ject mode. This is a fall back mode
for the @ jit decorator if nopython=True is not set (as seen in the use_pandas example above). In this mode
Numba will identify loops that it can compile and compile those into functions that run in machine code, and it will
run the rest of the code in the interpreter. For best performance avoid using this mode!

4 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.1.4 How to measure the performance of Numba?

First, recall that Numba has to compile your function for the argument types given before it executes the machine code
version of your function. This takes time. However, once the compilation has taken place Numba caches the machine
code version of your function for the particular types of arguments presented. If it is called again with the same types,
it can reuse the cached version instead of having to compile again.

A really common mistake when measuring performance is to not account for the above behaviour and to time code
once with a simple timer that includes the time taken to compile your function in the execution time.

For example:

from numba import jit
import numpy as np
import time

x = np.arange (100) .reshape (10, 10)

@jit (nopython=True)
def go_fast(a): # Function is compiled and runs in machine code
trace = 0.0
for i in range(a.shape([0]):
trace += np.tanh(al[i, 1i])
return a + trace

DO NOT REPORT THIS... COMPILATION TIME IS INCLUDED IN THE EXECUTION TIME!
start = time.time ()

go_fast (x)

end = time.time ()

print ("Elapsed (with compilation) = " % (end - start))

NOW THE FUNCTION IS COMPILED, RE-TIME IT EXECUTING FROM CACHE
start = time.time ()

go_fast (x)

end = time.time ()

print ("Elapsed (after compilation) = " % (end - start))

This, for example prints:

Elapsed (with compilation) = 0.33030009269714355
Elapsed (after compilation) = 6.67572021484375e-06

A good way to measure the impact Numba JIT has on your code is to time execution using the timeit module functions;
these measure multiple iterations of execution and, as a result, can be made to accommodate for the compilation time
in the first execution.

As a side note, if compilation time is an issue, Numba JIT supports on-disk caching of compiled functions and also
has an Ahead-Of-Time compilation mode.

1.1. A ~5 minute guide to Numba 5

https://docs.python.org/3/library/timeit.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.1.5 How fast is it?

Assuming Numba can operate in nopython mode, or at least compile some loops, it will target compilation to your
specific CPU. Speed up varies depending on application but can be one to two orders of magnitude. Numba has a
performance guide that covers common options for gaining extra performance.

1.1.6 How does Numba work?

Numba reads the Python bytecode for a decorated function and combines this with information about the types of the
input arguments to the function. It analyzes and optimizes your code, and finally uses the LLVM compiler library to
generate a machine code version of your function, tailored to your CPU capabilities. This compiled version is then
used every time your function is called.

1.1.7 Other things of interest:

Numba has quite a few decorators, we’ve seen @ jit, but there’s also:
* @njit - thisisan alias for @jit (nopython=True) asitis so commonly used!
e @vectorize - produces NumPy ufunc s (with all the ufunc methods supported). Docs are here.
* @guvectorize - produces NumPy generalized ufunc s. Docs are here.
* @stencil - declare a function as a kernel for a stencil like operation. Docs are here.
* @jitclass - for jit aware classes. Docs are here.
e @Qcfunc - declare a function for use as a native call back (to be called from C/C++ etc). Docs are here.

* @overload - register your own implementation of a function for use in nopython mode, e.g.
@overload (scipy.special. jO). Docs are here.

Extra options available in some decorators:

e parallel = True - enable the automatic parallelization of the function.

e fastmath = True - enable fast-math behaviour for the function.
ctypes/cffi/cython interoperability:

e cffi - The calling of CFFI functions is supported in nopython mode.

* ctypes - The calling of crypes wrapped functions is supported in nopython mode.

» Cython exported functions are callable.
GPU targets:
Numba can target Nvidia CUDA and (experimentally) AMD ROC GPUs. You can write a kernel in pure Python and

have Numba handle the computation and data movement (or do this explicitly). Click for Numba documentation on
CUDA or ROC.

6 Chapter 1. User Manual

https://developer.nvidia.com/cuda-zone
https://rocm.github.io/

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.2 Overview

Numba is a compiler for Python array and numerical functions that gives you the power to speed up your applications
with high performance functions written directly in Python.

Numba generates optimized machine code from pure Python code using the LLVM compiler infrastructure. With a
few simple annotations, array-oriented and math-heavy Python code can be just-in-time optimized to performance
similar as C, C++ and Fortran, without having to switch languages or Python interpreters.

Numba’s main features are:
* on-the-fly code generation (at import time or runtime, at the user’s preference)
* native code generation for the CPU (default) and GPU hardware
* integration with the Python scientific software stack (thanks to Numpy)

Here is how a Numba-optimized function, taking a Numpy array as argument, might look like:

@numba. jit
def sum2d(arr) :
M, N = arr.shape
result = 0.0
for i in range (M) :
for j in range (N):
result += arr([i,]
return result

1.3 Installation

1.3.1 Compatibility

Numba is compatible with Python 3.6 or later, and Numpy versions 1.15 or later.
Our supported platforms are:

e Linux x86 (32-bit and 64-bit)

* Linux ppcle64 (POWERS, POWERY)

¢ Windows 7 and later (32-bit and 64-bit)

* OS X 10.9 and later (64-bit and unofficial support on M1/Arm64)

» *BSD (unofficial support only)

* NVIDIA GPUs of compute capability 3.0 and later

* AMD ROC dGPUs (linux only and not for AMD Carrizo or Kaveri APU)

* ARMvV7 (32-bit little-endian, such as Raspberry Pi 2 and 3)

¢ ARMVvS (64-bit little-endian, such as the NVIDIA Jetson)

Automatic parallelization with @jit is only available on 64-bit platforms.

1.2. Overview 7

http://llvm.org/

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.3.2 Installing using conda on x86/x86_64/POWER Platforms

The easiest way to install Numba and get updates is by using conda, a cross-platform package manager and software
distribution maintained by Anaconda, Inc. You can either use Anaconda to get the full stack in one download, or
Miniconda which will install the minimum packages required for a conda environment.

Once you have conda installed, just type:

’$ conda install numba

or:

’$ conda update numba

Note that Numba, like Anaconda, only supports PPC in 64-bit little-endian mode.

To enable CUDA GPU support for Numba, install the latest graphics drivers from NVIDIA for your platform. (Note
that the open source Nouveau drivers shipped by default with many Linux distributions do not support CUDA.) Then
install the cudatoolkit package:

$ conda install cudatoolkit

You do not need to install the CUDA SDK from NVIDIA.

1.3.3 Installing using pip on x86/x86_64 Platforms

Binary wheels for Windows, Mac, and Linux are also available from PyPI. You can install Numba using pip:

$ pip install numba

This will download all of the needed dependencies as well. You do not need to have LLVM installed to use Numba (in
fact, Numba will ignore all LLVM versions installed on the system) as the required components are bundled into the
Ilvmlite wheel.

To use CUDA with Numba installed by pip, you need to install the CUDA SDK from NVIDIA. Please refer to Setting
CUDA Installation Path for details. Numba can also detect CUDA libraries installed system-wide on Linux.

1.3.4 Enabling AMD ROCm GPU Support

The ROCm Platform allows GPU computing with AMD GPUs on Linux. To enable ROCm support in Numba, conda
is required, so begin with an Anaconda or Miniconda installation with Numba 0.40 or later installed. Then:

1. Follow the ROCm installation instructions.

2. Install roctools conda package from the numba channel:

$ conda install -c numba roctools

See the roc-examples repository for sample notebooks.

8 Chapter 1. User Manual

https://www.anaconda.com/download
https://conda.io/miniconda.html
https://www.nvidia.com/Download/index.aspx
https://pypi.org/project/numba/
https://developer.nvidia.com/cuda-downloads
https://rocm.github.io/
https://rocm.github.io/install.html
https://github.com/numba/roc-examples

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.3.5 Installing on Linux ARMv7 Platforms

Berryconda is a conda-based Python distribution for the Raspberry Pi. We are now uploading packages to the numba
channel on Anaconda Cloud for 32-bit little-endian, ARMv7-based boards, which currently includes the Raspberry Pi
2 and 3, but not the Pi 1 or Zero. These can be installed using conda from the numba channel:

$ conda install -c numba numba

Berryconda and Numba may work on other Linux-based ARMv7 systems, but this has not been tested.

1.3.6 Installing on Linux ARMv8 (AArch64) Platforms

We build and test conda packages on the NVIDIA Jetson TX2, but they are likely to work for other AArch64 platforms.
(Note that while the Raspberry Pi CPU is 64-bit, Raspbian runs it in 32-bit mode, so look at Installing on Linux ARMv7
Platforms instead.)

Conda-forge support for AArch64 is still quite experimental and packages are limited, but it does work enough for
Numba to build and pass tests. To set up the environment:

* Install miniforge. This will create a minimal conda environment.

* Then you can install Numba from the numba channel:

$ conda install -c numba numba

On CUDA-enabled systems, like the Jetson, the CUDA toolkit should be automatically detected in the environment.

1.3.7 Installing from source

Installing Numba from source is fairly straightforward (similar to other Python packages), but installing llvmlite can
be quite challenging due to the need for a special LLVM build. If you are building from source for the purposes of
Numba development, see Build environment for details on how to create a Numba development environment with
conda.

If you are building Numba from source for other reasons, first follow the Ilvmlite installation guide. Once that is
completed, you can download the latest Numba source code from Github:

$ git clone git://github.com/numba/numba.git

Source archives of the latest release can also be found on PyPI. In addition to 11vmlite, you will also need:

e A C compiler compatible with your Python installation. If you are using Anaconda, you can use the following
conda packages:

Linux x86: gcc_linux-32 and gxx_linux-32

Linux x86_64: gcc_linux-64 and gxx_linux-64

Linux POWER: gcc_linux—-ppc64le and gxx_linux—-ppcé6dle

Linux ARM: no conda packages, use the system compiler

Mac OSX: clang_osx-64 and clangxx_osx—64 or the system compiler at /usr/bin/clang
(Mojave onwards)

— Windows: a version of Visual Studio appropriate for the Python version in use
e NumPy

Then you can build and install Numba from the top level of the source tree:

1.3. Installation 9

https://github.com/jjhelmus/berryconda
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems-dev-kits-modules/
https://github.com/conda-forge/miniforge
https://github.com/numba/llvmlite
https://llvmlite.readthedocs.io/en/latest/admin-guide/install.html
https://github.com/numba/numba
https://pypi.org/project/numba/
http://www.numpy.org/

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

$ python setup.py install

Build time environment variables and configuration of optional components

Below are environment variables that are applicable to altering how Numba would otherwise build by default along
with information on configuration options.

NUMBA_DISABLE OPENMP (default: not set)
To disable compilation of the OpenMP threading backend set this environment variable to a non-empty string
when building. If not set (default):

 For Linux and Windows it is necessary to provide OpenMP C headers and runtime libraries compatible
with the compiler tool chain mentioned above, and for these to be accessible to the compiler via standard
flags.

* For OSX the conda packages 11vm-openmp and intel-openmp provide suitable C headers and li-
braries. If the compilation requirements are not met the OpenMP threading backend will not be compiled

NUMBA_DISABLE TBB (default: not set)
To disable the compilation of the TBB threading backend set this environment variable to a non-empty string
when building. If not set (default) the TBB C headers and libraries must be available at compile time. If
building with conda build this requirement can be met by installing the tbb-devel package. If not
building with conda build the requirement can be met via a system installation of TBB or through the use
of the TBBROOT environment variable to provide the location of the TBB installation. For more information
about setting TBBROOT see the Intel documentation.

1.3.8 Dependency List

Numba has numerous required and optional dependencies which additionally may vary with target operating system
and hardware. The following lists them all (as of July 2020).

* Required build time:

setuptools

— numpy

llvmlite

Compiler toolchain mentioned above
* Required run time:

— setuptools

— numpy

— llvmlite
» Optional build time:

See Build time environment variables and configuration of optional components for more details about additional
options for the configuration and specification of these optional components.

— llvm-openmp (OSX) - provides headers for compiling OpenMP support into Numba’s threading back-
end

- intel-openmp (OSX) - provides OpenMP library support for Numba’s threading backend.

10 Chapter 1. User Manual

https://software.intel.com/content/www/us/en/develop/documentation/advisor-user-guide/top/appendix/adding-parallelism-to-your-program/adding-the-parallel-framework-to-your-build-environment/defining-the-tbbroot-environment-variable.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

tbb-devel - provides TBB headers/libraries for compiling TBB support into Numba’s threading back-
end

* Optional runtime are:

scipy - provides cython bindings used in Numba’s np.linalg. % support

tbb - provides the TBB runtime libraries used by Numba’s TBB threading backend

jinja2 - for “pretty” type annotation output (HTML) via the numba CLI

cffi - permits use of CFFI bindings in Numba compiled functions

intel-openmp - (OSX) provides OpenMP library support for Numba’s OpenMP threading backend
ipython - if in use, caching will use IPython’s cache directories/caching still works

pyyaml - permits the use of a . numba_config. yaml file for storing per project configuration options
colorama - makes error message highlighting work

icc_rt - (numba channel) allows Numba to use Intel SVML for extra performance

pygments - for “pretty” type annotation

gdb as an executable on the $PATH - if you would like to use the gdb support

Compiler toolchain mentioned above, if you would like to use pycc for Ahead-of-Time (AOT) compila-
tion

r2pipe - required for assembly CFG inspection.

radare2 as an executable on the $PATH - required for assembly CFG inspection. See here for informa-
tion on obtaining and installing.

graphviz - for some CFG inspection functionality.
pickle5 - provides Python 3.8 pickling features for faster pickling in Python 3.6 and 3.7.

typeguard -used by runtests.py for runtime type-checking.

¢ To build the documentation:

sphinx

pygments
sphinx_rtd_theme
numpydoc

make as an executable on the SPATH

1.3.9 Checking your installation

You should be able to import Numba from the Python prompt:

$ python

Python 3.8.1 (default, Jan 8 2020, 16:15:59)

[Clang 4

.0.1 (tags/RELEASE_401/final)] :: Anaconda, Inc. on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import numba
>>> numba.__version_

'0.48.0"

1.3. Installation 11

https://github.com/radareorg/radare2

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

You can also try executing the numba —--sysinfo (or numba -s for short) command to report information about
your system capabilities. See Command line interface for further information.

$ numba -s

System info:

__Time Stamp___

2018-08-28 15:46:24.631054

_ Hardware Information_

Machine : x86_64

CPU Name : haswell

CPU Features :

aes avx avx2 bmi bmi2 cmov cx16 flé6c fma fsgsbase lzcnt mmx movbe pclmul popcnt
rdrnd sse sse2 sse3 ssed4.l ssed.2 ssse3 xsave xsaveopt

_ 0SS Information_

Platform : Darwin-17.6.0-x86_64-1386-64bit

Release : 17.6.0

System Name : Darwin

Version : Darwin Kernel Version 17.6.0: Tue May 38,
—15:22:16 PDT 2018; root:xnu-4570.61.1~1/RELEASE_X86_64

0OS specific info : 10.13.5 x86_64

Python Information_

Python Compiler : GCC 4.2.1 Compatible Clang 4.0.1 (tags/RELEASE_
—401/final)

Python Implementation : CPython

Python Version : 2.7.15

Python Locale : en_US UTF-8

_ LLVM information_
LLVM version : 6.0.0

_ CUDA Information_
Found 1 CUDA devices
id 0 GeForce GT 750M [SUPPORTED]
compute capability:

pci device id:

pci bus id:

= o W

(output truncated due to length)

1.4 Compiling Python code with @jit

Numba provides several utilities for code generation, but its central feature is the numba. jit () decorator. Using
this decorator, you can mark a function for optimization by Numba’s JIT compiler. Various invocation modes trigger
differing compilation options and behaviours.

12 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.4.1 Basic usage
Lazy compilation

The recommended way to use the @ jit decorator is to let Numba decide when and how to optimize:

from numba import jit

@jit

def f(x, y):
A somewhat trivial example
return x + y

In this mode, compilation will be deferred until the first function execution. Numba will infer the argument types
at call time, and generate optimized code based on this information. Numba will also be able to compile separate
specializations depending on the input types. For example, calling the £ () function above with integer or complex
numbers will generate different code paths:

>>> f (1, 2)
3

>>> f£(13, 2)
(2+417)

Eager compilation

You can also tell Numba the function signature you are expecting. The function £ () would now look like:

from numba import jit, int32

@jit (int32(int32, 1int32))

def f(x, y):
A somewhat trivial example
return x + y

int32 (int32, 1int32) isthe function’s signature. In this case, the corresponding specialization will be compiled
by the @jit decorator, and no other specialization will be allowed. This is useful if you want fine-grained control
over types chosen by the compiler (for example, to use single-precision floats).

If you omit the return type, e.g. by writing (int32, int32) instead of int32 (int32, int32), Numba will
try to infer it for you. Function signatures can also be strings, and you can pass several of them as a list; see the
numba. jit () documentation for more details.

Of course, the compiled function gives the expected results:

>>> f£(1,2)
3

and if we specified int 32 as return type, the higher-order bits get discarded:

>>> £ (2xx31, 2x+31 + 1)
1

1.4. Compiling Python code with @jit 13

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.4.2 Calling and inlining other functions

Numba-compiled functions can call other compiled functions. The function calls may even be inlined in the native
code, depending on optimizer heuristics. For example:

@jit
def square (x):
return x **x 2

@jit
def hypot (x, y):
return math.sqgrt (square(x) + square(y))

The @jit decorator must be added to any such library function, otherwise Numba may generate much slower code.

1.4.3 Signature specifications

Explicit @ jit signatures can use a number of types. Here are some common ones:
* void is the return type of functions returning nothing (which actually return None when called from Python)
* intp and uintp are pointer-sized integers (signed and unsigned, respectively)
e intcand uintc are equivalent to C int and unsigned int integer types

* int8, uint8, intl6, uintle6, int32, uint32, int64, uint64 are fixed-width integers of the corre-
sponding bit width (signed and unsigned)

e float32 and float64 are single- and double-precision floating-point numbers, respectively
* complex64 and complex128 are single- and double-precision complex numbers, respectively

e array types can be specified by indexing any numeric type, e.g. £1loat32[:] for a one-dimensional single-
precision array or int8 [:, :] for a two-dimensional array of 8-bit integers.

1.4.4 Compilation options

A number of keyword-only arguments can be passed to the @ jit decorator.

nopython

Numba has two compilation modes: nopython mode and object mode. The former produces much faster code, but has
limitations that can force Numba to fall back to the latter. To prevent Numba from falling back, and instead raise an
error, pass nopython=True.

@jit (nopython=True)
def f(x, y):
return x + y

See also:

Troubleshooting and tips

14 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

nogil

Whenever Numba optimizes Python code to native code that only works on native types and variables (rather than
Python objects), it is not necessary anymore to hold Python’s global interpreter lock (GIL). Numba will release the
GIL when entering such a compiled function if you passed nogil=True.

@jit (nogil=True)
def f(x, y):
return x + y

Code running with the GIL released runs concurrently with other threads executing Python or Numba code (either
the same compiled function, or another one), allowing you to take advantage of multi-core systems. This will not be
possible if the function is compiled in object mode.

When using nogil=True, you’ll have to be wary of the usual pitfalls of multi-threaded programming (consistency,
synchronization, race conditions, etc.).

cache

To avoid compilation times each time you invoke a Python program, you can instruct Numba to write the result of
function compilation into a file-based cache. This is done by passing cache=True:

@jit (cache=True)
def f(x, vy):
return x + y

parallel

Enables automatic parallelization (and related optimizations) for those operations in the function known to have par-
allel semantics. For a list of supported operations, see Automatic parallelization with @jit. This feature is enabled by
passing parallel=True and must be used in conjunction with nopython=True:

@jit (nopython=True, parallel=True)
def f(x, y):
return x + y

See also:

Automatic parallelization with @jit

1.5 Flexible specializations with @generated_jit

While the jit () decorator is useful for many situations, sometimes you want to write a function that has different
implementations depending on its input types. The generated jit () decorator allows the user to control the
selection of a specialization at compile-time, while fully retaining runtime execution speed of a JIT function.

1.5. Flexible specializations with @generated_jit 15

https://docs.python.org/3/glossary.html#term-global-interpreter-lock

Num

ba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.5.1 Example

Suppose you want to write a function which returns whether a given value is a “missing” value according to certain
conventions. For the sake of the example, let’s adopt the following definition:

for floating-point arguments, a missing value is a NaN
for Numpy datetime64 and timedelta64 arguments, a missing value is a NaT

other types don’t have the concept of a missing value.

That compile-time logic is easily implemented using the generated_jit () decorator:

import numpy as np

from numba import generated_jit, types

@generated_jit (nopython=True)

def

is_missing(x):

mmn

Return True 1if the value 1s missing, False otherwise.
if isinstance(x, types.Float):
return lambda x: np.isnan (x)
elif isinstance(x, (types.NPDatetime, types.NPTimedelta)):
The corresponding Not-a-Time value
missing = x('NaT')
return lambda x: x == missing
else:
return lambda x: False

There are several things to note here:

The decorated function is called with the Numba types of the arguments, not their values.

The decorated function doesn’t actually compute a result, it returns a callable implementing the actual definition
of the function for the given types.

It is possible to pre-compute some data at compile-time (the missing variable above) to have them reused
inside the compiled implementation.

The function definitions use the same names for arguments as in the decorated function, this is required to ensure
passing arguments by name works as expected.

1.5.2 Compilation options

The generated_jit () decorator supports the same keyword-only arguments as the jit () decorator, for example
the nopython and cache options.

16

Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.6 Creating NumPy universal functions

There are two types of universal functions:
* Those which operate on scalars, these are “universal functions” or ufuncs (see @vectorize below).

* Those which operate on higher dimensional arrays and scalars, these are “generalized universal functions” or
gufuncs (@Rguvectorize below).

1.6.1 The @vectorize decorator

Numba’s vectorize allows Python functions taking scalar input arguments to be used as NumPy ufuncs. Creating a
traditional NumPy ufunc is not the most straightforward process and involves writing some C code. Numba makes
this easy. Using the vectorize () decorator, Numba can compile a pure Python function into a ufunc that operates
over NumPy arrays as fast as traditional ufuncs written in C.

Using vectorize (), you write your function as operating over input scalars, rather than arrays. Numba will
generate the surrounding loop (or kernel) allowing efficient iteration over the actual inputs.

The vectorize () decorator has two modes of operation:

» Eager, or decoration-time, compilation: If you pass one or more type signatures to the decorator, you will
be building a Numpy universal function (ufunc). The rest of this subsection describes building ufuncs using
decoration-time compilation.

 Lazy, or call-time, compilation: When not given any signatures, the decorator will give you a Numba dynamic
universal function (DUFunc) that dynamically compiles a new kernel when called with a previously unsupported
input type. A later subsection, “Dynamic universal functions”, describes this mode in more depth.

As described above, if you pass a list of signatures to the vectorize () decorator, your function will be compiled
into a Numpy ufunc. In the basic case, only one signature will be passed:

from numba import vectorize, float64

@vectorize ([float64 (float6d, floato6d)])
def f(x, vy):
return x + y

If you pass several signatures, beware that you have to pass most specific signatures before least specific ones (e.g.,
single-precision floats before double-precision floats), otherwise type-based dispatching will not work as expected:

@vectorize ([int32 (int32, int32),
int64 (int64, into64),
float32 (float32, float32),
floato6d (float64, floatoed)])
def f(x, vy):
return x + y

The function will work as expected over the specified array types:

>>> a = np.arange (6)
>>> f(a, a)
array ([0, 2, 4, 6, 8, 10])

>>> a np.linspace (0, 1, 6)
>>> f(a, a)
[

array ([0. , 0.4, 0.8, 1.2, 1.6, 2. 1)

but it will fail working on other types:

1.6. Creating NumPy universal functions 17

http://docs.scipy.org/doc/numpy/reference/ufuncs.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

>>> a = np.linspace(0, 1+13j, 6)
>>> f(a, a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ufunc 'ufunc' not supported for the input types, and the inputs could not_,
—be safely coerced to any supported types according to the casting rule ''safe''

You might ask yourself, “why would I go through this instead of compiling a simple iteration loop using the @jir
decorator?”. The answer is that NumPy ufuncs automatically get other features such as reduction, accumulation or
broadcasting. Using the example above:

>>> a = np.arange (12) .reshape (3, 4)
>>> a
array ([[O, 1, 2, 3
[4, 5, 6, 7
[8, 9, 10, 11
>>> f.reduce(a, axis=0
array ([1l2, 15, 18, 21]
>>> f.reduce(a, axis=1
array ([6, 22, 381)
>>> f.accumulate (a)
array ([[0, 1, 2, 3
[4, 6, 8, 10

1
1,
[12, 15, 18, 2111])
>>> f.accumulate(a, axis=1)
array ([[O, 1, 3, 6],
[4, 9, 15, 227,
[8, 17, 27, 3811])

See also:

Standard features of ufuncs (NumPy documentation).

Note: Only the broadcasting features of ufuncs are supported in compiled code.

The vectorize () decorator supports multiple ufunc targets:

Tar- | Description
get
cpu | Single-threaded CPU
par- | Multi-core CPU

al-
lel
cuda| CUDA GPU

Note: This creates an ufunc-like object. See documentation for CUDA ufunc for detail.

A general guideline is to choose different targets for different data sizes and algorithms. The “cpu” target works
well for small data sizes (approx. less than 1KB) and low compute intensity algorithms. It has the least amount
of overhead. The “parallel” target works well for medium data sizes (approx. less than 1MB). Threading adds a
small delay. The “cuda” target works well for big data sizes (approx. greater than 1MB) and high compute intensity
algorithms. Transferring memory to and from the GPU adds significant overhead.

18 Chapter 1. User Manual

http://docs.scipy.org/doc/numpy/reference/ufuncs.html#ufunc
../cuda/ufunc.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.6.2 The @guvectorize decorator

While vectorize () allows you to write ufuncs that work on one element at a time, the guvectorize () decora-
tor takes the concept one step further and allows you to write ufuncs that will work on an arbitrary number of elements
of input arrays, and take and return arrays of differing dimensions. The typical example is a running median or a
convolution filter.

Contrary to vectorize () functions, guvectorize () functions don’t return their result value: they take it as an
array argument, which must be filled in by the function. This is because the array is actually allocated by NumPy’s
dispatch mechanism, which calls into the Numba-generated code.

Similar to vectorize () decorator, guvectorize () also has two modes of operation: Eager, or decoration-time
compilation and lazy, or call-time compilation.

Here is a very simple example:

@guvectorize ([(int64[:], int64, int64[:]1)]1, '"(n), ()->(n)")
def g(x, y, res):
for i in range (x.shape[0]):
res[i] = x[1i] + ¥y

The underlying Python function simply adds a given scalar (y) to all elements of a 1-dimension array. What’s more
interesting is the declaration. There are two things there:

* the declaration of input and output layouts, in symbolic form: (n), () —> (n) tells NumPy that the function
takes a n-element one-dimension array, a scalar (symbolically denoted by the empty tuple ()) and returns a
n-element one-dimension array;

« the list of supported concrete signatures as per @vectorize; here, as in the above example, we demonstrate
int 64 arrays.

Note: 1D array type can also receive scalar arguments (those with shape ()). In the above example, the second
argument also could be declared as int 64 [:]. In that case, the value must be read by y [0].

We can now check what the compiled ufunc does, over a simple example:

>>> a = np.arange(5)
>>> a

array ([0, 1, 2, 3, 41)
>>> g(a, 2)

array([2, 3, 4, 5, 61])

The nice thing is that NumPy will automatically dispatch over more complicated inputs, depending on their shapes:

>>> a = np.arange (6) .reshape (2, 3)
>>> 3
array ([[0, 1, 27,

[3, 4, 511)
>>> g(a, 10)
array ([[1l0, 11, 127,

[13, 14, 15]11])

np.array ([10, 20]))

>>> g(a
[

14
array ([[10, 11, 12]
[23

Note: Both vectorize () and guvectorize () support passing nopython=True as in the @jit decorator.

1.6. Creating NumPy universal functions 19

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Use it to ensure the generated code does not fallback to object mode.

Overwriting input values

In most cases, writing to inputs may also appear to work - however, this behaviour cannot be relied on. Consider the
following example function:

@guvectorize ([(float64d[:], floated[:])], '"(O)-—>0")
def init_values (invals, outvals):

invals[0] = 6.5

outvals[0] = 4.2

Calling the init_values function with an array of float64 type results in visible changes to the input:

>>> invals = np.zeros (shape=(3, 3), dtype=np.float64)
>>> outvals = init_values (invals)
>>> invals

array([[6.5, 6.5, 6.5],
[6.5, 6.5, 6.5],
[6.5, 6.5, 6.5]1)

>>> outvals

array ([[4.2, 4.2, 4.2],
(4.2, 4.2, 4.271,
[4.2, 4.2, 4.211])

This works because NumPy can pass the input data directly into the init_values function as the data dfype matches
that of the declared argument. However, it may also create and pass in a temporary array, in which case changes to the
input are lost. For example, this can occur when casting is required. To demonstrate, we can use an array of float32
with the init_values function:

>>> invals = np.zeros (shape=(3, 3), dtype=np.float32)

>>> outvals = init_values (invals)
>>> invals
array ([[0., 0., 0.1,

(0., 0., 0.1,

[0., 0., 0.]11, dtype=float32)

In this case, there is no change to the invals array because the temporary casted array was mutated instead.

1.6.3 Dynamic universal functions

As described above, if you do not pass any signatures to the vectorize () decorator, your Python function will be
used to build a dynamic universal function, or DUFunc. For example:

from numba import vectorize

@vectorize
def f(x, y):
return x * y

The resulting £ () is a DUF'unc instance that starts with no supported input types. As you make calls to £ (), Numba
generates new kernels whenever you pass a previously unsupported input type. Given the example above, the following
set of interpreter interactions illustrate how dynamic compilation works:

20 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

>>> f
<numba._DUFunc 'f'>
>>> f.ufunc

<ufunc '"f'>

>>> f.ufunc.types

(]

The example above shows that DUFunc instances are not ufuncs. Rather than subclass ufunc’s, DUFunc instances
work by keeping a ufunc member, and then delegating ufunc property reads and method calls to this member (also
known as type aggregation). When we look at the initial types supported by the ufunc, we can verify there are none.

Let’s try to make acall to £ () :

>>> f£(3,4)

12

>>> f.types # shorthand for f.ufunc.types
["11->1"]

If this was a normal Numpy ufunc, we would have seen an exception complaining that the ufunc couldn’t handle the
input types. When we call £ () with integer arguments, not only do we receive an answer, but we can verify that
Numba created a loop supporting C 1ong integers.

We can add additional loops by calling £ () with different inputs:

>>> f£(1.,2.)

2.0

>>> f . types
['11->1', 'dd->d']

We can now verify that Numba added a second loop for dealing with floating-point inputs, "dd->d".

If we mix input types to £ (), we can verify that Numpy ufunc casting rules are still in effect:

>>> f£(1,2.)

2.0

>>> f.types
['11->1", 'dd->d']

This example demonstrates that calling £ () with mixed types caused Numpy to select the floating-point loop, and
cast the integer argument to a floating-point value. Thus, Numba did not create a special "d1->d" kernel.

This DUF'unc behavior leads us to a point similar to the warning given above in “The @vectorize decorator” subsec-
tion, but instead of signature declaration order in the decorator, call order matters. If we had passed in floating-point
arguments first, any calls with integer arguments would be cast to double-precision floating-point values. For example:

>>> (@vectorize
def g(a, b): return a / b

>>> g(2.,3.)
0.66666666666666663
>>> g(2,3)
0.66666666666666663
>>> g.types
['dd->d"']

If you require precise support for various type signatures, you should specify them in the vectorize () decorator,
and not rely on dynamic compilation.

1.6. Creating NumPy universal functions 21

http://docs.scipy.org/doc/numpy/reference/ufuncs.html#casting-rules

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.6.4 Dynamic generalized universal functions

Similar to a dynamic universal function, if you do not specify any types to the guvectorize () decorator, your
Python function will be used to build a dynamic generalized universal function, or GUFunc. For example:

from numba import guvectorize

@guvectorize (' (n), () -—>(n)")
def g(x, y, res):
for i in range(x.shape([0]):
res[i] = x[1] + ¥y

We can verify the resulting function g () is a GUFunc instance that starts with no supported input types. For instance:

>>> g
<numba._GUFunc 'g'>
>>> g.ufunc

<ufunc 'g'>

>>> g.ufunc.types

(]

Similar to a DUFunc, as one make calls to g () , numba generates new kernels for previously unsupported input types.
The following set of interpreter interactions will illustrate how dynamic compilation works for a GUFunc:

>>> x = np.arange (5, dtype=np.int64)

>>> y = 10

>>> res = np.zeros_like (x)
>>> g(x, y, res)

>>> res

array ([5, 6, 7, 8, 91)
>>> g.types
["11->1"]

If this was a normal guvectorize () function, we would have seen an exception complaining that the ufunc could
not handle the given input types. When we call g () with the input arguments, numba creates a new loop for the input

types.

We can add additional loops by calling g () with new arguments:

>>> x = np.arange (5, dtype=np.double)
>>> vy = 2.2

>>> res = np.zeros_like (x)

>>> g(x, y, res)

We can now verify that Numba added a second loop for dealing with floating-point inputs, "dd->d".

>>> g.types # shorthand for g.ufunc.types
['11->1', 'dd->d']

One can also verify that Numpy ufunc casting rules are working as expected:

>>> x = np.arange (5, dtype=np.int64)
>>> y = 2.2

>>> res = np.zeros_like (x)
>>> g(x, y, res)
>>> res

If you need precise support for various type signatures, you should not rely on dynamic compilation and instead,
specify the types them as first argument in the guvectorize () decorator.

22 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.7 Compiling Python classes with @jitclass

Note: This is a early version of jitclass support. Not all compiling features are exposed or implemented, yet.

Numba supports code generation for classes via the numba. jitclass () decorator. A class can be marked for
optimization using this decorator along with a specification of the types of each field. We call the resulting class object
a jitclass. All methods of a jitclass are compiled into nopython functions. The data of a jitclass instance is allocated
on the heap as a C-compatible structure so that any compiled functions can have direct access to the underlying data,
bypassing the interpreter.

1.7.1 Basic usage

Here’s an example of a jitclass:

import numpy as np
from numba import int32, float32 # import the types
from numba.experimental import jitclass

spec = [
("value', int32), # a simple scalar field
("array', float32[:]), # an array field

]

@jitclass (spec)
class Bag(object):
def _ init_ (self, wvalue):
self.value = value
self.array = np.zeros(value, dtype=np.float32)

@property
def size(self):
return self.array.size

def increment (self, wval):
for i in range(self.size):
self.array[i] += val
return self.array

@staticmethod
def add(x, y):
return x + y

n = 21
mybag = Bag(n)

In the above example, a spec is provided as a list of 2-tuples. The tuples contain the name of the field and the Numba
type of the field. Alternatively, user can use a dictionary (an OrderedDict preferably for stable field ordering),
which maps field names to types.

The definition of the class requires at leasta ___init___ method for initializing each defined fields. Uninitialized fields
contains garbage data. Methods and properties (getters and setters only) can be defined. They will be automatically
compiled.

1.7. Compiling Python classes with @jitclass 23

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.7.2 Inferred class member types from type annotations with as_numba_type

Fields of a jitclass can also be inferred from Python type annotations.

from typing import List
from numba.experimental import jitclass
from numba.typed import List as NumbalList

@jitclass
class Counter:
value: int

def _ init_ (self):
self.value = 0

def get(self) —-> int:
ret = self.value
self.value += 1
return ret

@jitclass

class ListLoopIterator:
counter: Counter
items: List[float]

def _ init_ (self, items: List[float]):
self.items = items
self.counter = Counter()

def get (self) —> float:
idx = self.counter.get () % len(self.items)
return self.items[idx]

items = NumbalList ([3.14, 2.718, 0.123, -4.1)
loop_itr = ListLoopIterator (items)

Any type annotations on the class will be used to extend the spec if that field is not already present. The Numba type
corresponding to the given Python type is inferred using as_numba_t ype. For example, if we have the class

@jitclass ([("w", int32), ("y", float64[:])])
class Foo:

w: int

x: float

y: np.ndarray

z: SomeOtherType

def _ _init_ (self, w: int, x: float, y: np.ndarray, z: SomeOtherType) :

then the full spec used for Foo will be:

e "w": int32 (specified in the spec)

e "x": float64 (added from type annotation)

e "y": array(float64, 1d, A) (specifiedin the spec)

e "z": numba.as_numba_type (SomeOtherType) (added from type annotation)

24 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Here SomeOtherType could be any supported Python type (e.g. bool, typing.Dict[int, typing.
Tuple[float, float]],oranother jitclass).

Note that only type annotations on the class will be used to infer spec elements. Method type annotations (e.g. those
of __init__ above) are ignored.

Numba requires knowing the dtype and rank of numpy arrays, which cannot currently be expressed with type annota-
tions. Because of this, numpy arrays need to be included in the spec explicitly.

1.7.3 Specifying numba . typed containers as class members explicitly

The following patterns demonstrate how to specify a numba.typed.Dict or numba.typed.List explicitly as
part of the spec passed to jitclass.

First, using explicit Numba types and explicit construction.

from numba import Jjitclass, types, typed

key and value types
kv_ty = (types.int64, types.unicode_type)

A container class with:
x member 'd' holding a typed dictionary of int64 -> unicode string (kv_ty)
+ member 'l' holding a typed list of floaté64
@jitclass ([('d', types.DictType (*kv_ty)),
("1"'", types.ListType (types.float64))])
class ContainerHolder (object) :
def _ _init__ (self):

initialize the containers

self.d = typed.Dict.empty (+xkv_ty)

self.l = typed.List.empty_list (types.float64)

container = ContainerHolder ()
container.d[1l] = "apple"

container.d[2] = "orange"
container.l.append(123.)
container.l.append(456.)

print (container.d) # {(1: apple, 2: orange}
print (container.l) # [123.0, 456.0]

Another useful pattern is to use the numba . t yped container attribute _numba_type_ to find the type of a con-
tainer, this can be accessed directly from an instance of the container in the Python interpreter. The same information
can be obtained by calling numba . t ypeof () on the instance. For example:

from numba import jitclass, typed, typeof

d = typed.Dict ()
d[l] = "apple"
d[2] = "orange"
1 = typed.List ()
1l.append(123.)
1.append (456.)

@jitclass([('d', typeof(d)), ('l', typeof(l))])
class ContainerInstHolder (object) :
def _ init_ (self, dict_inst, list_inst):

(continues on next page)

1.7. Compiling Python classes with @jitclass 25

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

self.d = dict_inst
self.l = list_inst

container = ContainerInstHolder (d, 1)
print (container.d) # {1: apple, 2: orange}
print (container.l) # [123.0, 456.0]

It is worth noting that the instance of the container in a jitclass must be initialized before use, for example, this
will cause an invalid memory access as self.d is written to without d being initialized as a type .Dict instance
of the type specified.

from numba import Jjitclass, types
dict_ty = types.DictType (types.int64, types.unicode_type)
@jitclass([('d"', dict_ty)1)
class NotInitialisingContainer (object):
def _ init__ (self):

self.d[10] = "apple" # this is invalid, 'd’ is not initialized

NotInitialisingContainer () # segmentation fault/memory access violation

1.7.4 Support operations

The following operations of jitclasses work in both the interpreter and Numba compiled functions:
* calling the jitclass class object to construct a new instance (e.g. mybag = Bag (123));
* read/write access to attributes and properties (e.g. mybag.value);
* calling methods (e.g. mybag.increment (3));
* calling static methods as instance attributes (e.g. mybag.add (1, 1));
* calling static methods as class attributes (e.g. Bag.add (1, 2));

Using jitclasses in Numba compiled function is more efficient. Short methods can be inlined (at the discretion of
LLVM inliner). Attributes access are simply reading from a C structure. Using jitclasses from the interpreter has the
same overhead of calling any Numba compiled function from the interpreter. Arguments and return values must be
unboxed or boxed between Python objects and native representation. Values encapsulated by a jitclass does not get
boxed into Python object when the jitclass instance is handed to the interpreter. It is during attribute access to the field
values that they are boxed. Calling static methods as class attributes is only supported outside of the class definition
(i.e. code cannot call Bag.add () from within another method of Bag).

1.7.5 Limitations

* A jitclass class object is treated as a function (the constructor) inside a Numba compiled function.
e isinstance () only works in the interpreter.
» Manipulating jitclass instances in the interpreter is not optimized, yet.

* Support for jitclasses are available on CPU only. (Note: Support for GPU devices is planned for a future release.)

26 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.7.6 The decorator: @jitclass
numba.experimental.jiteclass (cls_or_spec=None, spec=None)
A function for creating a jitclass. Can be used as a decorator or function.
Different use cases will cause different arguments to be set.

If specified, spec gives the types of class fields. It must be a dictionary or sequence. With a dictionary, use
collections.OrderedDict for stable ordering. With a sequence, it must contain 2-tuples of (fieldname, fieldtype).

Any class annotations for field names not listed in spec will be added. For class annotation x: T we will append
("x", as_numba_type (T)) to the spec if x is not already a key in spec.

Returns
If used as a decorator, returns a callable that takes a class object and
returns a compiled version.
If used as a function, returns the compiled class (an instance of

JitClassType).

Examples

1) cls_or_spec = None, spec = None

>>> @jitclass ()
class Foo:

2) cls_or_spec = None, spec = spec

>>> @jitclass (spec=spec)
class Foo:

3) cls_or_spec = Foo, spec = None

>>> @jitclass
class Foo:

4) cls_or_spec = spec, spec = None In this case we update cls_or_spec, spec = None,
cls_or_spec

>>> @jitclass (spec)
class Foo:

5) cls_or_spec = Foo, spec = spec

>>> JitFoo = jitclass(Foo, spec)

1.7. Compiling Python classes with @jitclass 27

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.8 Creating C callbacks with @cfunc

Interfacing with some native libraries (for example written in C or C++) can necessitate writing native callbacks to
provide business logic to the library. The numba.cfunc () decorator creates a compiled function callable from
foreign C code, using the signature of your choice.

1.8.1 Basic usage

The @cfunc decorator has a similar usage to @jit, but with an important difference: passing a single signature is
mandatory. It determines the visible signature of the C callback:

from numba import cfunc

@Qcfunc ("float6d (floated, floatoed)")
def add(x, y):
return x + y

The C function object exposes the address of the compiled C callback as the address attribute, so that you can pass
it to any foreign C or C++ library. It also exposes a ctypes callback object pointing to that callback; that object is
also callable from Python, making it easy to check the compiled code:

@cfunc ("float64 (float64d, float64d)™)
def add(x, y):
return x + y

print (add.ctypes (4.0, 5.0)) # prints "9.0"

1.8.2 Example

In this example, we are going to be using the scipy.integrate.quad function. That function accepts either a
regular Python callback or a C callback wrapped in a ct ypes callback object.

Let’s define a pure Python integrand and compile it as a C callback:

>>> import numpy as np
>>> from numba import cfunc
>>> def integrand(t):
return np.exp(-t) / t*x*2

>>> nb_integrand = cfunc("float64 (float64)") (integrand)

We can pass the nb_integrand object’s ctypes callback to scipy.integrate.quad and check that the
results are the same as with the pure Python function:

>>> import scipy.integrate as si
>>> def do_integrate (func) :

nun

Integrate the given function from 1.0 to +inf.
nmn

return si.quad(func, 1, np.inf)

>>> do_integrate (integrand)
(0.14849550677592208, 3.8736750296130505e-10)

(continues on next page)

28 Chapter 1. User Manual

https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#module-ctypes

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

>>> do_integrate (nb_integrand.ctypes)
(0.14849550677592208, 3.8736750296130505e-10)

Using the compiled callback, the integration function does not invoke the Python interpreter each time it evaluates the
integrand. In our case, the integration is made 18 times faster:

>>> %timeit do_integrate (integrand)

1000 loops, best of 3: 242 us per loop

>>> %timeit do_integrate (nb_integrand.ctypes)
100000 loops, best of 3: 13.5 ps per loop

1.8.3 Dealing with pointers and array memory

A less trivial use case of C callbacks involves doing operation on some array of data passed by the caller. As C doesn’t
have a high-level abstraction similar to Numpy arrays, the C callback’s signature will pass low-level pointer and size
arguments. Nevertheless, the Python code for the callback will expect to exploit the power and expressiveness of
Numpy arrays.

In the following example, the C callback is expected to operate on 2-d arrays, with the signature void (double
xinput, double *output, int m, int n). You canimplement such a callback thusly:

from numba import cfunc, types, carray

c_sig = types.void(types.CPointer (types.double),
types.CPointer (types.double),
types.intc, types.intc)

@cfunc(c_sig)
def my_callback(in_, out, m, n):
in_array = carray(in_, (m, n))
out_array = carray(out, (m, n))
for i in range(m):
for j in range(n):
out_arrayl[i, j] = 2 * in_arrayl[i, 7Jl

The numba.carray () function takes as input a data pointer and a shape and returns an array view of the given
shape over that data. The data is assumed to be laid out in C order. If the data is laid out in Fortran order, numba .
farray () should be used instead.

1.8.4 Handling C structures
With CFFI
For applications that have a lot of state, it is useful to pass data in C structures. To simplify the interoperability with C

code, numba can convert a c£fi type into a numba Record type using numba.core.typing.cffi_utils.
map_type:

from numba.core.typing import cffi_utils

nbtype = cffi_utils.map_type(cffi_type, use_record_dtype=True)

1.8. Creating C callbacks with @cfunc 29

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Note: use_record_dtype=True is needed otherwise pointers to C structures are returned as void pointers.

Note: From v0.49 the numba.cffi_support module has been phased out in favour of numba . core.typing.
cffi_utils

For example:

from cffi import FFI

src = "nn

/+ Define the C struct x/
typedef struct my_struct {

int il;
float f£2;
double d3;

float afd[7]; // arrays are supported
} my_struct;

/+ Define a callback function =/
typedef double (*my_func) (my_structx, size_t);

nwn

ffi = FFI()
ffi.cdef (src)

Get the function signature from #*my_funcx
sig = cffi_utils.map_type(ffi.typeof ('my_func'), use_record_dtype=True)

Make the cfunc
from numba import cfunc, carray

@cfunc (siqg)
def foo(ptr, n):
base = carray(ptr, n) # view pointer as an array of my_struct
tmp = 0
for i in range (n):
tmp += base[i].1il * base[i].f2 / base[i].d3
tmp += base[i].af4.sum() # nested arrays are like normal numpy array
return tmp

With numba . types.Record.make_c_struct

The numba.types.Record type can be created manually to follow a C-structure’s layout. To do that, use
Record.make_c_struct, for example:

my_struct = types.Record.make_c_struct ([
Provides a sequence of 2-tuples i.e. (name:str, type:Type)
("i1l', types.int32),
("f2', types.float32),
('d3'", types.floatbd),
('af4', types.NestedArray (dtype=types.float32, shape=(7,))),

30 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Due to ABI limitations, structures should be passed as pointers using types.CPointer (my_struct) as the
argument type. Inside the cfunc body, the my_struct x can be accessed with carray.

Full example

See full example in examples/notebooks/Accessing C Struct Data.ipynb.

1.8.5 Signature specification

The explicit @cfunc signature can use any Numba types, but only a subset of them make sense for a C callback. You
should generally limit yourself to scalar types (such as int8 or f1oat 64) ,pointers to them (for example types.
CPointer (types.int8)), or pointers to Record type.

1.8.6 Compilation options

A number of keyword-only arguments can be passed to the @cfunc decorator: nopython and cache. Their
meaning is similar to those in the @ jit decorator.

1.9 Compiling code ahead of time

While Numba’s main use case is Just-in-Time compilation, it also provides a facility for Ahead-of-Time compilation
(AOT).

1.9.1 Overview
Benefits
1. AOT compilation produces a compiled extension module which does not depend on Numba: you can distribute

the module on machines which do not have Numba installed (but Numpy is required).

2. There is no compilation overhead at runtime (but see the @ jit cache option), nor any overhead of importing
Numba.

See also:

Compiled extension modules are discussed in the Python packaging user guide.

Limitations

1. AOT compilation only allows for regular functions, not ufuncs.
2. You have to specify function signatures explicitly.

3. Each exported function can have only one signature (but you can export several different signatures under
different names).

4. AOT compilation produces generic code for your CPU’s architectural family (for example “x86-64"), while JIT
compilation produces code optimized for your particular CPU model.

1.9. Compiling code ahead of time 31

https://packaging.python.org/en/latest/extensions/

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.9.2 Usage

Standalone example

from numba.pycc import CC

cc = CC('my_module')
Uncomment the following line to print out the compilation steps

#cc.verbose = True
@cc.export ('multf', '£8(£8, £8)")
Qcc.export ('multi', 'i4d(i4, i4)")

def mult (a, b):
return a ~ b

@cc.export ('square', 'f£8(£8)")
def square(a):

return a *x 2
if _ name_ == "_ _main_ ":
cc.compile ()

If you run this Python script, it will generate an extension module named my_module. Depending on your platform,
the actual filename may be my_module. so, my_module.pyd, my_module.cpython-34m. so, etc.

The generated module has three functions: multf, multi and square. multi operates on 32-bit integers (14),
while multf and square operate on double-precision floats (£8):

>>> import my module

>>> my_module.multi (3, 4)
12

>>> my_module.square (1.414)
1.9993959999999997

Distutils integration

You can also integrate the compilation step for your extension modules in your setup . py script, using distutils or
setuptools:

from distutils.core import setup
from source_module import cc

setup (...,
ext_modules=[cc.distutils_extension()])

The source_module above is the module defining the cc object. Extensions compiled like this will be automat-
ically included in the build files for your Python project, so you can distribute them inside binary packages such as
wheels or Conda packages. Note that in the case of using conda, the compilers used for AOT need to be those that are
available in the Anaconda distribution.

32 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Signature syntax

The syntax for exported signatures is the same as in the @ jit decorator. You can read more about it in the fypes
reference.

Here is an example of exporting an implementation of the second-order centered difference on a 1d array:

@cc.export ('centdiff 1d', '"£8[:](£8[:], £8)")
def centdiff_1d(u, dx):
D = np.empty_1like (u)

D[0] = 0
D[-1] = 0
for i in range(l, len(D) - 1):
D[i] = (u[i+1] - 2 % ufli] + uli-11) / dx=*=*2
return D

You can also omit the return type, which will then be inferred by Numba:

Qcc.export ('centdiff_1d', '(£f8[:], £8)")
def centdiff_1d(u, dx):
Same code as above

1.10 Automatic parallelization with @jit

Setting the parallel option for jit () enables a Numba transformation pass that attempts to automatically parallelize
and perform other optimizations on (part of) a function. At the moment, this feature only works on CPUs.

Some operations inside a user defined function, e.g. adding a scalar value to an array, are known to have parallel
semantics. A user program may contain many such operations and while each operation could be parallelized individ-
ually, such an approach often has lackluster performance due to poor cache behavior. Instead, with auto-parallelization,
Numba attempts to identify such operations in a user program, and fuse adjacent ones together, to form one or more
kernels that are automatically run in parallel. The process is fully automated without modifications to the user pro-
gram, which is in contrast to Numba’s vectorize () or guvectorize () mechanism, where manual effort is
required to create parallel kernels.

1.10.1 Supported Operations
In this section, we give a list of all the array operations that have parallel semantics and for which we attempt to
parallelize.

1. All numba array operations that are supported by Case study: Array Expressions, which include common arith-
metic functions between Numpy arrays, and between arrays and scalars, as well as Numpy ufuncs. They are
often called element-wise or point-wise array operations:

* unary operators: + — ~

* binary operators: + —x / /2?2 % | >> " << & xx //
e comparison operators: == != < <= > >=

e Numpy ufuncs that are supported in nopython mode.
* User defined DUFunc through vectorize ().

2. Numpy reduction functions sum, prod, min, max, argmin, and argmax. Also, array math functions mean,
var, and std.

1.10. Automatic parallelization with @jit 33

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

. Numpy array creation functions zeros, ones, arange, linspace, and several random functions (rand,

randn, ranf, random_sample, sample, random, standard_normal, chisquare, weibull, power, geometric, expo-
nential, poisson, rayleigh, normal, uniform, beta, binomial, f, gamma, lognormal, laplace, randint, triangular).

. Numpy dot function between a matrix and a vector, or two vectors. In all other cases, Numba’s default imple-

mentation is used.

. Multi-dimensional arrays are also supported for the above operations when operands have matching dimension

and size. The full semantics of Numpy broadcast between arrays with mixed dimensionality or size is not
supported, nor is the reduction across a selected dimension.

. Array assignment in which the target is an array selection using a slice or a boolean array, and the value being

assigned is either a scalar or another selection where the slice range or bitarray are inferred to be compatible.

. The reduce operator of functools is supported for specifying parallel reductions on 1D Numpy arrays but

the initial value argument is mandatory.

1.10.2 Explicit Parallel Loops

Another feature of the code transformation pass (when parallel=True) is support for explicit parallel loops. One
can use Numba’s prange instead of range to specify that a loop can be parallelized. The user is required to make
sure that the loop does not have cross iteration dependencies except for supported reductions.

A reduction is inferred automatically if a variable is updated by a binary function/operator using its previous value in
the loop body. The initial value of the reduction is inferred automatically for the +=, —=, =, and /= operators. For
other functions/operators, the reduction variable should hold the identity value right before entering the prange loop.
Reductions in this manner are supported for scalars and for arrays of arbitrary dimensions.

The example below demonstrates a parallel loop with a reduction (A is a one-dimensional Numpy array):

from numba import njit, prange

@njit (parallel=True)
def prange_test (A):

s =0
Without "parallel=True" in the jit-decorator
the prange statement is equivalent to range
for i in prange (A.shape[0]):

s += A[1i]
return s

The following example demonstrates a product reduction on a two-dimensional array:

from numba import njit, prange
import numpy as np

@njit (parallel=True)
def two_d_array_reduction_prod(n) :

shp = (13, 17)
resultl = 2 % np.ones(shp, np.int_)
tmp = 2 x np.ones_like (resultl)

for i in prange(n):
resultl x= tmp

return resultl

34

Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Care should be taken, however, when reducing into slices or elements of an array if the elements specified by the slice

or index are written to simultaneously by multiple parallel threads. The compiler may not detect such cases and then
a race condition would occur.

The following example demonstrates such a case where a race condition in the execution of the parallel for-loop results
in an incorrect return value:

from numba import njit, prange
import numpy as np

@njit (parallel=True)

def prange_wrong_result (x):
n x.shape[0]
y = np.zeros(4)
for i in prange(n):

accumulating into the same element of 'y from different
parallel iterations of the loop results in a race condition
yl:] += x[1]

return y

as does the following example where the accumulating element is explicitly specified:

from numba import njit, prange
import numpy as np

@njit (parallel=True)
def prange_wrong_result (x):
n = x.shape[0]
y = np.zeros(4)
for i in prange(n):
accumulating into the same element of 'y from different
parallel iterations of the loop results in a race condition

[}

y[i % 4] += x[1i]

return y

whereas performing a whole array reduction is fine:

from numba import njit, prange
import numpy as np

@njit (parallel=True)
def prange_ok_result_whole_arr(x):
n = x.shape[0]
y = np.zeros (4)
for i in prange(n):
y += x[1i]
return y

as is creating a slice reference outside of the parallel reduction loop:

from numba import njit, prange
import numpy as np

@njit (parallel=True)
def prange_ok_result_outer_slice(x):
n = x.shape[0]

(continues on next page)

1.10. Automatic parallelization with @jit 35

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

y = np.zeros(4)

z = yl:]

for i in prange (n):
z += x[1]

return y

1.10.3 Examples

In this section, we give an example of how this feature helps parallelize Logistic Regression:

@numba. jit (nopython=True, parallel=True)
def logistic_regression(Y, X, w, iterations):
for i in range(iterations):
w —= np.dot (((1.0 / (1.0 + np.exp(-Y » np.dot (X, w))) — 1.0) % Y), X)
return w

We will not discuss details of the algorithm, but instead focus on how this program behaves with auto-parallelization:
1. Input Y is a vector of size N, X isan N x D matrix, and w is a vector of size D.

2. The function body is an iterative loop that updates variable w. The loop body consists of a sequence of vector
and matrix operations.

3. The inner dot operation produces a vector of size N, followed by a sequence of arithmetic operations either
between a scalar and vector of size N, or two vectors both of size N.

4. The outer dot produces a vector of size D, followed by an inplace array subtraction on variable w.

5. With auto-parallelization, all operations that produce array of size N are fused together to become a single
parallel kernel. This includes the inner dot operation and all point-wise array operations following it.

6. The outer dot operation produces a result array of different dimension, and is not fused with the above kernel.

Here, the only thing required to take advantage of parallel hardware is to set the parallel option for jit (), with
no modifications to the logistic_regression function itself. If we were to give an equivalence parallel im-
plementation using guvectorize (), it would require a pervasive change that rewrites the code to extract kernel
computation that can be parallelized, which was both tedious and challenging.

1.10.4 Diagnostics

Note: At present not all parallel transforms and functions can be tracked through the code generation process.
Occasionally diagnostics about some loops or transforms may be missing.

The parallel option for jit () can produce diagnostic information about the transforms undertaken in automatically
parallelizing the decorated code. This information can be accessed in two ways, the first is by setting the environment
variable NUMBA _PARALLEI_DIAGNOSTICS,the second is by calling parallel_diagnostics (), both meth-
ods give the same information and print to STDOUT. The level of verbosity in the diagnostic information is controlled
by an integer argument of value between 1 and 4 inclusive, 1 being the least verbose and 4 the most. For example:

@njit (parallel=True)
def test (x):
n = x.shape[0]
a = np.sin(x)

(continues on next page)

36 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

b = np.cos(a * a)

acc = 0
for i in prange(n - 2):
for j in prange(n - 1):

acc += bl[i] + b[j + 1]
return acc

test (np.arange (10))

test.parallel_diagnostics (level=4)

produces:

======= Parallel Accelerator Optimizing: Function test, example.py (4) =======

Parallel loop listing for Function test, example.py (4)

—————————————————————————————————————— |loop #ID
@njit (parallel=True) |
def test (x):

n = x.shape[0] |

a = np.sin(x)-—————————-------————~ | #0

b = np.cos(a * a)————————————————— | #1

acc = 0 |

for i in prange(n - 2):——————————- | #3

for j in prange(n - 1) :——————- | #2

acc += bl[i] + b[j + 1] |

return acc |
————————————————————————————————— Fusing loops ———=——————————————————————————————
Attempting fusion of parallel loops (combines loops with similar properties)...
Trying to fuse loops #0 and #1:

- fusion succeeded: parallel for-loop #1 is fused into for-loop #0.
Trying to fuse loops #0 and #3:

— fusion failed: loop dimension mismatched in axis 0. slice(0, x_size0.1, 1)
= slice (0, $40.4, 1)

Parallel region O0:
+--0 (parallel)
+--1 (parallel)

Parallel region 1:
+--3 (parallel)
+--2 (parallel)

Parallel region O0:
+--0 (parallel, fused with loop(s): 1)

Parallel region 1:
+--3 (parallel)
+—-2 (serial)

(continues on next page)

1.10. Automatic parallelization with @jit 37

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

Parallel region 0 (loop #0) had 1 loop(s) fused.

Parallel region 1 (loop #3) had 0 loop(s) fused and 1 loop(s) serialized as part
of the larger parallel loop (#3).

Instruction hoisting:

loop #0:
Failed to hoist the following:
dependency: $arg_out_var.l0 = getitem(value=x, index=S$parfor__index_5.99)

dependency: $0.6.11 = getattr(value=$0.5, attr=sin)
dependency: S$expr_out_var.9 = call $0.6.11($Sarg_out_var.10, func=$0.6.11,
—args=[Var ($Sarg_out_var.10, example.py (7))], kws=(), vararg=None)
dependency: $arg_out_var.l7 = $expr_out_var.9 x S$expr_out_var.9
dependency: $0.10.20 = getattr(value=$0.9, attr=cos)
dependency: S$expr_out_var.1l6 = call $0.10.20($Sarg_out_var.17, func=$0.10.20,
—args=[Var ($arg_out_var.1l7, example.py (8))], kws=(), vararg=None)
loop #3:
Has the following hoisted:
Sconst58.3 = const (int, 1)
$58.4 = _n_23 - Sconst58.3

To aid users unfamiliar with the transforms undertaken when the parallel option is used, and to assist in the under-
standing of the subsequent sections, the following definitions are provided:

* Loop fusion Loop fusion is a technique whereby loops with equivalent bounds may be combined under certain
conditions to produce a loop with a larger body (aiming to improve data locality).

* Loop serialization Loop serialization occurs when any number of prange driven loops are present inside
another prange driven loop. In this case the outermost of all the prange loops executes in parallel and
any inner prange loops (nested or otherwise) are treated as standard range based loops. Essentially,
nested parallelism does not occur.

* Loop invariant code motion Loop invariant code motion is an optimization technique that analyses a loop to
look for statements that can be moved outside the loop body without changing the result of executing the
loop, these statements are then “hoisted” out of the loop to save repeated computation.

 Allocation hoisting Allocation hoisting is a specialized case of loop invariant code motion that is possible due
to the design of some common NumPy allocation methods. Explanation of this technique is best driven by
an example:

@njit (parallel=True)
def test (n):
for i in prange(n):
temp = np.zeros((50, 50)) # <--— Allocate a temporary array with np.
—~zeros ()
for j in range (50)
temp[j, 3] = i

...do something with temp

38 Chapter 1. User Manual

https://en.wikipedia.org/wiki/Loop_fission_and_fusion
https://en.wikipedia.org/wiki/Loop-invariant_code_motion

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

internally, this is transformed to approximately the following:

@njit (parallel=True)
def test (n):
for i in prange(n):

temp = np.empty ((50, 50)) # <-—— np.zeros() 1is rewritten as np.empty()
temp[:] = 0 # <—-—— and then a zero initialisation
for j in range (50)
temp[]j, Jj] = 1
...do something with temp

then after hoisting:

@njit (parallel=True)
def test (n):

temp = np.empty((50, 50)) # <-—- allocation is hoisted as a loop,
—invariant as "np.empty 1s considered pure

for i in prange (n):

temp[:] = 0 # <-—— this remains as assignment is a side_
—effect
for j in range (50)
temp[j, jl = 1
...do something with temp

it can be seen that the np. zeros allocation is split into an allocation and an assignment, and then the
allocation is hoisted out of the loop in i, this producing more efficient code as the allocation only occurs
once.

The parallel diagnostics report sections

The report is split into the following sections:

1. Code annotation This is the first section and contains the source code of the decorated function with loops that
have parallel semantics identified and enumerated. The 1oop #ID column on the right of the source code
lines up with identified parallel loops. From the example, #0 is np.sin, #1 is np.cos and #2 and #3
are prange () :

Parallel loop listing for Function test, example.py (4)
—————————————————————————————————————— | loop #ID
@njit (parallel=True) \
def test (x):
n = x.shape[0]
a = np.sin(x)———————""""""——————— | #0
b = np.cos(a * a)————————————————— | #1
acc = 0 \
for i in prange(n - 2):———————— | #3
for j in prange(n - 1):——————~ | #2
acc += b[i] + b[j + 1] |
return acc \

It is worth noting that the loop IDs are enumerated in the order they are discovered which is not necessarily
the same order as present in the source. Further, it should also be noted that the parallel transforms use a
static counter for loop ID indexing. As a consequence it is possible for the loop ID index to not start at 0
due to use of the same counter for internal optimizations/transforms taking place that are invisible to the
user.

1.10. Automatic parallelization with @jit 39

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

2. Fusing loops This section describes the attempts made at fusing discovered loops noting which succeeded and

which failed. In the case of failure to fuse a reason is given (e.g. dependency on other data). From the
example:

Attempting fusion of parallel loops (combines loops with similar properties)..
.
Trying to fuse loops #0 and #1:

— fusion succeeded: parallel for-loop #1 is fused into for-loop #0.
Trying to fuse loops #0 and #3:

— fusion failed: loop dimension mismatched in axis 0. slice(0, x_sizeO.1,
~1)
= slice (0, $40.4, 1)

It can be seen that fusion of loops #0 and #1 was attempted and this succeeded (both are based on the
same dimensions of x). Following the successful fusion of #0 and #1, fusion was attempted between #0
(now including the fused #1 loop) and # 3. This fusion failed because there is a loop dimension mismatch,
#0 is size x . shape whereas #3 is size x.shape [0] - 2.

3. Before Optimization This section shows the structure of the parallel regions in the code before any optimiza-

tion has taken place, but with loops associated with their final parallel region (this is to make before/after
optimization output directly comparable). Multiple parallel regions may exist if there are loops which
cannot be fused, in this case code within each region will execute in parallel, but each parallel region will
run sequentially. From the example:

Parallel region O0:
+--0 (parallel)
+--1 (parallel)

Parallel region 1:
+--3 (parallel)
+--2 (parallel)

As alluded to by the Fusing loops section, there are necessarily two parallel regions in the code. The
first contains loops #0 and #1, the second contains #3 and #2, all loops are marked parallel as no
optimization has taken place yet.

4. After Optimization This section shows the structure of the parallel regions in the code after optimization has

taken place. Again, parallel regions are enumerated with their corresponding loops but this time loops
which are fused or serialized are noted and a summary is presented. From the example:

Parallel region O0:
+--0 (parallel, fused with loop(s): 1)

Parallel region 1:
+--3 (parallel)
+-—-2 (serial)

Parallel region 0 (loop #0) had 1 loop(s) fused.
Parallel region 1 (loop #3) had 0 loop(s) fused and 1 loop(s) serialized as,

—part
of the larger parallel loop (#3).

It can be noted that parallel region O contains loop #0 and, as seen in the fusing loops section, loop #1 is

40

Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

fused into loop #0. It can also be noted that parallel region 1 contains loop # 3 and that loop #2 (the inner
prange ()) has been serialized for execution in the body of loop #3.

5. Loop invariant code motion This section shows for each loop, after optimization has occurred:

See also:

* the instructions that failed to be hoisted and the reason for failure (dependency/impure).
* the instructions that were hoisted.
* any allocation hoisting that may have occurred.

From the example:

Instruction hoisting:

loop #0:
Failed to hoist the following:
dependency: S$arg_out_var.1l0 = getitem(value=x, index=S$parfor__index_5.99)

dependency: $0.6.11 = getattr(value=$0.5, attr=sin)
dependency: $expr_out_var.9 = call $0.6.11(Sarg_out_var.10, func=$0.6.11,
—args=[Var ($Sarg_out_var.10, example.py (7))], kws=(), vararg=None)
dependency: $arg_out_var.l7 = $expr_out_var.9 x $expr_out_var.9
dependency: $0.10.20 = getattr(value=$0.9, attr=cos)
dependency: S$expr_out_var.l1l6 = call $0.10.20($Sarg_out_var.17, func=$0.10.
20, args=[Var ($Sarg_out_var.l1l7, example.py (8))], kws=(), vararg=None)
loop #3:
Has the following hoisted:
Sconst58.3 = const (int, 1)
$58.4 = _n_23 - Sconst58.3

The first thing to note is that this information is for advanced users as it refers to the Numba IR of the
function being transformed. As an example, the expression a % a in the example source partly translates
to the expression Sarg_out_var.1l7 = Sexpr_out_var.9 * S$expr_out_var.9 in the IR,
this clearly cannot be hoisted out of 1oop #0 because it is not loop invariant! Whereas in 1loop #3,
the expression $const58.3 = const (int, 1) comes from the source b[j + 1], the number 1
is clearly a constant and so can be hoisted out of the loop.

parallel, Parallel FAQs

1.11 Using the @stencil decorator

Stencils are a common computational pattern in which array elements are updated according to some fixed pattern
called the stencil kernel. Numba provides the @stencil decorator so that users may easily specify a stencil kernel
and Numba then generates the looping code necessary to apply that kernel to some input array. Thus, the stencil
decorator allows clearer, more concise code and in conjunction with the parallel jit option enables higher performance
through parallelization of the stencil execution.

1.11. Using the @stencil decorator 41

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.11.1 Basic usage

An example use of the @stencil decorator:

from numba import stencil

@stencil
def kernell (a):
return 0.25 » (a0, 1] + a[l, 0] + a0, -1] + a[-1, 0])

The stencil kernel is specified by what looks like a standard Python function definition but there are different semantics
with respect to array indexing. Stencils produce an output array of the same size and shape as the input array although
depending on the kernel definition may have a different type. Conceptually, the stencil kernel is run once for each
element in the output array. The return value from the stencil kernel is the value written into the output array for that
particular element.

The parameter a represents the input array over which the kernel is applied. Indexing into this array takes place with
respect to the current element of the output array being processed. For example, if element (x, y) is being processed
then a [0, O] in the stencil kernel correspondstoa[x + 0, y + 0] inthe input array. Similarly, a [-1, 1] in
the stencil kernel correspondsto a [x — 1, y + 1] inthe input array.

Depending on the specified kernel, the kernel may not be applicable to the borders of the output array as this may
cause the input array to be accessed out-of-bounds. The way in which the stencil decorator handles this situation
is dependent upon which func_or_mode is selected. The default mode is for the stencil decorator to set the border
elements of the output array to zero.

To invoke a stencil on an input array, call the stencil as if it were a regular function and pass the input array as the
argument. For example, using the kernel defined above:

>>> import numpy as np
>>> input_arr = np.arange (100) .reshape((10, 10)
array([[O, 1, 2, 3, 4, 5, 6, 17, 8, 9]
i0, 11, 12, 13, 14, 15, 16, 17, 18, 19]
20, 21, 22, 23, 24, 25, 26, 27, 28, 29]
30, 31, 32, 33, 34, 35, 36, 37, 38, 39]
40, 41, 42, 43, 44, 45, 46, 47, 48, 4971,
50, 51, 52, 53, 54, 55, 56, 57, 58, 59]
60, 61, 62, 63, 64, 65, 66, 67, 68, 69]
70, 71, 72, 73, 74, 75, 76, 77, 178, 79]
80, 81, 82, 83, 84, 85, 86, 87, 88, 89],
[0, 91, 92, 93, 94, 95, 96, 97, 98, 9911])
>>> output_arr = kernell (input_arr)
array ([[0., 0., 0., 0., 0., 0., 0., 0.,
., 11., 12., 13., 14., 15., 1l6., 17., 18.,
., 21., 22., 23., 24., 25., 26., 27., 28.,
., 31., 32., 33., 34., 35., 36., 37., 38.,
41., 42., 43., 44., 45., 46., 47., 48.,
., 51., 52., 53., 54., 55., 56., 57., 58.,
., 61., 62., 63., 64., 65., 66., 67., 68.,
., 711., 72., 73., 74., 75., 7T6., 717., 78.,
., 81., 82., 83., 84., 85., 86., 87., 88.,
[.y 0., 0., 0., 0., 0., 0., 0., 0.,
>>> input_arr.dtype
dtype ('int64")
>>> output_arr.dtype
dtype ('float64")

~
~ 0~ 0~

~

~

~

~

[
[
[
[
[
[
[
[

O OO O OO oo o o
~

el elNeNeNeNeNolNeNolNo)
~

Note that the stencil decorator has determined that the output type of the specified stencil kernel is f1oat 64 and has
thus created the output array as £1oat 64 while the input array is of type int 64.

42 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.11.2 Stencil Parameters

Stencil kernel definitions may take any number of arguments with the following provisions. The first argument must
be an array. The size and shape of the output array will be the same as that of the first argument. Additional arguments
may either be scalars or arrays. For array arguments, those arrays must be at least as large as the first argument (array)
in each dimension. Array indexing is relative for all such input array arguments.

1.11.3 Kernel shape inference and border handling

In the above example and in most cases, the array indexing in the stencil kernel will exclusively use Integer literals.
In such cases, the stencil decorator is able to analyze the stencil kernel to determine its size. In the above example,
the stencil decorator determines that the kernel is 3 x 3 in shape since indices —1 to 1 are used for both the first
and second dimensions. Note that the stencil decorator also correctly handles non-symmetric and non-square stencil
kernels.

Based on the size of the stencil kernel, the stencil decorator is able to compute the size of the border in the output
array. If applying the kernel to some element of input array would cause an index to be out-of-bounds then that
element belongs to the border of the output array. In the above example, points —1 and +1 are accessed in each
dimension and thus the output array has a border of size one in all dimensions.

The parallel mode is able to infer kernel indices as constants from simple expressions if possible. For example:

@njit (parallel=True)
def stencil_test (A):

c =2
B = stencil (

lambda a, c: 0.3 % (a[-c+1] + a[0] + al[c-11)) (A, c)
return B

1.11.4 Stencil decorator options

Note: The stencil decorator may be augmented in the future to provide additional mechanisms for border handling.
At present, only one behaviour is implemented, "constant" (see func_or_mode below for details).

neighborhood

Sometimes it may be inconvenient to write the stencil kernel exclusively with Integer literals. For example, let us
say we would like to compute the trailing 30-day moving average of a time series of data. One could write (a[-29]
+ al[-28] + ... + a[-1] + al[0]) / 30 but the stencil decorator offers a more concise form using the
neighborhood option:

@stencil (neighborhood = ((-29, 0),))
def kernel2(a):
cumul = 0
for i in range(-29, 1):
cumul += ali]
return cumul / 30

The neighborhood option is a tuple of tuples. The outer tuple’s length is equal to the number of dimensions of the
input array. The inner tuple’s lengths are always two because each element of the outer tuple corresponds to minimum
and maximum index offsets used in the corresponding dimension.

1.11. Using the @stencil decorator 43

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

If a user specifies a neighborhood but the kernel accesses elements outside the specified neighborhood, the behavior
is undefined.

func_or_ mode

The optional func_or_mode parameter controls how the border of the output array is handled. Currently, there is
only one supported value, "constant". In constant mode, the stencil kernel is not applied in cases where the
kernel would access elements outside the valid range of the input array. In such cases, those elements in the output
array are assigned to a constant value, as specified by the cval parameter.

cval

The optional cval parameter defaults to zero but can be set to any desired value, which is then used for the border of
the output array if the func_or_mode parameter is set to constant. The cval parameter is ignored in all other
modes. The type of the cval parameter must match the return type of the stencil kernel. If the user wishes the output
array to be constructed from a particular type then they should ensure that the stencil kernel returns that type.

standard_indexing

By default, all array accesses in a stencil kernel are processed as relative indices as described above. However,
sometimes it may be advantageous to pass an auxiliary array (e.g. an array of weights) to a stencil kernel and have that
array use standard Python indexing rather than relative indexing. For this purpose, there is the stencil decorator option
standard_indexing whose value is a collection of strings whose names match those parameters to the stencil
function that are to be accessed with standard Python indexing rather than relative indexing:

@stencil (standard_indexing=("b",))
def kernel3(a, b):
return a[-1] * b[0] + a[0] + b[l]

1.11.5 StencilFunc

The stencil decorator returns a callable object of type StencilFunc. StencilFunc objects contains a number
of attributes but the only one of potential interest to users is the neighborhood attribute. If the neighborhood
option was passed to the stencil decorator then the provided neighborhood is stored in this attribute. Else, upon first
execution or compilation, the system calculates the neighborhood as described above and then stores the computed
neighborhood into this attribute. A user may then inspect the attribute if they wish to verify that the calculated
neighborhood is correct.

1.11.6 Stencil invocation options

Internally, the stencil decorator transforms the specified stencil kernel into a regular Python function. This function
will have the same parameters as specified in the stencil kernel definition but will also include the following optional
parameter.

44 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

out

The optional out parameter is added to every stencil function generated by Numba. If specified, the out parameter
tells Numba that the user is providing their own pre-allocated array to be used for the output of the stencil. In this case,
the stencil function will not allocate its own output array. Users should assure that the return type of the stencil kernel
can be safely cast to the element-type of the user-specified output array following the Numpy ufunc casting rules.

An example usage is shown below:

>>> import numpy as np

>>> input_arr = np.arange (100) .reshape((10, 10))
>>> output_arr = np.full (input_arr.shape, 0.0)
>>> kernell (input_arr, out=output_arr)

1.12 Callback into the Python Interpreter from within JIT’ed code

There are rare but real cases when a nopython-mode function needs to callback into the Python interpreter to invoke
code that cannot be compiled by Numba. Such cases include:

* logging progress for long running JIT ed functions;
* use data structures that are not currently supported by Numba;
* debugging inside JIT ed code using the Python debugger.
When Numba callbacks into the Python interpreter, the following has to happen:
e acquire the GIL;
* convert values in native representation back into Python objects;
* call-back into the Python interpreter;
* convert returned values from the Python-code into native representation;
* release the GIL.

These steps can be expensive. Users should not rely on the feature described here on performance-critical paths.

1.12.1 The objmode context-manager

Warning: This feature can be easily mis-used. Users should first consider alternative approaches to achieve their
intended goal before using this feature.

numba . objmode (*args, **kwargs)
Creates a contextmanager to be used inside jitted functions to enter object-mode for using interpreter features.
The body of the with-context is lifted into a function that is compiled in object-mode. This transformation
process is limited and cannot process all possible Python code. However, users can wrap complicated logic in
another Python function, which will then be executed by the interpreter.

Use this as a function that takes keyword arguments only. The argument names must correspond to the output
variables from the with-block. Their respective values can be:

1. strings representing the expected types;i.e. "float32".

2. compile-time bound global or nonlocal variables referring to the expected type. The variables are read at
compile time.

1.12. Callback into the Python Interpreter from within JIT’ed code 45

http://docs.scipy.org/doc/numpy/reference/ufuncs.html#casting-rules

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

When exiting the with-context, the output variables are converted to the expected nopython types according to
the annotation. This process is the same as passing Python objects into arguments of a nopython function.

Example:

import numpy as np
from numba import njit, objmode, types

def bar(x):
This code 1is executed by the interpreter.
return np.asarray (list (reversed(x.tolist ())))

Output type as global variable
out_ty = types.intpl[:]

@njit
def foo():
X = np.arange(5)
y = np.zeros_like (x)
with objmode (y='"intp[:]', z=out_ty): # annotate return type
this region is executed by object-mode.
y += bar (x)
z =Y
return y, z

Note: Known limitations:
» with-block cannot use incoming list objects.
» with-block cannot use incoming function objects.

* with-block cannot yield, break, return or raise such that the execution will leave the with-block
immediately.

¢ with-block cannot contain with statements.

e random number generator states do not synchronize; i.e. nopython-mode and object-mode uses different
RNG states.

Note: When used outside of no-python mode, the context-manager has no effect.

Warning: This feature is experimental. The supported features may change with or without notice.

1.13 Automatic module jitting with jit_module

A common usage pattern is to have an entire module containing user-defined functions that all need to be jitted.
One option to accomplish this is to manually apply the @ jit decorator to each function definition. This approach
works and is great in many cases. However, for large modules with many functions, manually jit-wrapping each
function definition can be tedious. For these situations, Numba provides another option, the jit_module function,
to automatically replace functions declared in a module with their jit-wrapped equivalents.

It’s important to note the conditions under which jit_module will not impact a function:

46 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1. Functions which have already been wrapped with a Numba decorator (e.g. jit, vectorize, cfunc, etc.)
are not impacted by jit_module.

2. Functions which are declared outside the module from which jit_module is called are not automatically
jit-wrapped.

3. Function declarations which occur logically after calling jit_module are not impacted.

All other functions in a module will have the @ jit decorator automatically applied to them. See the following section
for an example use case.

Note: This feature is for use by module authors. jit_module should not be called outside the context of a module
containing functions to be jitted.

1.13.1 Example usage

Let’s assume we have a Python module we’ve created, mymodule . py (shown below), which contains several func-
tions. Some of these functions are defined in mymodule . py while others are imported from other modules. We wish
to have all the functions which are defined in mymodule . py jitted using jit_module.

mymodule.py
from numba import Jjit, jit_module

def inc(x):
return x + 1

def add(x, y):
return x + y

import numpy as np
Use NumPy's mean function
mean = np.mean

@jit (nogil=True)
def mul (a, b):
return a » b

jit_module (nopython=True, error_model="numpy")

def div(a, b):
return a / b

There are several things to note in the above example:

* Both the inc and add functions will be replaced with their jit-wrapped equivalents with compilation options
nopython=True and error_model="numpy".

* The mean function, because it’s defined outside of mymodule . py in NumPy, will not be modified.
* mul will not be modified because it has been manually decorated with jit.
* div will not be automatically jit-wrapped because it is declared after jit_module is called.

When the above module is imported, we have:

1.13. Automatic module jitting with jit_module 47

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

>>> import mymodule

>>> mymodule.inc

CPUDispatcher (<function inc at 0x1032f86a8>)
>>> mymodule.mean

<function mean at 0x1096b8950>

1.13.2 API

Warning: This feature is experimental. The supported features may change with or without notice.

numba . jit_module (**kwargs)
Automatically jit-wraps functions defined in a Python module

Note that jit_module should only be called at the end of the module to be jitted. In addition, only functions
which are defined in the module jit_module is called from are considered for automatic jit-wrapping. See
the Numba documentation for more information about what can/cannot be jitted.

Parameters kwargs — Keyword arguments to pass to jit such as nopythonorerror_model.

1.14 Performance Tips

This is a short guide to features present in Numba that can help with obtaining the best performance from code.
Two examples are used, both are entirely contrived and exist purely for pedagogical reasons to motivate discussion.
The first is the computation of the trigonometric identity cos (x) “2 + sin (x) ~2, the second is a simple element
wise square root of a vector with reduction over summation. All performance numbers are indicative only and unless
otherwise stated were taken from running on an Intel 17-4790 CPU (4 hardware threads) with an input of np.
arange (l.e7).

Note: A reasonably effective approach to achieving high performance code is to profile the code running with real
data and use that to guide performance tuning. The information presented here is to demonstrate features, not to act as
canonical guidance!

1.14.1 No Python mode vs Object mode

A common pattern is to decorate functions with @ jit as this is the most flexible decorator offered by Numba. @it
essentially encompasses two modes of compilation, first it will try and compile the decorated function in no Python
mode, if this fails it will try again to compile the function using object mode. Whilst the use of looplifting in object
mode can enable some performance increase, getting functions to compile under no python mode is really the key to
good performance. To make it such that only no python mode is used and if compilation fails an exception is raised the
decorators @njit and @ jit (nopython=True) can be used (the first is an alias of the second for convenience).

48 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.14.2 Loops

Whilst NumPy has developed a strong idiom around the use of vector operations, Numba is perfectly happy with loops
too. For users familiar with C or Fortran, writing Python in this style will work fine in Numba (after all, LLVM gets a
lot of use in compiling C lineage languages). For example:

@njit
def ident_np(x):
return np.cos(x) %% 2 + np.sin(x) **x 2

@njit
def ident_loops(x):
r = np.empty_like (x)

n = len(x)
for i in range(n):

r{i] = np.cos(x[i]) %% 2 + np.sin(x[i]) **x 2
return r

The above run at almost identical speeds when decorated with @njit, without the decorator the vectorized function
is a couple of orders of magnitude faster.

Function Name | @nijit | Execution time
ident_np No 0.581s
ident_np Yes 0.659s
ident_loops | No 25.2s
ident_loops | Yes 0.670s

1.14.3 Fastmath

In certain classes of applications strict IEEE 754 compliance is less important. As a result it is possible to relax some
numerical rigour with view of gaining additional performance. The way to achieve this behaviour in Numba is through
the use of the fastmath keyword argument:

@njit (fastmath=False)
def do_sum(A) :
acc = 0.
without fastmath, this loop must accumulate in strict order
for x in A:
acc += np.sqrt (x)
return acc

@njit (fastmath=True)
def do_sum_fast (A) :
acc = 0.
with fastmath, the reduction can be vectorized as floating point
reassociation is permitted.
for x in A:
acc += np.sqgrt (x)
return acc

Function Name | Execution time
do_sum 35.2 ms
do_sum_fast 17.8 ms

1.14. Performance Tips 49

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

In some cases you may wish to opt-in to only a subset of possible fast-math optimizations. This can be done by
supplying a set of LLVM fast-math flags to fastmath.:

def add_assoc(x, Vy):
return (x - y) + vy

print (njit (fastmath=False) (add_assoc) (0, np.inf)) # nan
print (njit (fastmath=True) (add_assoc) (0, np.inf)) # 0.0
print (njit (fastmath={'reassoc', 'nsz'}) (add_assoc) (0, np.inf)) # 0.0
print (njit (fastmath={'reassoc'}) (add_assoc) (0, np.inf)) # nan
((fastmath={'nsz'}) (add_assoc) (0

print (njit , np.inf)) # nan

1.14.4 Parallel=True

If code contains operations that are parallelisable (and supported) Numba can compile a version that will run in parallel
on multiple native threads (no GIL!). This parallelisation is performed automatically and is enabled by simply adding
the parallel keyword argument:

@njit (parallel=True)
def ident_parallel (x):
return np.cos(x) %+ 2 + np.sin(x) **x 2

Executions times are as follows:

Function Name Execution time
ident_parallel | 112 ms

The execution speed of this function with parallel=True present is approximately 5x that of the NumPy equiva-
lent and 6x that of standard @njit.

Numba parallel execution also has support for explicit parallel loop declaration similar to that in OpenMP. To indicate
that a loop should be executed in parallel the numba . prange function should be used, this function behaves like
Python range and if parallel=True is not set it acts simply as an alias of range. Loops induced with prange
can be used for embarrassingly parallel computation and also reductions.

Revisiting the reduce over sum example, assuming it is safe for the sum to be accumulated out of order, the loop in
n can be parallelised through the use of prange. Further, the fastmath=True keyword argument can be added
without concern in this case as the assumption that out of order execution is valid has already been made through the
use of parallel=True (as each thread computes a partial sum).

@njit (parallel=True)
def do_sum_parallel (A):
each thread can accumulate its own partial sum, and then a cross
thread reduction is performed to obtain the result to return
n = len(A)
acc = 0.
for i in prange(n):
acc += np.sqrt (A[i])
return acc

@njit (parallel=True, fastmath=True)
def do_sum_parallel_fast (A):

n = len(A)

acc = 0.

for i in prange(n):

(continues on next page)

50 Chapter 1. User Manual

https://llvm.org/docs/LangRef.html#fast-math-flags

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

acc += np.sqrt (A[i])
return acc

Execution times are as follows, fastmath again improves performance.

Function Name Execution time
do_sum_parallel 9.81 ms
do_sum_parallel_fast | 537 ms

1.14.5 Intel SVML

Intel provides a short vector math library (SVML) that contains a large number of optimised transcendental functions
available for use as compiler intrinsics. If the icc_rt package is present in the environment (or the SVML libraries
are simply locatable!) then Numba automatically configures the LLVM back end to use the SVML intrinsic functions
where ever possible. SVML provides both high and low accuracy versions of each intrinsic and the version that is
used is determined through the use of the fastmath keyword. The default is to use high accuracy which is accurate
to within 1 ULP, however if fastmath is set to True then the lower accuracy versions of the intrinsics are used
(answers to within 4 ULP).

First obtain SVML, using conda for example:

conda install -c¢ numba icc_rt

Rerunning the identity function example ident_np from above with various combinations of options to @njit and
with/without SVML yields the following performance results (input size np .arange (1.e8)). For reference, with
just NumPy the function executed in 5. 84s:

@nijit kwargs SVML | Execution time
None No 5.95s

None Yes 2.26s
fastmath=True No 5.97s
fastmath=True Yes 1.8s
parallel=True No 1.36s
parallel=True Yes 0.624s
parallel=True, fastmath=True | No 1.32s
parallel=True, fastmath=True | Yes 0.576s

It is evident that SVML significantly increases the performance of this function. The impact of fastmath in the case
of SVML not being present is zero, this is expected as there is nothing in the original function that would benefit from
relaxing numerical strictness.

1.14. Performance Tips 51

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.14.6 Linear algebra

Numba supports most of numpy . 1inalg in no Python mode. The internal implementation relies on a LAPACK and
BLAS library to do the numerical work and it obtains the bindings for the necessary functions from SciPy. Therefore,
to achieve good performance in numpy . 1 inalg functions with Numba it is necessary to use a SciPy built against a
well optimised LAPACK/BLAS library. In the case of the Anaconda distribution SciPy is built against Intel’s MKL
which is highly optimised and as a result Numba makes use of this performance.

1.15 The Threading Layers

This section is about the Numba threading layer, this is the library that is used internally to perform the parallel
execution that occurs through the use of the parallel targets for CPUs, namely:

* The use of the parallel=True kwargin @jit and @njit.

* The use of the target="'parallel' kwargin @vectorize and @guvectorize.

Note: Ifacodebase does notuse the threadingormultiprocessing modules (or any other sort of parallelism)
the defaults for the threading layer that ship with Numba will work well, no further action is required!

1.15.1 Which threading layers are available?

There are three threading layers available and they are named as follows:
* tbb - A threading layer backed by Intel TBB.
* omp - A threading layer backed by OpenMP.
* workqueue -A simple built-in work-sharing task scheduler.

In practice, the only threading layer guaranteed to be present is workqueue. The omp layer requires the presence of
a suitable OpenMP runtime library. The tbb layer requires the presence of Intel’s TBB libraries, these can be obtained
via the conda command:

’$ conda install tbb

If you installed Numba with pip, TBB can be enabled by running:

’$ pip install tbb

Due to compatibility issues with manylinux1 and other portability concerns, the OpenMP threading layer is disabled
in the Numba binary wheels on PyPI.

Note: The default manner in which Numba searches for and loads a threading layer is tolerant of missing libraries,
incompatible runtimes etc.

52 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.15.2 Setting the threading layer

The threading layer is set via the environment variable NUMBA_THREADING_LAYER or through assignment to
numba.config.THREADING_LAYER. If the programmatic approach to setting the threading layer is used it must
occur logically before any Numba based compilation for a parallel target has occurred. There are two approaches
to choosing a threading layer, the first is by selecting a threading layer that is safe under various forms of parallel
execution, the second is through explicit selection via the threading layer name (e.g. tbb).

Selecting a threading layer for safe parallel execution
Parallel execution is fundamentally derived from core Python libraries in four forms (the first three also apply to code
using parallel execution via other means!):

e threads from the threading module.

¢ spawn ing processes from the multiprocessing module via spawn (default on Windows, only available
in Python 3.4+ on Unix)

e fork ing processes from the multiprocessing module via fork (default on Unix).

* fork ing processes from the multiprocessing module through the use of a forkserver (only available
in Python 3 on Unix). Essentially a new process is spawned and then forks are made from this new process on
request.

Any library in use with these forms of parallelism must exhibit safe behaviour under the given paradigm. As a result,
the threading layer selection methods are designed to provide a way to choose a threading layer library that is safe for
a given paradigm in an easy, cross platform and environment tolerant manner. The options that can be supplied to the
setting mechanisms are as follows:

* default provides no specific safety guarantee and is the default.

* safe is both fork and thread safe, this requires the tbb package (Intel TBB libraries) to be installed.
» forksafe provides a fork safe library.

* threadsafe provides a thread safe library.

To discover the threading layer that was selected, the function numba.threading_layer () may be called after
parallel execution. For example, on a Linux machine with no TBB installed:

from numba import config, njit, threading_layer
import numpy as np

set the threading layer before any parallel target compilation
config.THREADING_LAYER = 'threadsafe'

@njit (parallel=True)
def foo(a, b):
return a + b

X = np.arange (10.)
y = x.copy ()

this will force the compilation of the function, select a threading layer
and then execute in parallel
foo(x, vy)

demonstrate the threading layer chosen

o

print ("Threading layer chosen: " % threading_layer())

1.15. The Threading Layers 53

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

which produces:

Threading layer chosen: omp

and this makes sense as GNU OpenMP, as present on Linux, is thread safe.

Selecting a named threading layer

Advanced users may wish to select a specific threading layer for their use case, this is done by directly supplying the
threading layer name to the setting mechanisms. The options and requirements are as follows:

Threading | Platform | Requirements
Layer
Name
tbb All The tbb package ($ conda install tbb)
omp Linux GNU OpenMP libraries (very likely this will already exist)
Windows | MS OpenMP libraries (very likely this will already exist)
0OSX The intel-openmp package ($ conda install intel-openmp)
workqueug All None

Should the threading layer not load correctly Numba will detect this and provide a hint about how to resolve the
problem. It should also be noted that the Numba diagnostic command numba -s has a section __Threading
Layer Information___thatreports on the availability of threading layers in the current environment.

1.15.3 Extra notes

The threading layers have fairly complex interactions with CPython internals and system level libraries, some addi-
tional things to note:

¢ The installation of Intel’s TBB libraries vastly widens the options available in the threading layer selection
process.

* On Linux, the omp threading layer is not fork safe due to the GNU OpenMP runtime library (1 ibgomp) not
being fork safe. If a fork occurs in a program that is using the omp threading layer, a detection mechanism is
present that will try and gracefully terminate the forked child and print an error message to STDERR.

* On systems with the fork (2) system call available, if the TBB backed threading layer is in use and a fork
call is made from a thread other than the thread that launched TBB (typically the main thread) then this results
in undefined behaviour and a warning will be displayed on STDERR. As spawn is essentially fork followed
by exec it is safe to spawn from a non-main thread, but as this cannot be differentiated from just a fork call
the warning message will still be displayed.

* On OSX, the intel-openmp package is required to enable the OpenMP based threading layer.

54 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.15.4 Setting the Number of Threads

The number of threads used by numba is based on the number of CPU cores available (see numba.config.
NUMBA_DEFAULT_NUM_THREADS), but it can be overridden with the NUMBA_NUM_THREADS environment vari-
able.

The total number of threads that numba launches is in the variable numba . config. NUMBA_NUM_THREADS.

For some use cases, it may be desirable to set the number of threads to a lower value, so that numba can be used with
higher level parallelism.

The number of threads can be set dynamically at runtime using numba.set_num_threads (). Note that
set_num_threads () only allows setting the number of threads to a smaller value than NUMBA_NUM_THREADS.
Numba always launches numba . config.NUMBA_NUM_THREADS threads, but set_num_threads () causes it
to mask out unused threads so they aren’t used in computations.

The current number of threads used by numba can be accessed with numba . get_num_threads (). Both functions
work inside of a jitted function.

Example of Limiting the Number of Threads

In this example, suppose the machine we are running on has 8 cores (so numba. config. NUMBA NUM_THREADS
would be 8). Suppose we want to run some code with @njit (parallel=True), but we also want to run our code
concurrently in 4 different processes. With the default number of threads, each Python process would run 8 threads,
for a total in 4*8 = 32 threads, which is oversubscription for our 8 cores. We should rather limit each process to 2
threads, so that the total will be 4*2 = 8, which matches our number of physical cores.

There are two ways to do this. One is to set the NUMBA NUM_THREADS environment variable to 2.

$ NUMBA_NUM_THREADS=2 python ourcode.py

However, there are two downsides to this approach:

1. NUMBA_NUM_THREADS must be set before Numba is imported, and ideally before Python is launched. As
soon as Numba is imported the environment variable is read and that number of threads is locked in as the
number of threads Numba launches.

2. If we want to later increase the number of threads used by the process, we cannot. NUMBA_NUM_THREADS
sets the maximum number of threads that are launched for a process. Calling set_num_threads () with a
value greater than numba . config. NUMBA_NUM_THREADS results in an error.

The advantage of this approach is that we can do it from outside of the process without changing the code.

Another approach is to use the numba . set_num _threads () function in our code

from numba import njit, set_num_threads
@njit (parallel=True)

def func():

set_num_threads (2)
func ()

If we call set_num_threads (2) before executing our parallel code, it has the same effect as calling the process
with NUMBA_NUM_THREADS=2, in that the parallel code will only execute on 2 threads. However, we can later call
set_num_threads (8) to increase the number of threads back to the default size. And we do not have to worry
about setting it before Numba gets imported. It only needs to be called before the parallel function is run.

1.15. The Threading Layers 55

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

API Reference
numba.config.NUMBA_ NUM_THREADS
The total (maximum) number of threads launched by numba.

Defaults to numba.config.NUMBA DEFAULT NUM_THREADS, but can be overridden with the
NUMBA_NUM_THREADS environment variable.

numba.config.NUMBA DEFAULT NUM_THREADS
The number of CPU cores on the system (as determined by multiprocessing. cpu_count ()). Thisis the
default value for numba . config.NUMBA NUM_THREADS unless the NUMBA _NUM_THREADS environment
variable is set.

numba.set_num threads (n)
Set the number of threads to use for parallel execution.

By default, all numba . config. NUMBA_NUM_THREADS threads are used.

This functionality works by masking out threads that are not used. Therefore, the number of threads n must be
less than or equal to NUMBA_NUM_THREADS, the total number of threads that are launched. See its documen-
tation for more details.

This function can be used inside of a jitted function.
Parameters
n: The number of threads. Must be between 1 and NUMBA_NUM_THREADS.

See also:

get_num threads, numba.config. NUMBA NUM_THREADS

numba.config.NUMBA DEFAULT NUM THREADS, NUMBA NUM THREADS
numba.get_num_threads ()

Get the number of threads used for parallel execution.

By default (if set_num threads () is never called), all numba.config.NUMBA NUM_THREADS
threads are used.

This number is less than or equal to the total number of threads that are launched, numba.config.
NUMBA_NUM_THREADS.

This function can be used inside of a jitted function.
Returns
The number of threads.

See also:

set_num threads, numba.config.NUMBA NUM_ THREADS

numba.config.NUMBA DEFAULT NUM THREADS, NUMBA NUM THREADS

56 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.16 Command line interface

Numba is a Python package, usually you import numba from Python and use the Python application programming
interface (API). However, Numba also ships with a command line interface (CLI), i.e. a tool numba that is installed
when you install Numba.

Currently, the only purpose of the CLI is to allow you to quickly show some information about your system and
installation, or to quickly get some debugging information for a Python script using Numba.

1.16.1 Usage

To use the Numba CLI from the terminal, use numba followed by the options and arguments like ——help or —s, as
explained below.

Sometimes it can happen that you get a “command not found” error when you type numba, because your PATH
isn’t configured properly. In that case you can use the equivalent command python -m numba. If that still gives
“command not found”, try to import numba as suggested here: Dependency List.

The two versions numba and python -m numba are the same. The first is shorter to type, but if you get a “com-
mand not found” error because your PATH doesn’t contain the location where numba is installed, having the python
-m numba variant is useful.

To use the Numba CLI from IPython or Jupyter, use ! numba, i.e. prefix the command with an exclamation mark. This
is a general IPython/Jupyter feature to execute shell commands, it is not available in the regular python terminal.

1.16.2 Help

To see all available options, use numba --help:

$ numba --help

usage: numba [-h] [-—-annotate] [--dump-llvm] [--dump-optimized]
[-—dump-assembly] [-—-dump-cfg] [-—-dump-ast]
[-—annotate-html ANNOTATE_HTML] [-s]
[filename]

positional arguments:
filename Python source filename

optional arguments:

-h, --help show this help message and exit
——annotate Annotate source

——dump-1lvm Print generated llvm assembly
——dump-optimized Dump the optimized llvm assembly
——dump—-assembly Dump the LLVM generated assembly
——dump-cfg [Deprecated] Dump the control flow graph
——dump-ast [Deprecated] Dump the AST

——annotate-html ANNOTATE_HTML
Output source annotation as html
-s, ——-sysinfo Output system information for bug reporting

1.16. Command line interface 57

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.16.3 System information

The numba -s (or the equivalent numba --sysinfo) command prints a lot of information about your system
and your Numba installation and relevant dependencies.

Remember: you can use ! numba -s with an exclamation mark to see this information from IPython or Jupyter.

Example output:

$ numba -s

System info:

__Time Stamp___
2019-05-07 14:15:39.733994

_ Hardware Information_

Machine : x86_64
CPU Name : haswell
CPU count : 8

CPU Features :
aes avx avx2 bmi bmi2 cmov cx16 flé6c fma fsgsbase invpcid lzcnt mmx movbe pclmul
popcnt rdrnd sahf sse sse2 sse3 ssed.l ssed.2 ssse3 xsave xsaveopt

__0S Information_

Platform : Darwin-18.5.0-x86_64-1386-64bit
Release : 18.5.0

System Name : Darwin

Version : Darwin Kernel Version 18.5.0: Mon Mar,
<511 20:40:32 PDT 2019; root:xnu-4903.251.3~3/RELEASE_X86_64

0OS specific info : 10.14.4 x86_64

__Python Information_

Python Compiler : Clang 4.0.1 (tags/RELEASE_401/final)
Python Implementation : CPython

Python Version : 3.7.3

Python Locale : en_US UTF-8

_ LLVM information_
LLVM version : 7.0.0

_ CUDA Information_
CUDA driver library cannot be found or no CUDA enabled devices are present.
Error class: <class 'numba.cuda.cudadrv.error.CudaSupportError'>

__ROC Information_

ROC available : False

Error initialising ROC due to : No ROC toolchains found.
No HSA Agents found, encountered exception when searching:

Error at driver init:

HSA is not currently supported on this platform (darwin).

__ SVML Information_

SVML state, config.USING_SVML : False
SVML library found and loaded : False
llvmlite using SVML patched LLVM : True

(continues on next page)

58 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

SVML operational

__Threading Layer Information___

TBB Threading layer available

+-—> Disabled due to

OpenMP Threading layer available
+--> Disabled due to

Workqueue Threading layer available

_ Numba Environment Variable Information_

None set.

_ Conda Information
conda_build_version
conda_env_version
platform
python_version
root_writable

_ Current Conda Env___
(output truncated due to length)

False

False
Unknown import problem.
False
Unknown import problem.
True

3.17.8

4.6.14

osx—64
3.7.3.final.0
True

1.16.4 Debugging

As shown in the help output above, the numba command includes options that can help you to debug Numba compiled

code.

To try it out, create an example script called myscript.py:

import numba
@numba. jit
def f(x):

return 2 * x

£(42)

and then execute one of the following commands:

numba myscript.py —-—annotate

numba myscript.py —--dump-llvm
numba myscript.py —-—-dump-optimized
numba myscript.py —-—-dump-assembly

v W

numba myscript.py —--—annotate-—-html myscript.html

1.16. Command line interface

59

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.17 Troubleshooting and tips

1.17.1 What to compile

The general recommendation is that you should only try to compile the critical paths in your code. If you have a piece
of performance-critical computational code amongst some higher-level code, you may factor out the performance-
critical code in a separate function and compile the separate function with Numba. Letting Numba focus on that small
piece of performance-critical code has several advantages:

* it reduces the risk of hitting unsupported features;
* it reduces the compilation times;

* it allows you to evolve the higher-level code which is outside of the compiled function much easier.

1.17.2 My code doesn’t compile

There can be various reasons why Numba cannot compile your code, and raises an error instead. One common reason
is that your code relies on an unsupported Python feature, especially in nopython mode. Please see the list of Supported
Python features. If you find something that is listed there and still fails compiling, please report a bug.

When Numba tries to compile your code it first tries to work out the types of all the variables in use, this is so it can
generate a type specific implementation of your code that can be compiled down to machine code. A common reason
for Numbea failing to compile (especially in nopython mode) is a type inference failure, essentially Numba cannot work
out what the type of all the variables in your code should be.

For example, let’s consider this trivial function:

@jit (nopython=True)
def f(x, y):
return x + y

If you call it with two numbers, Numba is able to infer the types properly:

>>> £(1, 2)
3

If however you call it with a tuple and a number, Numba is unable to say what the result of adding a tuple and number
is, and therefore compilation errors out:

>>> f£(1, (2,))

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<path>/numba/numba/dispatcher.py", line 339, in _compile_for_args
reraise (type(e), e, None)

File "<path>/numba/numba/six.py", line 658, in reraise
raise value.with_traceback (tb)

numba.errors.TypingError: Failed at nopython (nopython frontend)

Invalid use of + with parameters (int64, tuple(int64 x 1))

Known signatures:

(int64, into64) -> into64

(int64, uint64) -> into4

(uint64, int64) -> into64

(uint64, uint64) -> uint64

(float32, float32) -> float32

(float64, float64) -> floaté4d

% ok X % X

(continues on next page)

60 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

* (complex64, complex64) —-> complex64

* (complex128, complex128) —-> complexl28
* (uintl6,) —-> uint64

* (uint8,) -> uinté64

* (uint64,) -> uinté64

* (uint32,) —-> uint64

* (intl6,) -> into4

* (inte64,) -> into4

* (int8,) —-> into64

* (int32,) -> into4

* (float32,) -> float32

* (floated,) -> floaté6d

* (complex64,) —-> complex64d

* (complex128,) —-> complexl28

*+ parameterized

[1] During: typing of intrinsic-call at <stdin> (3)

File "<stdin>", line 3:

The error message helps you find out what went wrong: “Invalid use of + with parameters (int64, tuple(int64 x 1))” is
to be interpreted as “Numba encountered an addition of variables typed as integer and 1-tuple of integer, respectively,
and doesn’t know about any such operation”.

Note that if you allow object mode:

@jit
def g(x, y):
return x + y

compilation will succeed and the compiled function will raise at runtime as Python would do:

>>> g(1, (2,))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'tuple'

1.17.3 My code has a type unification problem

Another common reason for Numba not being able to compile your code is that it cannot statically determine the
return type of a function. The most likely cause of this is the return type depending on a value that is available only at
runtime. Again, this is most often problematic when using nopython mode. The concept of type unification is simply
trying to find a type in which two variables could safely be represented. For example a 64 bit float and a 64 bit complex
number could both be represented in a 128 bit complex number.

As an example of type unification failure, this function has a return type that is determined at runtime based on the
value of x:

In [1]: from numba import jit

In [2]: Q@Jit (nopython=True)
def f (x):
if x > 10:
return (1,)
else:
return 1

(continues on next page)

1.17. Troubleshooting and tips 61

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

In [3]1: £(10)

Trying to execute this function, errors out as follows:

TypingError: Failed at nopython (nopython frontend)

Can't unify return type from the following types: tuple(int64 x 1), inté64
Return of: IR name '$8.2', type '(int64 x 1)', location:

File "<ipython-input-2-5leflcc64bea>", line 4:

def f(x):
<source elided>
if x > 10:

return (1,)
Return of: IR name 'S$12.2', type 'int64', location:
File "<ipython-input-2-5leflcc64bea>", line 6:
def f(x):
<source elided>
else:
return 1

The error message “Can’t unify return type from the following types: tuple(int64 x 1), int64” should be read as
“Numba cannot find a type that can safely represent a 1-tuple of integer and an integer”.

1.17.4 My code has an untyped list problem

As noted previously the first part of Numba compiling your code involves working out what the types of all the
variables are. In the case of lists, a list must contain items that are of the same type or can be empty if the type can be
inferred from some later operation. What is not possible is to have a list which is defined as empty and has no inferable
type (i.e. an untyped list).

For example, this is using a list of a known type:

from numba import jit
@jit (nopython=True)
def f():
return [1, 2, 3] # this list is defined on construction with “int ' type

This is using an empty list, but the type can be inferred:

from numba import Jjit
@jit (nopython=True)
def f (x):
tmp = [] # defined empty
for i in range(x):
tmp.append (i) # list type can be inferred from the type of "i°
return tmp

This is using an empty list and the type cannot be inferred:

from numba import jit
@jit (nopython=True)
def f (x):
tmp = [] # defined empty
return (tmp, x) # ERROR: the type of ‘tmp 1s unknown

62 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Whilst slightly contrived, if you need an empty list and the type cannot be inferred but you know what type you want
the list to be, this “trick” can be used to instruct the typing mechanism:

from numba import Jjit
import numpy as np
@jit (nopython=True)

def f(x):
define empty list, but instruct that the type is np.complex64
tmp = [np.complex64(x) for x in range (0)]

return (tmp, x) # the type of "tmp 1is known, but it is still empty

1.17.5 The compiled code is too slow

The most common reason for slowness of a compiled JIT function is that compiling in nopython mode has failed and
the Numba compiler has fallen back to object mode. object mode currently provides little to no speedup compared
to regular Python interpretation, and its main point is to allow an internal optimization known as loop-lifting: this
optimization will allow to compile inner loops in nopython mode regardless of what code surrounds those inner loops.

To find out if type inference succeeded on your function, you can use the inspect_types () method on the com-
piled function.

For example, let’s take the following function:

@jit

def f(a, b):
s = a + float (b)
return s

When called with numbers, this function should be fast as Numba is able to convert number types to floating-point
numbers. Let’s see:

>>> f£(1, 2)

3.0

>>> f . inspect_types|()
f (int64, int64)

——— LINE 7 ——-
@jit

—— LINE 8 ——-
def f(a, b):

—— LINE 9 ——-

label O

a.l = a :: inté64

del a

b.1 = b :: int64

del b

$0.2 = global (float: <class 'float'>) :: Function(<class 'float'>)
$0.4 = call $0.2(b.1,) :: (inte64,) —-> float64
del b.1

del $0.2

$0.5 = a.1l + $0.4 :: float6d

del a.l

S o S S S HE e S e

(continues on next page)

1.17. Troubleshooting and tips 63

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

del $0.4

s = $0.5 :: float64d

del $0.5

s = a + float (b)

—— LINE 10 ———

$0.7 = cast (value=s) :: floate4d
del s

return $0.7

return s

Without trying to understand too much of the Numba intermediate representation, it is still visible that all variables
and temporary values have had their types inferred properly: for example a has the type int 64, $0.5 has the type
float 64, etc.

However, if b is passed as a string, compilation will fall back on object mode as the float() constructor with a string is
currently not supported by Numba:

>>> f(ll "2")

3.0
>>> f.inspect_types|()
[... snip annotations for other signatures, see above ...]

—— LINE 7 ——-
@jit
—— LINE 8 ——-
def f(a, b):
——— LINE 9 ——-
label O
a.l = a :: pyobject
del a
b.1 = b :: pyobject
del b
$0.2 = global (float: <class 'float'>) :: pyobject
$0.4 = call $0.2(b.1,) :: pyobject
del b.1
del $0.2
$0.5 = a.1 + $0.4 :: pyobject
del a.l
del $0.4
s = $0.5 :: pyobject
del $0.5

0]

= a + float (b)

-——— LINE 10 -——

$0.7 = cast (value=s) :: pyobject
del s

return $0.7

(continues on next page)

64 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

return s

Here we see that all variables end up typed as pyob ject. This means that the function was compiled in object mode
and values are passed around as generic Python objects, without Numba trying to look into them to reason about their
raw values. This is a situation you want to avoid when caring about the speed of your code.

If a function fails to compile in nopython mode warnings will be emitted with explanation as to why compilation
failed. For example with the £ () function above (slightly edited for documentation purposes):

>>> f(1, 2)
3.0
>>> f£(1, "2")
example.py:7: NumbaWarning:
Compilation is falling back to object mode WITH looplifting enabled because Function
—"f" failed type inference due to: Invalid use of Function(<class 'float'>) with,
—argument (s) of type(s): (unicode_type)
* parameterized
In definition O:
TypeError: float () only support for numbers
raised from <path>/numba/typing/builtins.py:880
In definition 1:
TypeError: float () only support for numbers
raised from <path>/numba/typing/builtins.py:880
This error is usually caused by passing an argument of a type that is unsupported by,
—the named function.
[1] During: resolving callee type: Function(<class 'float'>)
[2] During: typing of call at example.py (9)

File "example.py", line 9:
def f(a, b):
s = a + float (b)

A

<path>/numba/compiler.py:722: NumbaWarning: Function "f" was compiled in object mode,
—without forceobj=True.

File "example.py", line 8:
@jit
def f(a, b):

A

1.17.6 Disabling JIT compilation

In order to debug code, it is possible to disable JIT compilation, which makes the jit decorator (and the njit
decorator) act as if they perform no operation, and the invocation of decorated functions calls the original Python
function instead of a compiled version. This can be toggled by setting the NUMBA DISABLE_JIT enviroment
variable to 1.

When this mode is enabled, the vectorize and guvectorize decorators will still result in compilation of a
ufunc, as there is no straightforward pure Python implementation of these functions.

1.17. Troubleshooting and tips 65

L Y N

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.17.7 Debugging JIT compiled code with GDB

Setting the debug keyword argument in the jit decorator (e.g. @jit (debug=True)) enables the emission of
debug info in the jitted code. To debug, GDB version 7.0 or above is required. Currently, the following debug info is
available:

* Function name will be shown in the backtrace. But, no type information.

* Source location (filename and line number) is available. For example, user can set break point by the absolute
filename and line number; e.g. break /path/to/myfile.py:6.

¢ Local variables in the current function can be shown with info locals.
* Type of variable with whatis myvar.
* Value of variable with print myvar or display myvar.

— Simple numeric types, i.e. int, float and double, are shown in their native representation. But, integers are
assumed to be signed.

— Other types are shown as sequence of bytes.
Known issues:
* Stepping depends heavily on optimization level.
— At full optimization (equivalent to O3), most of the variables are optimized out.

— With no optimization (e.g. NUMBA_OPT=0), source location jumps around when stepping through the
code.

— At Ol optimization (e.g. NUMBA_OPT=1), stepping is stable but some variables are optimized out.

e Memory consumption increases significantly with debug info enabled. The compiler emits extra information
(DWARF) along with the instructions. The emitted object code can be 2x bigger with debug info.

Internal details:

 Since Python semantics allow variables to bind to value of different types, Numba internally creates multiple
versions of the variable for each type. So for code like:

x =1 # type int
x = 2.3 # type float
x = (1, 2, 3) # type 3-tuple of int

Each assignments will store to a different variable name. In the debugger, the variables will be x, x$1 and x$2.
(In the Numba IR, they are x, x .1 and x. 2.)

* When debug is enabled, inlining of the function is disabled.

Example debug usage

The python source:

from numba import njit

@njit (debug=True)

def foo(a):
b=a+1
c =a % 2.34
d = (a, b, <)

print(a, b, c, d)

(continues on next page)

66 Chapter 1. User Manual

http://www.dwarfstd.org/

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

r= foo (123)
print (r)

In the terminal:

$ NUMBA_OPT=1 gdb -g python

Reading symbols from python...done.

(gdb) break /home/user/chk_debug.py:5

No source file named /home/user/chk_debug.py.

Make breakpoint pending on future shared library load? (y or [n]) y

Breakpoint 1 (/home/user/chk_debug.py:5) pending.
(gdb) run chk_debug.py
Starting program: /home/user/miniconda/bin/python chk_debug.py

Breakpoint 1, _ main__ ::fo0$241(long long) () at chk_debug.py:5

5 b=a+ 1

(gdb) n

6 c =a % 2.34

(gdb) bt

#0 _ _main__::fo00$241 (long long) () at chk_debug.py:6

#1 0x00007ffff7fecd7c in cpython::_ _main__ ::fo0$241 (long long) ()

#2 0x00007fffeb7976e2 in call_cfunc (locals=0x0, kws=0x0, args=0x7fffeb486198,

(gdb) info locals

a=20

d = <error reading variable d (DWARF-2 expression error: “DW_OP_stack_value'
—operations must be used either alone or in conjunction with DW_OP_piece or DW_OP_
—bit_piece.)>

c =20

b = 124

(gdb) whatis b

type = 164

(gdb) whatis d

type = {164, i64, double}

(gdb) print b

$2 = 124

Globally override debug setting

It is possible to enable debug for the full application by setting environment variable NUMBA_DEBUGINFO=1. This
sets the default value of the debug option in jit. Debug can be turned off on individual functions by setting
debug=False.

Beware that enabling debug info significantly increases the memory consumption for each compiled function. For
large application, this may cause out-of-memory error.

1.17. Troubleshooting and tips 67

L Y N

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.17.8 Using Numba’s direct gdb bindings in nopython mode

Numba (version 0.42.0 and later) has some additional functions relating to gdb support for CPUs that make it easier
to debug programs. All the gdb related functions described in the following work in the same manner irrespective
of whether they are called from the standard CPython interpreter or code compiled in either nopython mode or object
mode.

Note: This feature is experimental!

Warning: This feature does unexpected things if used from Jupyter or alongside the pdb module. It’s behaviour
is harmless, just hard to predict!

Set up

Numba’s gdb related functions make use of a gdb binary, the location and name of this binary can be configured via
the NUMBA GDB BINARY environment variable if desired.

Note: Numba’s gdb support requires the ability for gdb to attach to another process. On some systems (notably
Ubuntu Linux) default security restrictions placed on ptrace prevent this from being possible. This restriction is
enforced at the system level by the Linux security module Yama. Documentation for this module and the security
implications of making changes to its behaviour can be found in the Linux Kernel documentation. The Ubuntu Linux
security documentation discusses how to adjust the behaviour of Yama on with regards to pt race_scope so as to
permit the required behaviour.

Basic gdb support

Warning: Calling numba.gdb () and/or numba.gdb_init () more than once in the same program is not
advisable, unexpected things may happen. If multiple breakpoints are desired within a program, launch gdb
once via numba.gdb () or numba.gdb_init () and then use numba.gdb_breakpoint () to register
additional breakpoint locations.

The most simple function for adding gdb support is numba . gdb (), which, at the call location, will:
¢ launch gdb and attach it to the running process.

* create a breakpoint at the site of the numba . gdb () function call, the attached gdb will pause execution here
awaiting user input.

use of this functionality is best motivated by example, continuing with the example used above:

from numba import njit, gdb

@njit (debug=True)
def foo(a):
b=a+1
gdb () # instruct Numba to attach gdb at this location and pause execution
c =a * 2.34
d = (a, b, c)

(continues on next page)

68 Chapter 1. User Manual

https://www.kernel.org/doc/Documentation/admin-guide/LSM/Yama.rst
https://wiki.ubuntu.com/Security/Features#ptrace
https://wiki.ubuntu.com/Security/Features#ptrace

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

print(a, b, c, d)

r= foo (123)
print (r)

In the terminal (. . . on a line by itself indicates output that is not presented for brevity):

$ NUMBA_OPT=0 python demo_gdb.py

Attaching to PID: 27157

GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7
Attaching to process 27157

Reading symbols from <elided for brevity> ...done.

0x00007£f0380c31550 in _ nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81
81 T PSEUDO (SYSCALL_SYMBOL, SYSCALL_ NAME, SYSCALL_NARGS)

Breakpoint 1 at 0x7f036ac388f0: file numba/_helperlib.c, line 1090.
Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }
(gdb) s

Single stepping until exit from function _ZN5numba7targets8gdb_hook8hook_gdbl2
—$3clocals$3e8implS$242E5Tuple,
which has no line number information.

main__::fo0$241 (long long) () at demo_gdb.py:7

7 c =a % 2.34
(gdb) 1

2

3 @njit (debug=True)
4 def foo(a):

5 b=a+1

6 gdb () # instruct Numba to attach gdb at this location and pause execution
7 c =a * 2.34
8 d = (a, b, ¢)
9 print(a, b, c, d)
10

11 r= foo(123)

(gdb) p a

$1 = 123

(gdb) p b

$2 = 124

(gdb) p c

$3 =0

(gdb) n

8 d = (a, b, c)
(gdb) p c

$4 = 287.81999999999999

It can be seen in the above example that execution of the code is paused at the location of the gdb () function call
at end of the numba_gdb_breakpoint function (this is the Numba internal symbol registered as breakpoint with
gdb). Issuing a step at this point moves to the stack frame of the compiled Python source. From there, it can be seen
that the variables a and b have been evaluated but c has not, as demonstrated by printing their values, this is precisely
as expected given the location of the gdb () call. Issuing a next then evaluates line 7 and c is assigned a value as
demonstrated by the final print.

1.17. Troubleshooting and tips 69

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Running with gdb enabled

The functionality provided by numba . gdb () (launch and attach gdb to the executing process and pause on a break-
point) is also available as two separate functions:

e numba.gdb_init () this function injects code at the call site to launch and attach gdb to the executing
process but does not pause execution.

* numba.gdb_breakpoint () this function injects code at the call site that will call the special
numba_gdb_breakpoint function that is registered as a breakpoint in Numba’s gdb support. This is
demonstrated in the next section.

This functionality enables more complex debugging capabilities. Again, motivated by example, debugging a ‘segfault’
(memory access violation signalling SIGSEGV):

from numba import njit, gdb_init
import numpy as np

NOTE debug=True switches bounds—-checking on, but for the purposes of this
example it is explicitly turned off so that the out of bounds index is
not caught!
@njit (debug=True, boundscheck=False)
def foo(a, index):
gdb_init () # instruct Numba to attach gdb at this location, but not to pause
—execution
b=a+1
c =a x 2.34
d = clindex] # access an address that is a) invalid b) out of the page
print(a, b, c, d)

bad_index = int (1e9) # this index is invalid
z = np.arange (10)

r = foo(z, bad_index)

print (r)

In the terminal (. . . on a line by itself indicates output that is not presented for brevity):

$ python demo_gdb_segfault.py

Attaching to PID: 5444

GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7
Attaching to process 5444

Reading symbols from <elided for brevity> ...done.

0x00007£8d8010a550 in _ nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)

Breakpoint 1 at 0x7£8d6alll18f0: file numba/_helperlib.c, line 1090.
Continuing.

0x00007fa7b810a41f in _ _main__::fo0$241 (Array<long long, 1, C, mutable, aligned>,
—~long long) () at demo_gdb_segfault.py:9
9 d = c[index] # access an address that is a) invalid b) out of the page

(gdb) p index

$1 = 1000000000

(gdb) p c

$2 = "p\202\017\364\371U0\000\000\000\000\000\000\000\000\000\000\n\000O\NO00N\N000N\000\
—000\000\000\b\000\000\000\000\000\000\000\240\202\017\364\371U\000\000\n\000\000\
—000\000\000\000\000\b\000\000\0O00\0O0O0O\NOOON\OOO"

(continues on next page)

70 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

(gdb) whatis c
type = {i8x, 1i8x, 164, i64, doublex, [l x i64], [1 x 1641}
(gdb) x /32xb c

0x7££d56195068: 0x70 0x82 0x0f Oxf4 0xf9 0x55 0x00 0x00
0x7f£fd56195070: 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7f£fd56195078: 0x0a 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x7ffd56195080: 0x08 0x00 0x00 0x00 0x00 0x00 0x00 0x00

In the gdb output it can be noted that the numba_gdb_breakpoint function was registered as a breakpoint (its
symbol is in numba/_helperlib.c), thata SIGSEGV signal was caught, and the line in which the access violation
occurred is printed.

Continuing the example as a debugging session demonstration, first index can be printed, and it is evidently 1e9.
Printing c gives a lot of bytes, so the type needs looking up. The type of c shows the layout for the array c based
on its DataModel (look in the Numba source numba . datamodel .models for the layouts, the ArrayModel is
presented below for ease).

class ArrayModel (StructModel) :
def _ _init__ (self, dmm, fe_type):
ndim = fe_type.ndim
members = [
("meminfo', types.MemInfoPointer (fe_type.dtype)),

'parent', types.pyobject),
'nitems', types.intp),
'itemsize', types.intp),
'data', types.CPointer (fe_type.dtype)),
'shape', types.UniTuple (types.intp, ndim)),

(
(
(
(
(
('strides', types.UniTuple(types.intp, ndim)),

The type inspected from gdb (type = {i8x, i8%, 164, 164, doublex, [1 x 164], [l x
i64]}) corresponds directly to the members of the ArrayModel. Given the segfault came from an invalid access it
would be informative to check the number of items in the array and compare that to the index requested.

Examining the memory of ¢, (x /32xb c¢), the first 16 bytes are the two 1 8« corresponding to the meminfo pointer
and the parent pyobject. The next two groups of 8 bytes are i64/intp types corresponding to nitems and
itemsize respectively. Evidently their values are 0x0a and 0x08, this makes sense as the input array a has 10
elements and is of type int 64 which is 8 bytes wide. It’s therefore clear that the segfault comes from an invalid
access of index 1000000000 in an array containing 10 items.

Adding breakpoints to code

The next example demonstrates using multiple breakpoints that are defined through the invocation of the numba.
gdb_breakpoint () function:

from numba import njit, gdb_init, gdb_breakpoint

@njit (debug=True)

def foo(a):
gdb_init () # instruct Numba to attach gdb at this location
b=a+ 1
gdb_breakpoint () # instruct gdb to break at this location
c =a x 2.34
d = (a, b, c)
gdb_breakpoint () # and to break again at this location

(continues on next page)

1.17. Troubleshooting and tips 71

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

print(a, b, c, d)

r= foo (123)
print (r)

In the terminal (. . . on a line by itself indicates output that is not presented for brevity):

$ NUMBA_OPT=0 python demo_gdb_breakpoints.py
Attaching to PID: 20366
GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7

Attaching to process 20366

Reading symbols from <elided for brevity> ...done.

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/lib64/libthread_db.so.1".

Reading symbols from /1ib64/libc.so.6...Reading symbols from /usr/lib/debug/usr/l1ib64/
—~libc-2.17.s0.debug...done.

0x00007£f631db5e550 in _ nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81
81 T PSEUDO (SYSCALL_SYMBOL, SYSCALL_ NAME, SYSCALL_NARGS)

Breakpoint 1 at 0x7f63070658f0: file numba/_helperlib.c, line 1090.

Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) step

__main__::fo0$241 (long long) () at demo_gdb_breakpoints.py:8

8 c =a % 2.34

(gdb) 1

3 @njit (debug=True)

4 def foo(a):

5 gdb_init () # instruct Numba to attach gdb at this location
6 b=a+ 1

7 gdb_breakpoint () # instruct gdb to break at this location
8 c =a * 2.34

9 d = (a, b, ¢c)

10 gdb_breakpoint () # and to break again at this location
11 print(a, b, c, d)

12

(gdb) p b

$1 = 124

(gdb) p ¢

$2 =0

(gdb) continue

Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090

1090 }

(gdb) step

11 print(a, b, c, d)
(gdb) p ¢

$3 = 287.81999999999999

From the gdb output it can be seen that execution paused at line 8 as a breakpoint was hit, and after a cont inue was
issued, it broke again at line 11 where the next breakpoint was hit.

72 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Debugging in parallel regions

The follow example is quite involved, it executes with gdb instrumentation from the outset as per the example above,
but it also uses threads and makes use of the breakpoint functionality. Further, the last iteration of the parallel section
calls the function work, which is actually just a binding to glibc’s free (3) in this case, but could equally be some
involved function that is presenting a segfault for unknown reasons.

from numba import njit, prange, gdb_init, gdb_breakpoint
import ctypes

def get_free():
lib = ctypes.cdll.LoadLibrary('libc.so.6")
free_binding = lib.free
free_binding.argtypes = [ctypes.c_void_p,]
free_binding.restype = None
return free_binding

work = get_free()

@njit (debug=True, parallel=True)
def foo():
gdb_init () # instruct Numba to attach gdb at this location, but not to pause_
—execution
counter = 0
n =9
for i in prange (n):
if i > 3 and i < 8: # iterations 4, 5, 6, 7 will break here
gdb_breakpoint ()

if i == 8: # last iteration segfaults
work (0xBADADD)

counter += 1
return counter

r = foo()
print (r)

In the terminal (... on a line by itself indicates output that is not presented for brevity), note the setting of
NUMBA_NUM_THREADS to 4 to ensure that there are 4 threads running in the parallel section:

$ NUMBA_NUM_THREADS=4 NUMBA_OPT=0 python demo_gdb_threads.py
Attaching to PID: 21462

Attaching to process 21462

[New LWP 21467]

[New LWP 21468]

[New LWP 21469]

[New LWP 21470]

[Thread debugging using libthread_db enabled]

Using host libthread_db library "/1lib64/libthread_db.so.1".
0x00007f59ec31756d in nanosleep () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)
Breakpoint 1 at 0x7£59d631e8f0: file numba/_helperlib.c, line 1090.
Continuing.

[Switching to Thread 0x7£59d1£d1700 (LWP 21470)]

(continues on next page)

1.17. Troubleshooting and tips 73

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

Thread 5 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }
(gdb) info threads
Id Target Id Frame
1 Thread 0x7f£59eca2f740 (LWP 21462) "python" pthread_cond _wait@@GLIBC_2.3.2 ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
2 Thread 0x7£59d37d4700 (LWP 21467) "python" pthread_cond _wait@E@GLIBC_2.3.2 ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
3 Thread 0x7£59d2fd3700 (LWP 21468) "python" pthread_cond_wait@@GLIBC_2.3.2 ()
at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_cond_wait.S:185
4 Thread 0x7£59d27d2700 (LWP 21469) "python" numba_gdb_breakpoint () at numba/_
—helperlib.c:1090
* 5 Thread 0x7£59d1fd1700 (LWP 21470) "python" numba_gdb_breakpoint () at numba/_

—helperlib.c:1090
(gdb) thread apply 2-5 info locals

Thread 2 (Thread 0x7£59d37d4700 (LWP 21467)):
No locals.

Thread 3 (Thread 0x7£59d2£fd3700 (LWP 21468)):
No locals.

Thread 4 (Thread 0x7£59d27d2700 (LWP 21469)):
No locals.

Thread 5 (Thread 0x7£59d1£fd1700 (LWP 21470)):

sched$35 = '\000' <repeats 55 times>

counter__arr = '\000' <repeats 16 times>, "\001\000\000\000\000\000\000\000\b\00O0O\0O0OO\
—000\000\000\000\000\370B]\"hU\O0O0O\OOON\OOL", '\OOO' <repeats 14 times>

counter = 0

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d27d2700 (LWP 21469)]

Thread 4 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d1£fd1700 (LWP 21470)]

Thread 5 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) continue

Continuing.

[Switching to Thread 0x7£59d27d2700 (LWP 21469)]

Thread 4 "python" hit Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

(gdb) continue

Continuing.

Thread 5 "python" received signal SIGSEGV, Segmentation fault.
[Switching to Thread 0x7£59d1£d1700 (LWP 21470)]
__GI libc_free (mem=0xbadadd) at malloc.c:2935

2935 if (chunk_is_mmapped (p)) /+ release mmapped memory. */
(gdb) bt
#0 _ GI libc_free (mem=0xbadadd) at malloc.c:2935

(continues on next page)

74 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

#1 0x00007£59d37ded84 in $3cdynamic$3e::_ numba_parfor_gufunc__ 0x7ffff80a6lae3e3l
—$244 (Array<unsigned long long, 1, C, mutable, aligned>, Array<long long, 1, C,
—mutable, aligned>) () at <string>:24

#2 0x00007£59d17ce326 in __gufunc__._ZN13$3cdynamic$3e45__ numba_parfor_gufunc___
—~0x7ffff80ablae3e3l
—$244E5ArrayIyLilEl1CTmutable7alignedE5ArrayIxLilE1C7mutable7alignedE ()

#3 0x00007£59d37d7320 in thread_worker ()

from <path>/numba/numba/npyufunc/workqueue.cpython-37m-x86_64-1linux—gnu.so

#4 0x00007£59ec626e25 in start_thread (arg=0x7£59d1£fd1700) at pthread_create.c:308
#5 0x00007£f59ec350bad in clone () at ../sysdeps/unix/sysv/linux/x86_64/clone.S:113

In the output it can be seen that there are 4 threads launched and that they all break at the breakpoint, further that
Thread 5 receives a signal SIGSEGV and that back tracing shows that it came from __ GI libc_free with
the invalid address in mem, as expected.

Using the gdb command language

Both the numba.gdb () and numba.gdb_init () functions accept unlimited string arguments which will be
passed directly to gdb as command line arguments when it initializes, this makes it easy to set breakpoints on other
functions and perform repeated debugging tasks without having to manually type them every time. For example,
this code runs with gdb attached and sets a breakpoint on _dgesdd (say for example the arguments passed to the
LAPACK’s double precision divide and conqueror SVD function need debugging).

from numba import njit, gdb
import numpy as np

@njit (debug=True)
def foo(a):
instruct Numba to attach gdb at this location and on launch, switch
breakpoint pending on , and then set a breakpoint on the function
_dgesdd, continue execution, and once the breakpoint is hit, backtrace
gdb ('-ex', 'set breakpoint pending on',
'-ex', 'b dgesdd_',
'—-ex','c',
'—-ex', 'bt")
b=a+ 10
u, s, vh = np.linalg.svd(b)
return s # just return singular values

z = np.arange(70.) .reshape (10, 7)
r = foo(z)
print (r)
In the terminal (. . . on a line by itself indicates output that is not presented for brevity), note that no interaction is

required to break and backtrace:

$ NUMBA_OPT=0 python demo_gdb_args.py
Attaching to PID: 22300
GNU gdb (GDB) Red Hat Enterprise Linux 8.0.1-36.el7

Attaching to process 22300

Reading symbols from <py_env>/bin/python3.7...done.

0x00007£652305a550 in _ nanosleep_nocancel () at ../sysdeps/unix/syscall-template.S:81
81 T_PSEUDO (SYSCALIL_SYMBOL, SYSCALL_NAME, SYSCALL_NARGS)

Breakpoint 1 at 0x7f650d0618f0: file numba/_helperlib.c, line 1090.

(continues on next page)

1.17. Troubleshooting and tips 75

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

Continuing.

Breakpoint 1, numba_gdb_breakpoint () at numba/_helperlib.c:1090
1090 }

Breakpoint 2 at 0x7£65102322e0 (2 locations)

Continuing.

Breakpoint 2, 0x00007£65182be5f0 in mkl_lapack.dgesdd_ ()
from <py_env>/lib/python3.7/site-packages/numpy/core/../../../../libmkl_rt.so
#0 0x00007£65182be5f0 in mkl_lapack.dgesdd_ ()
from <py_env>/lib/python3.7/site-packages/numpy/core/../../../../libmkl_rt.so
#1 0x00007£650d065b71 in numba_raw_rgesdd (kind=kind@entry=100 'd', jobz=<optimized
—out>, jobz@entry=65 'A', m=m@entry=10,

n=n@entry=7, a=al@entry=0x561c6fbb20c0, lda=ldalentry=10, s=0x56lc6facf3al,
—u=0x561c6fb680e0, 1ldu=10, vt=0x561c6£d375c0,

ldvt=7, work=0x7£f£ff4c926c30, lwork=-1, iwork=0x7fff4c926c40, info=0x7ff£f4c926c20)
—at numba/_lapack.c:1277
#2 0x00007£650d06768f in numba_ez_rgesdd (ldvt=7, vt=0x561c6fd375c0, 1ldu=10,
—u=0x561c6fb680e0, s=0x561lc6facf3al, 1lda=10,

a=0x561c6fbb20c0, n=7, m=10, jobz=65 'A', kind=<optimized out>) at numba/_lapack.
—c:1307
#3 numba_ez_gesdd (kind=<optimized out>, jobz=<optimized out>, m=10, n=7,
—a=0x561c6fbb20c0, 1lda=10, s=0x561lc6facf3al,

u=0x561c6fb680e0, 1ldu=10, vt=0x561c6fd375c0, 1ldvt=7) at numba/_lapack.c:1477
#4 0x00007f650a3147a3 in numba::targets::linalg::svd_impl::$3clocalsS$3e::svd_impl
—$243 (Array<double, 2, C, mutable, aligned>, omitted$28defaults$3dl$29) ()

#5 0x00007£650a1c0489 in __main__::fo00$241 (Array<double, 2, C, mutable, aligned>) (),
—at demo_gdb_args.py:15

#6 0x00007£650al1c2110 in cpython::__main__::fo0$241 (Array<double, 2, C, mutable,
—aligned>) ()

#7 0x00007£650cd096a4 in call_cfunc ()
from <path>/numba/numba/_dispatcher.cpython-37m-x86_64—-1linux—-gnu.so

How does the gdb binding work?

For advanced users and debuggers of Numba applications it’s important to know some of the internal implementation
details of the outlined gdb bindings. The numba .gdb () and numba.gdb_init () functions work by injecting
the following into the function’s LLVM IR:

At the call site of the function first inject a call to getpid (3) to get the PID of the executing process and store
this for use later, then inject a fork (3) call:

— In the parent:

Injecta call sleep (3) (hence the pause whilst gdb loads).

+ Inject a call to the numba_gdb_breakpoint function (only numba . gdb () does this).
— In the child:

Inject a call to execl (3) with the arguments numba . config.GDB_BINARY, the attach com-
mand and the PID recorded earlier. Numba has a special gdlb command file that contains instructions
to break on the symbol numba_gdb_breakpoint and then £inish, this is to make sure that the
program stops on the breakpoint but the frame it stops in is the compiled Python frame (or one step
away from, depending on optimisation). This command file is also added to the arguments and finally
and any user specified arguments are added.

76 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

At the call site of a numba.gdb_breakpoint () a call is injected to the special numba_gdb_breakpoint
symbol, which is already registered and instrumented as a place to break and finish immediately.

As a result of this, a e.g. numba.gdb () call will cause a fork in the program, the parent will sleep whilst
the child launches gdb and attaches it to the parent and tells the parent to continue. The launched gdb has the
numba_gdb_breakpoint symbol registered as a breakpoint and when the parent continues and stops sleep-
ing it will immediately call numba_gdb_breakpoint on which the child will break. Additional numba.
gdb_breakpoint () calls create calls to the registered breakpoint hence the program will also break at these
locations.

1.17.9 Debugging CUDA Python code

Using the simulator

CUDA Python code can be run in the Python interpreter using the CUDA Simulator, allowing it to be debugged
with the Python debugger or with print statements. To enable the CUDA simulator, set the environment variable
NUMBA_ENABLE_CUDASIM to 1. For more information on the CUDA Simulator, see the CUDA Simulator docu-
mentation.

Debug Info

By setting the debug argument to cuda. jit to True (@cuda. jit (debug=True)), Numba will emit source
location in the compiled CUDA code. Unlike the CPU target, only filename and line information are available, but no
variable type information is emitted. The information is sufficient to debug memory error with cuda-memcheck.

For example, given the following cuda python code:

import numpy as np
from numba import cuda

@cuda. jit (debug=True)
def foo(arr):
arr[cuda.threadIdx.x] = 1

arr = np.arange (30)
fool[l, 32] (arr) # more threads than array elements

We can use cuda-memcheck to find the memory error:

$ cuda-memcheck python chk_cuda_debug.py

========= CUDA-MEMCHECK

========= Invalid __global___ write of size 8

========= at 0x00000148 in /home/user/chk_cuda_debug.py:6:cudapy::__main__::foo
—$241 (Array<__int64, int=1, C, mutable, aligned>)

by thread (31,0,0) in block (0,0,0)

Address 0x500a600£f8 is out of bounds

========= Invalid __global__ write of size 8

========= at 0x00000148 in /home/user/chk_cuda_debug.py:6:cudapy::_ _main__::foo
—$241 (Array<__int64, int=1, C, mutable, aligned>)

========= by thread (30,0,0) in block (0,0,0)

========= Address 0x500a600f0 is out of bounds

1.17. Troubleshooting and tips 77

http://docs.nvidia.com/cuda/cuda-memcheck/index.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.18 Frequently Asked Questions

1.18.1 Programming

Can | pass a function as an argument to a jitted function?

As of Numba 0.39, you can, so long as the function argument has also been JIT-compiled:

@jit (nopython=True)
def f(g, x):
return g(x) + g(-x)

result = f(jitted_g_function, 1)

However, dispatching with arguments that are functions has extra overhead. If this matters for your application, you
can also use a factory function to capture the function argument in a closure:

def make_f (g):
Note: a new f() 1s created each time make f () is called!
@jit (nopython=True)
def f(x):
return g(x) + g(-x)
return f

f = make_f (jitted_g_function)
result = f£(1)

Improving the dispatch performance of functions in Numba is an ongoing task.

Numba doesn’t seem to care when | modify a global variable

Numba considers global variables as compile-time constants. If you want your jitted function to update itself when
you have modified a global variable’s value, one solution is to recompile it using the recompile () method. This
is a relatively slow operation, though, so you may instead decide to rearchitect your code and turn the global variable
into a function argument.

Can | debug a jitted function?

Calling into pdb or other such high-level facilities is currently not supported from Numba-compiled code. However,
you can temporarily disable compilation by setting the NUMBA_DISABLE_JIT environment variable.

How can | create a Fortran-ordered array?

Numba currently doesn’t support the order argument to most Numpy functions such as numpy . empty () (because
of limitations in the type inference algorithm). You can work around this issue by creating a C-ordered array and then
transposing it. For example:

a = np.empty((3, 5), order='F")
b = np.zeros (some_shape, order='F"')

can be rewritten as:

78 Chapter 1. User Manual

https://docs.python.org/3/library/pdb.html#module-pdb

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

a = np.empty ((5, 3)).T
b = np.zeros(some_shape[::-1]).T

How can | increase integer width?
By default, Numba will generally use machine integer width for integer variables. On a 32-bit machine, you may

sometimes need the magnitude of 64-bit integers instead. You can simply initialize relevant variables as np.int 64
(for example np.int 64 (0) instead of 0). It will propagate to all computations involving those variables.

How can | tell if parallel=True worked?

If the parallel=True transformations failed for a function decorated as such, a warning will be displayed. See
also Diagnostics for information about parallel diagnostics.

1.18.2 Performance

Does Numba inline functions?

Numba gives enough information to LLVM so that functions short enough can be inlined. This only works in nopython
mode.

Does Numba vectorize array computations (SIMD)?

Numba doesn’t implement such optimizations by itself, but it lets LLVM apply them.

Why has my loop not vectorized?

Numba enables the loop-vectorize optimization in LLVM by default. While it is a powerful optimization, not all
loops are applicable. Sometimes, loop-vectorization may fail due to subtle details like memory access pattern. To see
additional diagnostic information from LLVM, add the following lines:

import llvmlite.binding as llvm
llvm.set_option('', '—--debug-only=loop-vectorize')

This tells LLVM to print debug information from the loop-vectorize pass to stderr. Each function entry looks like:

LV: Checking a loop in "<low-level symbol name>" from <function name>
LV: Loop hints: force=? width=0 unroll=0

LV: Vectorization is possible but not beneficial.
LV: Interleaving is not beneficial.

Each function entry is separated by an empty line. The reason for rejecting the vectorization is usually at the end of the
entry. In the example above, LLVM rejected the vectorization because doing so will not speedup the loop. In this case,
it can be due to memory access pattern. For instance, the array being looped over may not be in contiguous layout.

When memory access pattern is non-trivial such that it cannot determine the access memory region, LLVM may reject
with the following message:

LV: Can't vectorize due to memory conflicts

1.18. Frequently Asked Questions 79

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Another common reason is:

LV: Not vectorizing: loop did not meet vectorization requirements.

In this case, vectorization is rejected because the vectorized code may behave differently. This is a case to try turning
on fastmath=True to allow fastmath instructions.

Why are the typed containers slower when used from the interpreter?

The Numba typed containers found in numba . typed e.g. numba.typed.List store their data in an efficient
form for access from JIT compiled code. When these containers are used from the CPython interpreter, the data
involved has to be converted from/to the container format. This process is relatively costly and as a result impacts
performance. In JIT compiled code no such penalty exists and so operations on the containers are much quicker and
often faster than the pure Python equivalent.

Does Numba automatically parallelize code?

It can, in some cases:
» Ufuncs and gufuncs with the target="parallel" option will run on multiple threads.

* The parallel=True option to @jit will attempt to optimize array operations and run them in parallel. It
also adds support for prange () to explicitly parallelize a loop.

You can also manually run computations on multiple threads yourself and use the nogil=True option (see releasing
the GIL). Numba can also target parallel execution on GPU architectures using its CUDA and HSA backends.

Can Numba speed up short-running functions?

Not significantly. New users sometimes expect to JIT-compile such functions:

def f(x, y):
return x + y

and get a significant speedup over the Python interpreter. But there isn’t much Numba can improve here: most of the
time is probably spent in CPython’s function call mechanism, rather than the function itself. As a rule of thumb, if a
function takes less than 10 ps to execute: leave it.

The exception is that you should JIT-compile that function if it is called from another jitted function.
There is a delay when JIT-compiling a complicated function, how can | improve it?

Try to pass cache=True to the @ jit decorator. It will keep the compiled version on disk for later use.

A more radical alternative is ahead-of-time compilation.

80 Chapter 1. User Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.18.3 GPU Programming

How do | work around the CUDA intialized before forking error?

On Linux, the multiprocessing module in the Python standard library defaults to using the fork method for
creating new processes. Because of the way process forking duplicates state between the parent and child processes,
CUDA will not work correctly in the child process if the CUDA runtime was initialized prior to the fork. Numba
detects this and raises a CudaDriverError with the message CUDA initialized before forking.

One approach to avoid this error is to make all calls to numba . cuda functions inside the child processes or after
the process pool is created. However, this is not always possible, as you might want to query the number of available
GPUs before starting the process pool. In Python 3, you can change the process start method, as described in the
multiprocessing documentation. Switching from fork to spawn or forkserver will avoid the CUDA initalization
issue, although the child processes will not inherit any global variables from their parent.

1.18.4 Integration with other utilities

Can | “freeze” an application which uses Numba?

If you’re using PylInstaller or a similar utility to freeze an application, you may encounter issues with llvmlite. llvmlite
needs a non-Python DLL for its working, but it won’t be automatically detected by freezing utilities. You have to
inform the freezing utility of the DLL’s location: it will usually be named 11vmlite/binding/libllvmlite.
soorllvmlite/binding/llvmlite.dl1l, depending on your system.

I get errors when running a script twice under Spyder

When you run a script in a console under Spyder, Spyder first tries to reload existing modules. This doesn’t work
well with Numba, and can produce errors like TypeError: No matching definition for argument
type (s).

There is a fix in the Spyder preferences. Open the “Preferences” window, select “Console”, then “Advanced Settings”,
click the “Set UMR excluded modules” button, and add numba inside the text box that pops up.

To see the setting take effect, be sure to restart the IPython console or kernel.

Why does Numba complain about the current locale?

If you get an error message such as the following:

RuntimeError: Failed at nopython (nopython mode backend)
LLVM will produce incorrect floating-point code in the current locale

it means you have hit a LLVM bug which causes incorrect handling of floating-point constants. This is known to
happen with certain third-party libraries such as the Qt backend to matplotlib.

To work around the bug, you need to force back the locale to its default value, for example:

import locale
locale.setlocale(locale.LC_NUMERIC, 'C")

1.18. Frequently Asked Questions 81

https://docs.python.org/3.6/library/multiprocessing.html#contexts-and-start-methods

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

How do | get Numba development builds?

Pre-release versions of Numba can be installed with conda:

$ conda install -c numba/label/dev numba

1.18.5 Miscellaneous

Where does the project name “Numba” come from?

“Numba” is a combination of “NumPy” and “Mamba”. Mambas are some of the fastest snakes in the world, and
Numba makes your Python code fast.

How do I reference/cite/acknowledge Numba in other work?

For academic use, the best option is to cite our ACM Proceedings: Numba: a LLVM-based Python JIT compiler. You
can also find the sources on github, including a pre-print pdf, in case you don’t have access to the ACM site but would
like to read the paper.

Other related papers

A paper describing ParallelAccelerator technology, that is activated when the parallel=True jit option is used,
can be found here.

How do | write a minimal working reproducer for a problem with Numba?

A minimal working reproducer for Numba should include:
1. The source code of the function(s) that reproduce the problem.

2. Some example data and a demonstration of calling the reproducing code with that data. As Numba compiles
based on type information, unless your problem is numerical, it’s fine to just provide dummy data of the right
type, e.g. use numpy . ones of the correct dt ype/size/shape for arrays.

3. Ideally put 1. and 2. into a script with all the correct imports. Make sure your script actually executes and
reproduces the problem before submitting it! The target is to make it so that the script can just be copied directly
from the issue tracker and run by someone else such that they can see the same problem as you are having.

Having made a reproducer, now remove every part of the code that does not contribute directly to reproducing the
problem to create a “minimal” reproducer. This means removing imports that aren’t used, removing variables that
aren’t used or have no effect, removing lines of code which have no effect, reducing the complexity of expressions,
and shrinking input data to the minimal amount required to trigger the problem.

Doing the above really helps out the Numba issue triage process and will enable a faster response to your problem!

Suggested further reading on writing minimal working reproducers.

82 Chapter 1. User Manual

http://dl.acm.org/citation.cfm?id=2833162&dl=ACM&coll=DL
https://github.com/numba/Numba-SC15-Paper
https://github.com/numba/Numba-SC15-Paper/raw/master/numba_sc15.pdf
http://drops.dagstuhl.de/opus/volltexte/2017/7269/pdf/LIPIcs-ECOOP-2017-4.pdf
https://github.com/numba/numba/issues
http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports

20

21

22

23

24

25

26

27

28

29

40

41

42

43

44

45

46

47

48

49

50

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

1.19 Examples

1.19.1 Mandelbrot

Listing 1: from test_mandelbrot of numba/tests/
doc_examples/test_examples.py

from timeit import default_timer as timer
try:
from matplotlib.pylab import imshow, show
have_mpl = True
except ImportError:
have_mpl = False
import numpy as np
from numba import jit

@jit (nopython=True)

def mandel (x, y, max_iters):
mrmmn
Given the real and imaginary parts of a complex number,
determine if it is a candidate for membership in the Mandelbrot
set given a fixed number of iterations.

mmn

i=20

c = complex(x,V)

z = 0.07

for i in range(max_iters):
Z =z = zZ + C

if (z.real * z.real + z.imag * z.imag) >= 4:
return i

return 255

@jit (nopython=True)

def create_fractal (min_x, max_x, min_y, max_y, image, iters):
height = image.shape[0]
width = image.shape[l]

pixel_size_x = (max_x — min_x) / width
pixel_size_y = (max_y - min_y) / height
for x in range (width) :

real = min_x + x * pixel_size_x

for y in range (height):
imag = min_y + y x pixel_size_y
color = mandel (real, imag, iters)
image[y, x] = color

return image

image = np.zeros ((500 = 2, 750 % 2), dtype=np.uint8)
s = timer ()
create_fractal(-2.0, 1.0, -1.0, 1.0, image, 20)
e = timer ()
print (e — s)
if have_mpl:
imshow (image)
show ()

1.19. Examples 83

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

1.19.2 Moving average

Listing 2: from test_moving_average of numba/tests/
doc_examples/test_examples.py

import numpy as np

from numba import guvectorize

@guvectorize (['void(float64[:], intp[:], float6d[:])'],
"(n), ()—>(n)")
def move_mean (a, window_arr, out):
window_width = window_arr[0]
asum = 0.0
count = 0

for i in range (window_width) :
asum += ali]
count += 1
out [i] = asum / count

for i in range (window_width, len(a)):
asum += al[i] - ali - window_width]
out [i] = asum / count

arr = np.arange (20, dtype=np.float64) .reshape (2, 10)
print (arr)
print (move_mean (arr, 3))

1.19.3 Multi-threading

The code below showcases the potential performance improvement when using the nogil feature. For example, on a
4-core machine, the following results were printed:

numpy (1 thread) 145 ms
numba (1 thread) 128 ms
numba (4 threads) 35 ms

Note: If preferred it’s possible to use the standard concurrent.futures module rather than spawn threads and dispatch
tasks by hand.

Listing 3: from test_no_gil of numba/tests/
doc_examples/test_examples.py

import math
import threading
from timeit import repeat

import numpy as np
from numba import jit

nthreads = 4
size = 10x%6

def func_np(a, b):

(continues on next page)

84 Chapter 1. User Manual

https://docs.python.org/3/library/concurrent.futures.html

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

58

59

60

61

62

63

64

65

66

67

68

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.¢gg

(continued from previous page)

mon

Control function using Numpy.
mmwn

return np.exp(2.1 » a + 3.2 % D)

@jit ('void(double[:], double[:], double[:])', nopython=True,

def

def

def

def

nogil=True)
inner_func_nb (result, a, b):

mmn

Function under test.
for i in range(len(result)):
result[i] = math.exp (2.1 % a[i] + 3.2 = b[i])

timefunc (correct, s, func, xargs, *xkwargs):

mon

Benchmark xfuncx* and print out its runtime.
mmwn
print (s.ljust (20), end=" ")
Make sure the function is compiled before the benchmark is
started
res = func(*xargs, xxkwargs)
if correct is not None:
assert np.allclose(res, correct), (res, correct)
time it
print ('{:>5.0f}) ms'.format (min (repeat (
lambda: func(xargs, *xkwargs), number=5, repeat=2)) % 1000))
return res

make_singlethread (inner_func) :

mmon

Run the given function inside a single thread.
mmwn
def func(xargs):
length = len(args[0])
result = np.empty(length, dtype=np.float64)
inner_func (result, <*args)
return result
return func

make_multithread (inner_func, numthreads) :
mrmamn
Run the given function inside #numthreads* threads, splitting
its arguments into equal-sized chunks.
mrmmn
def func_mt (xargs):
length = len(args[0])
result = np.empty(length, dtype=np.float64)

args = (result,) + args

chunklen = (length + numthreads - 1) // numthreads

Create argument tuples for each input chunk

chunks = [[arg[i % chunklen: (i + 1) * chunklen] for arg in

args] for i in range (numthreads)]

Spawn one thread per chunk

threads = [threading.Thread(target=inner_func, args=chunk)
for chunk in chunks]

for thread in threads:

(continues on next page)

1.19. Examples 85

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

thread.start ()
for thread in threads:
thread. join ()
return result
return func_mt

func_nb = make_singlethread (inner_func_nb)
func_nb_mt = make_multithread(inner_func_nb, nthreads)

a = np.random.rand(size)

b = np.random.rand(size)

correct = timefunc (None, "numpy (1 thread)", func_np, a, b)

timefunc (correct, "numba (1 thread)", func_nb, a, b)

timefunc (correct, "numba (threads)" % nthreads, func_nb_mt, a, b)

1.20 Talks and Tutorials

Note: This is a selection of talks and tutorials that have been given by members of the Numba team as well as Numba
users. If you know of a Numba-related talk that should be included on this list, please open an issue.

1.20.1 Talks on Numba

* AnacondaCON 2018 - Accelerating Scientific Workloads with Numba - Siu Kwan Lam (Video)
e DIANA-HEP Meeting, 23 April 2018 - Overview of Numba - Stan Seibert

1.20.2 Talks on Applications of Numba
* GPU Technology Conference 2016 - Accelerating a Spectral Algorithm for Plasma Physics with Python/Numba
on GPU - Manuel Kirchen & Rémi Lehe (Slides)
e DIANA-HEP Meeting, 23 April 2018 - Use of Numba in XENONNT - Chris Tunnell
* DIANA-HEP Meeting, 23 April 2018 - Extending Numba for HEP data types - Jim Pivarski

e STAC Summit, Nov 1 2017 - Scaling High-Performance Python with Minimal Effort - Ehsan Totoni (Video,
Slides)

¢ SciPy 2018 - UMAP: Uniform Manifold Approximation and Projection for Dimensional Reduction - Leland
Mclnnes (Video, Github)

» PyData Berlin 2018 - Extending Pandas using Apache Arrow and Numba - Uwe L. Korn (Video, Blog)

* FOSDEM 2019 - Extending Numba - Joris Geessels (Video, Slides & Examples)

e PyCon India 2019 - Real World Numba: Taking the Path of Least Resistance - Ankit Mahato (Video)

* SciPy 2019 - How to Accelerate an Existing Codebase with Numba - Siu Kwan Lam & Stanley Seibert (Video)
* SciPy 2019 - Real World Numba: Creating a Skeleton Analysis Library - Juan Nunez-Iglesias (Video)

* SciPy 2019 - Fast Gradient Boosting Decision Trees with PyGBM and Numba - Nicholas Hug (Video)

86 Chapter 1. User Manual

https://github.com/numba/numba/issues
https://www.youtube.com/watch?v=6oXedk2tGfk
https://indico.cern.ch/event/709711/
http://on-demand.gputechconf.com/gtc/2016/presentation/s6353-manuel-kirchen-spectral-algorithm-plasma-physics.pdf
https://indico.cern.ch/event/709711/
https://indico.cern.ch/event/709711/
https://stacresearch.com/STAC-Summit-1-Nov-2017-Intel-Totoni
https://stacresearch.com/system/files/resource/files/STAC-Summit-1-Nov-2017-Intel-Totoni.pdf
https://www.youtube.com/watch?v=nq6iPZVUxZU
https://github.com/lmcinnes/umap
https://www.youtube.com/watch?v=tvmX8YAFK80
https://uwekorn.com/2018/08/03/use-numba-to-work-with-apache-arrow-in-pure-python.html
https://fosdem.org/2019/schedule/event/python_extending_numba/
https://www.youtube.com/watch?v=rhbegsr8stc
https://www.youtube.com/watch?v=-4tD8kNHdXs
https://www.youtube.com/watch?v=0pUPNMglnaE
https://www.youtube.com/watch?v=cLpIh8Aiy2w

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

* PyCon Sweden 2020 - Accelerating Scientific Computing using Numba - Ankit Mahato (Video)

1.20.3 Tutorials

* SciPy 2017 - Numba: Tell those C++ Bullies to Get Lost - Gil Forsyth & Lorena Barba (Video, Notebooks)
¢ GPU Technology Conference 2018 - GPU Computing in Python with Numba - Stan Seibert (Notebooks)
» PyData Amsterdam 2019 - Create CUDA kernels from Python using Numba and CuPy - Valentin Haenel (Video)

1.20. Talks and Tutorials 87

https://www.youtube.com/watch?v=d_21Q0UoWrQ
https://www.youtube.com/watch?v=1AwG0T4gaO0
https://github.com/gforsyth/numba_tutorial_scipy2017
https://github.com/ContinuumIO/gtc2018-numba
https://www.youtube.com/watch?v=CQDsT81GyS8

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

88

Chapter 1. User Manual

CHAPTER
TWO

REFERENCE MANUAL

2.1 Types and signatures

2.1.1 Rationale
As an optimizing compiler, Numba needs to decide on the type of each variable to generate efficient machine code.
Python’s standard types are not precise enough for that, so we had to develop our own fine-grained type system.

You will encounter Numba types mainly when trying to inspect the results of Numba’s type inference, for debugging
or educational purposes. However, you need to use types explicitly if compiling code ahead-of-time.

2.1.2 Signatures

A signature specifies the type of a function. Exactly which kind of signature is allowed depends on the context (AOT
or JIT compilation), but signatures always involve some representation of Numba types to specify the concrete types
for the function’s arguments and, if required, the function’s return type.

An example function signature would be the string "£8 (14, 1i4)" (or the equivalent "float64 (int32,
int32) ") which specifies a function taking two 32-bit integers and returning a double-precision float.

2.1.3 Basic types
The most basic types can be expressed through simple expressions. The symbols below refer to attributes of the main

numba module (so if you read “boolean”, it means that symbol can be accessed as numba .boolean). Many types
are available both as a canonical name and a shorthand alias, following Numpy’s conventions.

Numbers

The following table contains the elementary numeric types currently defined by Numba and their aliases.

89

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Type name(s) | Shorthand | Comments

boolean bl represented as a byte

uint8, byte ul 8-bit unsigned byte

uint16 u2 16-bit unsigned integer

uint32 u4 32-bit unsigned integer

uint64 ud 64-bit unsigned integer

int8, char il 8-bit signed byte

intl6 i2 16-bit signed integer

int32 4 32-bit signed integer

int64 i8 64-bit signed integer

intc - C int-sized integer

uintc - C int-sized unsigned integer

intp - pointer-sized integer

uintp - pointer-sized unsigned integer

float32 f4 single-precision floating-point number
float64, double | f8 double-precision floating-point number
complex64 c8 single-precision complex number
complex128 cl6 double-precision complex number

Arrays

The easy way to declare array types is to subscript an elementary type according to the number of dimensions. For

example a 1-dimension single-precision array:

>>> numba.float32[:]
array (float32, 1d, A)

or a 3-dimension array of the same underlying type:

>>> numba.float32[:, :, :]
array (float32, 3d, A)

This syntax defines array types with no particular layout (producing code that accepts both non-contiguous and con-

tiguous arrays), but you can specify a particular contiguity by using the :

of the index specification:

: 1 index either at the beginning or the end

>>> numba.float32[::1]

array (float32, 1d, C)

>>> numba.float32[:, :, ::1]
array (float32, 3d, C)

>>> numba.float32[::1, :, :]
array (float32, 3d, F)

90

Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Functions

Warning: The feature of considering functions as first-class type objects is under development.

Functions are often considered as certain transformations of input arguments to output values. Within Numba J/7" com-
piled functions, the functions can also be considered as objects, that is, functions can be passed around as arguments
or return values, or used as items in sequences, in addition to being callable.

First-class function support is enabled for all Numba JI/T compiled functions and Numba cfunc compiled functions
except when:

* using a non-CPU compiler,
¢ the compiled function is a Python generator,
* the compiled function has Omitted arguments,
* or the compiled function returns Optional value.
To disable first-class function support, use no_cfunc_wrapper=True decorator option.

For instance, consider an example where the Numba JI7 compiled function applies user-specified functions as a
composition to an input argument:

>>> @numba.njit
def composition (funcs, x):

r = x
for £ in funcs[::-11:
r = f(r)

return r

>>> @numba.cfunc ("double (double)")
def a(x):
return x + 1.0

>>> @numba.njit
def b(x):
return x * x

>>> composition((a, b), 0.5), 0.5 xx 2 + 1

(1.25, 1.25)

>>> composition((b, a, b, b, a), 0.5), b(a(b(b(a(0.5)))))
(36.75390625, 36.75390625)

Here, cfunc compiled functions a and b are considered as first-class function objects because these are passed in
to the Numba JIT compiled function composition as arguments, that is, the composition is JIT compiled
independently from its argument function objects (that are collected in the input argument funcs).

Currently, first-class function objects can be Numba cfunc compiled functions, JI/7 compiled functions, and objects
that implement the Wrapper Address Protocol (WAP, see below) with the following restrictions:

Context JIT compiled | cfunc compiled | WAP objects
Can be used as arguments | yes yes yes
Can be called yes yes yes
Can be used as items yes* yes yes
Can be returned yes yes yes
Namespace scoping yes yes yes
Automatic overload yes no no

2.1. Types and signatures 91

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* at least one of the items in a sequence of first-class function objects must have a precise type.

Wrapper Address Protocol - WAP

Wrapper Address Protocol provides an API for making any Python object a first-class function for Numba JI7 com-
piled functions. This assumes that the Python object represents a compiled function that can be called via its memory
address (function pointer value) from Numba JIT compiled functions. The so-called WAP objects must define the
following two methods:

__wrapper_address__ (self) — int
Return the memory address of a first-class function. This method is used when a Numba JI7T compiled function
tries to call the given WAP instance.

signature (self) — numba.typing.Signature
Return the signature of the given first-class function. This method is used when passing in the given WAP
instance to a Numba J/7 compiled function.

In addition, the WAP object may implement the __call__ method. This is necessary when calling WAP objects
from Numba JIT compiled functions in object mode.

As an example, let us call the standard math library function cos within a Numba JI7 compiled function. The memory
address of cos can be established after loading the math library and using the ct ypes package:

>>> import numba, ctypes, ctypes.util, math
>>> libm = ctypes.cdll.LoadLibrary (ctypes.util.find_library('m'"))
>>> class LibMCos (numba.types.WrapperAddressProtocol) :
def _ wrapper_address__ (self):
return ctypes.cast (libm.cos, ctypes.c_voidp) .value
def signature(self):
return numba.float64 (numba.float64)

>>> @numba.njit
def foo(f, x):
return f (x)

>>> foo (LibMCos (), 0.0)

1.0

>>> foo (LibMCos (), 0.5), math.cos (0.5)
(0.8775825618903728, 0.8775825618903728)

Miscellaneous Types

There are some non-numerical types that do not fit into the other categories.

Type name(s) | Comments
pyobject generic Python object
voidptr raw pointer, no operations can be performed on it

92 Chapter 2. Reference Manual

https://docs.python.org/3/library/functions.html#int

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

2.1.4 Advanced types

For more advanced declarations, you have to explicitly call helper functions or classes provided by Numba.

Warning: The APIs documented here are not guaranteed to be stable. Unless necessary, it is recommended to let
Numba infer argument types by using the signature-less variant of @jit.

Inference

numba . typeof (value)
Create a Numba type accurately describing the given Python value. ValueError is raised if the value isn’t
supported in nopython mode.

>>> numba.typeof (np.empty (3))
array (float64, 1d, C)

>>> numba.typeof ((1, 2.0))
(inte64, floato64)

>>> numba.typeof ([0])
reflected list (int64)

Numpy scalars

Instead of using t ypeof (), non-trivial scalars such as structured types can also be constructed programmatically.

numba . from_dtype (dtype)
Create a Numba type corresponding to the given Numpy dtype:

>>> struct_dtype = np.dtype([('row', np.float64), ('col', np.float64)])
>>> ty = numba.from_dtype (struct_dtype)

>>> ty

Record ([('row', '<£f8'), ('col', '<f8")])

>>> tyl[:, :]

unaligned array (Record([('row', '<f8'), ('col', '<f8")1]), 2d, A)

class numba.types.NPDatetime (unit)
Create a Numba type for Numpy datetimes of the given uniz. unit should be a string amongst the codes recog-
nized by Numpy (e.g. Y, M, D, etc.).

class numba.types.NPTimedelta (unit)
Create a Numba type for Numpy timedeltas of the given unit. unit should be a string amongst the codes recog-
nized by Numpy (e.g. Y, M, D, etc.).

See also:

Numpy datetime units.

2.1. Types and signatures 93

http://docs.scipy.org/doc/numpy/reference/arrays.datetime.html#datetime-units

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Arrays

class numba.types.Array (dtype, ndim, layout)
Create an array type. dtype should be a Numba type. ndim is the number of dimensions of the array (a positive
integer). layout is a string giving the layout of the array: A means any layout, C means C-contiguous and F
means Fortran-contiguous.

Optional types

class numba.optional (fyp)
Create an optional type based on the underlying Numba type typ. The optional type will allow any value of
either typ or None.

>>> @jit ((optional (intp),))
def f(x):
return x is not None
>>> £(0)
True

>>> f (None)
False

Type annotations

numba.extending.as_numba_type (py_fype)
Create a Numba type corresponding to the given Python fype annotation. TypingError is raised if the type
annotation can’t be mapped to a Numba type. This function is meant to be used at statically compile time to
evaluate Python type annotations. For runtime checking of Python objects see t ypeof above.

For any numba type, as_numba_type (nb_type) == nb_type.

>>> numba.extending.as_numba_type (int)

into4

>>> import typing # the Python library, not the Numba one
>>> numba.extending.as_numba_type (typing.List[float])
ListType[float64]

>>> numba.extending.as_numba_type (numba.int32)

int32

as_numba_type is automatically updated to include any @jitclass.

>>> @jitclass
class Counter:
x: int

def _ init__ (self):
self.x = 0

def inc(self):
old_val = self.x
self.x += 1
return old_val

>>> numba.extending.as_numba_type (Counter)
instance.jitclass.Counter#1lbad4278<x:int64>

94 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Currently as_numba_type is only used to infer fields for @ jitclass.

2.2 Just-in-Time compilation

2.2.1 JIT functions

@numba . jit (signature=None, nopython==False, nogil=False, cache=False, forceobj=False, parallel=False,

error_model="python’, fastmath=False, locals={}, boundscheck=False)
Compile the decorated function on-the-fly to produce efficient machine code. All parameters are optional.

If present, the signature is either a single signature or a list of signatures representing the expected Types and
signatures of function arguments and return values. Each signature can be given in several forms:

* A tuple of Types and signatures arguments (for example (numba.int32, numba.double)) repre-
senting the types of the function’s arguments; Numba will then infer an appropriate return type from the
arguments.

* A call signature using Types and signatures, specifying both return type and argument types. This can be
given in intuitive form (for example numba . void (numba.int32, numba.double)).

* A string representation of one of the above, for example "void (int32, double)". All type names
used in the string are assumed to be defined in the numba . t ype s module.

nopython and nogil are boolean flags. locals is a mapping of local variable names to Types and signatures.
This decorator has several modes of operation:

* If one or more signatures are given in signature, a specialization is compiled for each of them. Calling
the decorated function will then try to choose the best matching signature, and raise a TypeError if
no appropriate conversion is available for the function arguments. If converting succeeds, the compiled
machine code is executed with the converted arguments and the return value is converted back according
to the signature.

* If no signature is given, the decorated function implements lazy compilation. Each call to the decorated
function will try to re-use an existing specialization if it exists (for example, a call with two integer ar-
guments may re-use a specialization for argument types (numba.int64, numba.int64)). If no
suitable specialization exists, a new specialization is compiled on-the-fly, stored for later use, and executed
with the converted arguments.

If true, nopython forces the function to be compiled in nopython mode. If not possible, compilation will raise an
error.

If true, forceobj forces the function to be compiled in object mode. Since object mode is slower than nopython
mode, this is mostly useful for testing purposes.

If true, nogil tries to release the global interpreter lock inside the compiled function. The GIL will only be
released if Numba can compile the function in nopython mode, otherwise a compilation warning will be printed.

If true, cache enables a file-based cache to shorten compilation times when the function was already compiled in
a previous invocation. The cache is maintained in the ___pycache___ subdirectory of the directory containing
the source file; if the current user is not allowed to write to it, though, it falls back to a platform-specific user-
wide cache directory (such as $HOME/ . cache/numba on Unix platforms).

If true, parallel enables the automatic parallelization of a number of common Numpy constructs as well as the
fusion of adjacent parallel operations to maximize cache locality.

The error_model option controls the divide-by-zero behavior. Setting it to ‘python’ causes divide-by-zero to
raise exception like CPython. Setting it to ‘numpy’ causes divide-by-zero to set the result to +/-inf or nan.

2.2. Just-in-Time compilation 95

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/glossary.html#term-global-interpreter-lock

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Not all functions can be cached, since some functionality cannot be always persisted to disk. When a function
cannot be cached, a warning is emitted.

If true, fastmath enables the use of otherwise unsafe floating point transforms as described in the LLVM docu-
mentation. Further, if Intel SVML is installed faster but less accurate versions of some math intrinsics are used
(answers to within 4 ULP).

If True, boundscheck enables bounds checking for array indices. Out of bounds accesses will raise Index-
Error. The default is to not do bounds checking. If bounds checking is disabled, out of bounds accesses can
produce garbage results or segfaults. However, enabling bounds checking will slow down typical functions,
so it is recommended to only use this flag for debugging. You can also set the NUMBA_BOUNDSCHECK
environment variable to O or 1 to globally override this flag.

The locals dictionary may be used to force the Types and signatures of particular local variables, for example if
you want to force the use of single precision floats at some point. In general, we recommend you let Numba’s
compiler infer the types of local variables by itself.

Here is an example with two signatures:

@jit (["int32 (int32)", "float32(float32)"], nopython=True)
def f (x):

Not putting any parentheses after the decorator is equivalent to calling the decorator without any arguments, i.e.:

@jit
def f(x):

is equivalent to:

@jit ()
def f(x):

The decorator returns a Dispatcher object.

Note: If no signature is given, compilation errors will be raised when the actual compilation occurs, i.e. when
the function is first called with some given argument types.

Note: Compilation can be influenced by some dedicated Environment variables.

2.2.2 Generated JIT functions

@numba .generated_jit (nopython=False, nogil=False, cache=False, forceobj=False, locals={})
Like the jit () decorator, but calls the decorated function at compile-time, passing the types of the function’s
arguments. The decorated function must return a callable which will be compiled as the function’s implementa-
tion for those types, allowing flexible kinds of specialization.

The generated_7jit () decorator returns a Dispatcher object.

96 Chapter 2. Reference Manual

https://llvm.org/docs/LangRef.html#fast-math-flags
https://llvm.org/docs/LangRef.html#fast-math-flags

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

2.2.3 Dispatcher objects

class Dispatcher
The class of objects created by calling jit () or generated_jit (). You shouldn’t try to create such an
object in any other way. Calling a Dispatcher object calls the compiled specialization for the arguments with
which it is called, letting it act as an accelerated replacement for the Python function which was compiled.

In addition, Dispatcher objects have the following methods and attributes:

py_func
The pure Python function which was compiled.

inspect_types (file=None, pretty=False)
Print out a listing of the function source code annotated line-by-line with the corresponding Numba IR, and
the inferred types of the various variables. If file is specified, printing is done to that file object, otherwise
to sys.stdout. If pretty is set to True then colored ANSI will be produced in a terminal and HTML in a
notebook.

See also:
Numba architecture

inspect_11lvm (signature=None)
Return a dictionary keying compiled function signatures to the human readable LLVM IR generated for
the function. If the signature keyword is specified a string corresponding to that individual signature is
returned.

inspect_asm (signature=None)
Return a dictionary keying compiled function signatures to the human-readable native assembly code for
the function. If the signature keyword is specified a string corresponding to that individual signature is
returned.

inspect_cfqg (signature=None, show_wrapped)
Return a dictionary keying compiled function signatures to the control-flow graph objects for the function.
If the signature keyword is specified a string corresponding to that individual signature is returned.

The control-flow graph objects can be stringified (str or repr) to get the textual representation of the
graph in DOT format. Or, use its .display (filename=None, view=False) method to plot the
graph. The filename option can be set to a specific path for the rendered output to write to. If view option is
True, the plot is opened by the system default application for the image format (PDF). In IPython notebook,
the returned object can be plot inlined.

Usage:

@jit
def foo():

opens the CFG in system default application
foo.inspect_cfg(foo.signatures[0]) .display (view=True)

inspect_disasm_cfgqg (signature=None)
Return a dictionary keying compiled function signatures to the control-flow graph of the disassembly of the
underlying compiled ELF object. If the signature keyword is specified a control-flow graph corresponding
to that individual signature is returned. This function is execution environment aware and will produce
SVG output in Jupyter notebooks and ASCII in terminals.

Example:

2.2. Just-in-Time compilation 97

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

@njit
def foo(x):
if x < 3:

return x + 1
return x + 2

foo (10)

print (foo.inspect_disasm_cfg(signature=foo.signatures[0]))

int64_t

; arg int64_t argl @ rdi
; arg int64_t arg3 @ rdx
;2

cmp rdx, 2

Jjg 0x800004f

Gives:
[0x08000040]> # method.__main__ .foo_241_ long_long (int64_t argl,
—arg3);
0x8000040
; arg3 ; [02] -r-x section size 279 named .text
;—— section..text:
;—— .text:
;—— __main__::fo0$%$241 (long long) :
;-— rip:
25: method.__main__.foo_241_long_long (int64_t argl, int64_t arg3);

ft
L |
| |

0x8000046 0x800004f

; arg3 ; arg3
inc rdx add rdx, 2

i arg3 ; arg3
mov gword [rdi], rdx mov gword [rdi], rdx
XOr eax, eax XOor eax, eax
ret ret

|

recompile ()

Recompile all existing signatures. This can be useful for example if a global or closure variable was frozen
by your function and its value in Python has changed. Since compiling isn’t cheap, this is mainly for

testing and interactive use.

parallel_diagnostics (signature=None, level=1)

Print parallel diagnostic information for the given signature. If no signature is present it is printed for all
known signatures. level is used to adjust the verbosity, level=1 (default) is minimum verbosity, levels

2, 3, and 4 provide increasing levels of verbosity.

get_metadata (signature=None)

Obtain the compilation metadata for a given signature. This is useful for developers of Numba and Numba

extensions.

98

Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

2.2.4 Vectorized functions (ufuncs and DUFuncs)

@numba.vectorize (*, signatures=[], identity=None, nopython=True, target="cpu', forceobj=False,

cache=False, locals={})
Compile the decorated function and wrap it either as a Numpy ufunc or a Numba DUFunc. The optional

nopython, forceobj and locals arguments have the same meaning as in numba. jit ().

signatures is an optional list of signatures expressed in the same form as in the numba. jit () signature
argument. If signatures is non-empty, then the decorator will compile the user Python function into a Numpy
ufunc. If no signatures are given, then the decorator will wrap the user Python function in a DUFunc instance,
which will compile the user function at call time whenever Numpy can not find a matching loop for the input
arguments. signatures is required if target is "parallel".

identity is the identity (or unit) value of the function being implemented. Possible values are 0, 1, None, and the
string "reorderable". The default is None. Both None and "reorderable" mean the function has no
identity value; "reorderable" additionally specifies that reductions along multiple axes can be reordered.

If there are several signatures, they must be ordered from the more specific to the least specific. Otherwise,
Numpy'’s type-based dispatching may not work as expected. For example, the following is wrong:

@vectorize (["float64 (float6d)", "float32(float32)"])
def f(x):

as running it over a single-precision array will choose the f1oat 64 version of the compiled function, leading
to much less efficient execution. The correct invocation is:

@vectorize (["float32 (float32)", "float6d (floated)"])
def f(x):

LEINT3

target is a string for backend target; Available values are “cpu”, “parallel”, and “cuda”. To use a multithreaded
version, change the target to “parallel” (which requires signatures to be specified):

@Qvectorize (["float64 (float6d)", "float32(float32)"], target='parallel')
def f(x):

For the CUDA target, use “cuda”:

@vectorize (["float64 (float64)", "float32(float32)"], target='cuda')
def f(x):

The compiled function can be cached to reduce future compilation time. It is enabled by setting cache to True.
Only the “cpu” and “parallel” targets support caching.

@numba.guvectorize (signatures, layout, *, identity=None, nopython=True, target='cpu’,
forceobj=False, cache=False, locals={})
Generalized version of numba. vectorize (). While numba. vectorize () will produce a simple ufunc
whose core functionality (the function you are decorating) operates on scalar operands and returns a scalar value,
numba.guvectorize () allows you to create a Numpy ufunc whose core function takes array arguments of
various dimensions.

The additional argument layout is a string specifying, in symbolic form, the dimensionality and size relationship
of the argument types and return types. For example, a matrix multiplication will have a layout string of " (m,
n), (n,p)—>(m, p) ". Its definition might be (function body omitted):

Qguvectorize (["void(float64([:,:], float64d[:,:], float6d[:,:])"],
"(m,n), (n,p)->(m,p)")
def f(a, b, result):
""rnEpill-in *result+ matrix such as result := a * b"""

2.2. Just-in-Time compilation 99

http://docs.scipy.org/doc/numpy/reference/ufuncs.html
http://docs.scipy.org/doc/numpy/reference/ufuncs.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

If one of the arguments should be a scalar, the corresponding layout specification is () and the argument
will really be given to you as a zero-dimension array (you have to dereference it to get the scalar value). For
example, a one-dimension moving average with a parameterable window width may have a layout string of
"(n), O)—>(m)".

Note that any output will be given to you preallocated as an additional function argument: your code has to fill
it with the appropriate values for the function you are implementing.

If your function doesn’t take an output array, you should omit the “arrow” in the layout string (e.g. " (n),
(n) ™). When doing this, it is important to be aware that changes to the input arrays cannot always be relied on
to be visible outside the execution of the ufunc, as NumPy may pass in temporary arrays as inputs (for example,
if a cast is required).

See also:

Specification of the layout string as supported by Numpy. Note that Numpy uses the term “signature”, which
we unfortunately use for something else.

The compiled function can be cached to reduce future compilation time. It is enabled by setting cache to True.
Only the “cpu” and “parallel” targets support caching.

class numba.DUFunc

The class of objects created by calling numba . vectorize () with no signatures.

DUFunc instances should behave similarly to Numpy ufunc objects with one important difference: call-time
loop generation. When calling a ufunc, Numpy looks at the existing loops registered for that ufunc, and will
raise a TypeError if it cannot find a loop that it cannot safely cast the inputs to suit. When calling a DUFunc,
Numba delegates the call to Numpy. If the Numpy ufunc call fails, then Numba attempts to build a new loop for
the given input types, and calls the ufunc again. If this second call attempt fails or a compilation error occurs,
then DUFunc passes along the exception to the caller.

See also:

The “Dynamic universal functions” section in the user’s guide demonstrates the call-time behavior of DUFunc,
and discusses the impact of call order on how Numba generates the underlying ufunc.

ufunc
The actual Numpy ufunc object being built by the DUFunc instance. Note that the DUF unc object main-
tains several important data structures required for proper ufunc functionality (specifically the dynamically
compiled loops). Users should not pass the ufunc value around without ensuring the underlying DUFunc
will not be garbage collected.

nin
The number of DUFunc (ufunc) inputs. See ufunc.nin.

nout
The number of DUFunc outputs. See ufunc.nout.

nargs
The total number of possible DUFunc arguments (should be nin + nout). See ufunc.nargs.

ntypes
The number of input types supported by the DUFunc. See ufunc.ntypes.

types
A list of the supported types given as strings. See ufunc.types.
identity
The identity value when using the ufunc as a reduction. See ufunc.identity.

reduce (A, *, axis, dtype, out, keepdims)
Reduces A's dimension by one by applying the DUFunc along one axis. See ufunc.reduce.

100

Chapter 2. Reference Manual

https://numpy.org/doc/stable/reference/c-api/generalized-ufuncs.html#details-of-signature
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.html#numpy.ufunc
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.html#numpy.ufunc
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.html#numpy.ufunc
https://numpy.org/doc/stable/reference/generated/numpy.ufunc.html#numpy.ufunc
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.nin.html#numpy.ufunc.nin
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.nout.html#numpy.ufunc.nout
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.nargs.html#numpy.ufunc.nargs
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.ntypes.html#numpy.ufunc.ntypes
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.types.html#numpy.ufunc.types
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.identity.html#numpy.ufunc.identity
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.reduce.html#numpy.ufunc.reduce

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

accumulate (A, * axis, dtype, out)
Accumulate the result of applying the operator to all elements. See ufunc.accumulate.

reduceat (A, indices, *, axis, dtype, out)
Performs a (local) reduce with specified slices over a single axis. See ufunc.reduceat.

outer (A, B)
Apply the ufunc to all pairs (a, b) with a in A, and b in B. See ufunc.outer.

at (A, indices, *, B)
Performs unbuffered in place operation on operand A for elements specified by indices. If you are using
Numpy 1.7 or earlier, this method will not be present. See ufunc.at.

Note: Vectorized functions can, in rare circumstances, show unexpected warnings or errors.

2.2.5 C callbacks

@numba . cfunc (signature, nopython="False, cache=False, locals={})
Compile the decorated function on-the-fly to produce efficient machine code. The compiled code is wrapped in
a thin C callback that makes it callable using the natural C ABI.

The signature is a single signature representing the signature of the C callback. It must have the same form as
in jit (). The decorator does not check that the types in the signature have a well-defined representation in C.

nopython and cache are boolean flags. locals is a mapping of local variable names to Types and signatures.
They all have the same meaning asin jit ().

The decorator returns a CEFunc object.

Note: C callbacks currently do not support object mode.

class CFunc
The class of objects created by cfunc (). CFunc objects expose the following attributes and methods:

address
The address of the compiled C callback, as an integer.

cffi
A cffi function pointer instance, to be passed as an argument to cffi-wrapped functions. The pointer’s type
is void «, so only minimal type checking will happen when passing it to cffi.

ctypes
A ctypes callback instance, as if it were created using ct ypes .CFUNCTYPE ().

native_name
The name of the compiled C callback.

inspect_1l1lvm()
Return the human-readable LLVM IR generated for the C callback. native_ name is the name under
which this callback is defined in the IR.

2.2. Just-in-Time compilation 101

http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.accumulate.html#numpy.ufunc.accumulate
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.reduceat.html#numpy.ufunc.reduceat
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.outer.html#numpy.ufunc.outer
http://docs.scipy.org/doc/numpy/reference/generated/numpy.ufunc.at.html#numpy.ufunc.at
https://cffi.readthedocs.org/
https://cffi.readthedocs.org/
https://cffi.readthedocs.org/
https://docs.python.org/3/library/ctypes.html#module-ctypes
https://docs.python.org/3/library/ctypes.html#ctypes.CFUNCTYPE

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

2.3 Ahead-of-Time compilation

class numba.pycc.CC (extension_name, source_module=None)

An object used to generate compiled extensions from Numba-compiled Python functions. extension_name is
the name of the extension to be generated. source_module is the Python module containing the functions; if
None, it is inferred by examining the call stack.

CC instances have the following attributes and methods:

name
(read-only attribute) The name of the extension module to be generated.

output_dir
(read-write attribute) The directory the extension module will be written into. By default it is the directory
the source_module is located in.

output_file
(read-write attribute) The name of the file the extension module will be written to. By default this follows
the Python naming convention for the current platform.

target_cpu
(read-write attribute) The name of the CPU model to generate code for. This will select the appropriate
instruction set extensions. By default, a generic CPU is selected in order to produce portable code.

Recognized names for this attribute depend on the current architecture and LLVM version. If you have
LLVM installed, 11¢ —mcpu=help will give you a list. Examples on x86-64 are "ivybridge",
"haswell", "skylake" or "broadwell". You can also give the value "host" which will select
the current host CPU.

verbose
(read-write attribute) If true, print out information while compiling the extension. False by default.

@export (exported_name, sig)
Mark the decorated function for compilation with the signature sig. The compiled function will be exposed
as exported_name in the generated extension module.

All exported names within a given CC instance must be distinct, otherwise an exception is raised.

compile ()
Compile all exported functions and generate the extension module as specified by output_dir and
output_file.

distutils_extension (**kwargs)
Return a distutils.core.Extension instance allowing to integrate generation of the extension
module in a conventional setup.py-driven build process. The optional kwargs let you pass optional
parameters to the Extension constructor.

In this mode of operation, it is not necessary to call compile () yourself. Also, output_dir and
output_ f1ile will be ignored.

102

Chapter 2. Reference Manual

https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension
https://docs.python.org/3/distutils/apiref.html#distutils.core.Extension

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

2.4 Utilities

2.4.1 Dealing with pointers

These functions can be called from pure Python as well as in nopython mode.

numba . carray (ptr, shape, dtype=None)
Return a Numpy array view over the data pointed to by ptr with the given shape, in C order. If dtype is given,
it is used as the array’s dtype, otherwise the array’s dtype is inferred from p#r’s type. As the returned array is a
view, not a copy, writing to it will modify the original data.

ptr should be a ctypes pointer object (either a typed pointer as created using POINTER (), ora c_void_p).
shape should be an integer or a tuple of integers.
dtype should be a Numpy dtype or scalar class (i.e. both np.dtype ('int8') and np.int8 are accepted).

numba . farray (ptr, shape, dtype=None)
Same as carray (), but the data is assumed to be laid out in Fortran order, and the array view is constructed
accordingly.

2.5 Environment variables

Note: This section relates to environment variables that impact Numba’s runtime, for compile time environment
variables see Build time environment variables and configuration of optional components.

Numba allows its behaviour to be changed through the use of environment variables. Unless otherwise mentioned,
those variables have integer values and default to zero.

For convenience, Numba also supports the use of a configuration file to persist configuration settings. Note: To use
this feature pyyaml must be installed.

The configuration file must be named . numba_config.yaml and be present in the directory from which the Python
interpreter is invoked. The configuration file, if present, is read for configuration settings before the environment
variables are searched. This means that the environment variable settings will override the settings obtained from a
configuration file (the configuration file is for setting permanent preferences whereas the environment variables are for
ephemeral preferences).

The format of the configuration file is a dictionary in YAML format that maps the environment variables be-
low (without the NUMBA__ prefix) to a desired value. For example, to permanently switch on developer mode
(NUMBA_DEVELOPER_MODE environment variable) and control flow graph printing (NUMBA_DUMP_ CFG environ-
ment variable), create a configuration file with the contents:

developer_mode: 1
dump_cfg: 1

This can be especially useful in the case of wanting to use a set color scheme based on terminal background color. For
example, if the terminal background color is black, the dark_lbg color scheme would be well suited and can be set
for permanent use by adding:

color_scheme: dark_bg

2.4. Utilities 103

https://docs.python.org/3/library/ctypes.html#ctypes.POINTER
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

2.5.1 Jit flags

These variables globally override flags to the jit () decorator.

NUMBA_BOUNDSCHECK
If set to 0 or 1, globally disable or enable bounds checking, respectively. The default if the variable is not set
or set to an empty string is to use the boundscheck flag passed to the jit () decorator for a given function.
See the documentation of @jir for more information.

Note, due to limitations in numba, the bounds checking currently produces exception messages that do not
match those from NumPy. If you set NUMBA_FULL_TRACEBACKS=1, the full exception message with the
axis, index, and shape information will be printed to the terminal.

2.5.2 Debugging

These variables influence what is printed out during compilation of JIT functions.

NUMBA_DEVELOPER_MODE
If set to non-zero, developer mode produces full tracebacks and disables help instructions. Default is zero.

NUMBA_FULL_TRACEBACKS
If set to non-zero, enable full tracebacks when an exception occurs. Defaults to the value set by
NUMBA_DEVELOPER_MODE.

NUMBA_SHOW_HELP
If set to non-zero, show resources for getting help. Default is zero.

NUMBA_DISABLE_ERROR MESSAGE_HIGHLIGHTING
If set to non-zero error message highlighting is disabled. This is useful for running the test suite on CI systems.

NUMBA_COLOR_SCHEME
Alters the color scheme used in error reporting (requires the colorama package to be installed to work). Valid
values are:

* no_color No color added, just bold font weighting.

* dark_bg Suitable for terminals with a dark background.

e light_bg Suitable for terminals with a light background.

* blue_bg Suitable for terminals with a blue background.

* jupyter_nb Suitable for use in Jupyter Notebooks.
Default value: no_color. The type of the value is st ring.

NUMBA_HIGHLIGHT_DUMPS
If set to non-zero and pygments is installed, syntax highlighting is applied to Numba IR, LLVM IR and
assembly dumps. Default is zero.

NUMBA_DISABLE_ PERFORMANCE_WARNINGS
If set to non-zero the issuing of performance warnings is disabled. Default is zero.

NUMBA_DEBUG
If set to non-zero, print out all possible debugging information during function compilation. Finer-grained
control can be obtained using other variables below.

NUMBA_DEBUG_FRONTEND
If set to non-zero, print out debugging information during operation of the compiler frontend, up to and including
generation of the Numba Intermediate Representation.

104 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

NUMBA_DEBUGINFO
If set to non-zero, enable debug for the full application by setting the default value of the debug option in jit.
Beware that enabling debug info significantly increases the memory consumption for each compiled function.
Default value equals to the value of NUMBA_ENABLE_PROFILING.

NUMBA_GDB_BINARY
Set the gdb binary for use in Numba’s gdb support, this takes the form of a path and full name of the binary, for
example: /path/from/root/to/binary/name_of_gdb_binary This is to permit the use of a gdb
from a non-default location with a non-default name. If not set gdb is assumed to reside at /usr/bin/gdb.

NUMBA_DEBUG_TYPEINFER
If set to non-zero, print out debugging information about type inference.

NUMBA_ENABLE_PROFILING
Enables JIT events of LLVM in order to support profiling of jitted functions. This option is automatically
enabled under certain profilers.

NUMBA_TRACE
If set to non-zero, trace certain function calls (function entry and exit events, including arguments and return
values).

NUMBA_DUMP_BYTECODE
If set to non-zero, print out the Python bytecode of compiled functions.

NUMBA_DUMP_CFG
If set to non-zero, print out information about the Control Flow Graph of compiled functions.

NUMBA DUMP_ IR
If set to non-zero, print out the Numba Intermediate Representation of compiled functions.

NUMBA_DUMP_SSA
If set to non-zero, print out the Numba Intermediate Representation of compiled functions after conversion to
Static Single Assignment (SSA) form.

NUMBA_DEBUG_PRINT_AFTER
Dump the Numba IR after declared pass(es). This is useful for debugging IR changes made by given passes.
Accepted values are:

¢ Any pass name (as given by the . name () method on the class)
» Multiple pass names as a comma separated list, i.e. "foo_pass,bar_pass"
e The token "al1l", which will print after all passes.

The default value is "none" so as to prevent output.

NUMBA_ DUMP_ANNOTATION
If set to non-zero, print out types annotations for compiled functions.

NUMBA_DUMP_ LLVM
Dump the unoptimized LLVM assembly source of compiled functions. Unoptimized code is usually very ver-
bose; therefore, NUMBA DUMP_OPTIMIZED is recommended instead.

NUMBA_DUMP_FUNC_OPT
Dump the LLVM assembly source after the LLVM “function optimization” pass, but before the
“module optimization” pass. This is useful mostly when developing Numba itself, otherwise use
NUMBA_DUMP_OPTIMIZED.

NUMBA DUMP_OPTIMIZED
Dump the LLVM assembly source of compiled functions after all optimization passes. The output includes the
raw function as well as its CPython-compatible wrapper (whose name begins with wrapper.). Note that the
function is often inlined inside the wrapper, as well.

2.5. Environment variables 105

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

NUMBA_DEBUG_ARRAY_OPT
Dump debugging information related to the processing associated with the parallel=True jit decorator
option.

NUMBA_DEBUG_ARRAY_OPT_RUNTIME
Dump debugging information related to the runtime scheduler associated with the parallel=True jit deco-
rator option.

NUMBA_DEBUG_ARRAY_ OPT_STATS
Dump statistics about how many operators/calls are converted to parallel for-loops and how many are fused
together, which are associated with the parallel=True jit decorator option.

NUMBA_PARALLEL_DIAGNOSTICS
If set to an integer value between 1 and 4 (inclusive) diagnostic information about parallel transforms undertaken
by Numba will be written to STDOUT. The higher the value set the more detailed the information produced.

NUMBA_DUMP_ASSEMBLY
Dump the native assembly code of compiled functions.

NUMBA_LLVM_PASS_TIMINGS
Set to 1 to enable recording of pass timings in LLVM; e.g. NUMBA_LLVM_PASS_TIMINGS=1. See Notes on
timing LLVM.

Default value: 0 (Off)
See also:

Troubleshooting and tips and Numba architecture.

2.5.3 Compilation options

NUMBA_OPT
The optimization level; this option is passed straight to LLVM.

Default value: 3

NUMBA_ LOOP_VECTORIZE
If set to non-zero, enable LLVM loop vectorization.

Default value: 1 (except on 32-bit Windows)

NUMBA_SLP_VECTORIZE
If set to non-zero, enable LLVM superword-level parallelism vectorization.

Default value: 1

NUMBA_ENABLE_AVX
If set to non-zero, enable AVX optimizations in LLVM. This is disabled by default on Sandy Bridge and Ivy
Bridge architectures as it can sometimes result in slower code on those platforms.

NUMBA DISABLE_INTEL_ SVML
If set to non-zero and Intel SVML is available, the use of SVML will be disabled.

NUMBA_DISABLE_JIT
Disable JIT compilation entirely. The jit () decorator acts as if it performs no operation, and the invocation of
decorated functions calls the original Python function instead of a compiled version. This can be useful if you
want to run the Python debugger over your code.

NUMBA_CPU_NAME

NUMBA_CPU_FEATURES
Override CPU and CPU features detection. By setting NUMBA_CPU_NAME=generic, a generic CPU model

106 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

is picked for the CPU architecture and the feature list (NUMBA_CPU_FEATURES) defaults to empty. CPU
features must be listed with the format + featurel, —-feature2 where + indicates enable and — indicates
disable. For example, +sse, +sse2, —avx, —avx2 enables SSE and SSE2, and disables AVX and AVX2.

These settings are passed to LLVM for configuring the compilation target. To get a list of available options, use
the 11c commandline tool from LLVM, for example:

llc —march=x86 -mattr=help

Tip: To force all caching functions (@jit (cache=True)) to emit portable code (portable within the same
architecture and OS), simply set NUMBA_CPU_NAME=generic.

NUMBA_FUNCTION_CACHE_SIZE

Override the size of the function cache for retaining recently deserialized functions in memory. In systems like
Dask, it is common for functions to be deserialized multiple times. Numba will cache functions as long as there
is a reference somewhere in the interpreter. This cache size variable controls how many functions that are no
longer referenced will also be retained, just in case they show up in the future. The implementation of this is not
a true LRU, but the large size of the cache should be sufficient for most situations.

Note: this is unrelated to the compilation cache.

Default value: 128

NUMBA_LLVM_ REFPRUNE_PASS

Turns on the LLVM pass level reference-count pruning pass and disables the regex based implementation in
Numba.

Default value: 1 (On)

NUMBA_LLVM REFPRUNE_FLAGS

When NUMBA_LLVM_REFPRUNE_PASS is on, this allows configuration of subpasses in the reference-count
pruning LLVM pass.

Valid values are any combinations of the below separated by, (case-insensitive):
e all: enable all subpasses.
* per_bb: enable per-basic-block level pruning, which is same as the old regex based implementation.

* diamond: enable inter-basic-block pruning that is a diamond shape pattern, i.e. a single-entry single-exit
CFG subgraph where has an incref in the entry and a corresponding decref in the exit.

* fanout: enable inter-basic-block pruning that has a fanout pattern, i.e. a single-entry multiple-exit CFG
subgraph where the entry has an incref and every exit has a corresponding decref.

e fanout_raise: same as fanout but allow subgraph exit nodes to be raising an exception and not have
a corresponding decref.

For example, all is the same as per_bb, diamond, fanout, fanout_raise

Default value: “all”

2.5.

Environment variables 107

http://dask.pydata.org

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

2.5.4 Caching options

Options for the compilation cache.

NUMBA_DEBUG_CACHE
If set to non-zero, print out information about operation of the JIT compilation cache.

NUMBA_CACHE_DIR
Override the location of the cache directory. If defined, this should be a valid directory path.

If not defined, Numba picks the cache directory in the following order:

1. In-tree cache. Put the cache next to the corresponding source file under a ___pycache___ directory fol-
lowing how . pyc files are stored.

2. User-wide cache. Put the cache in the user’s application directory using appdirs.user_cache_dir
from the Appdirs package.

3. IPython cache. Put the cache in an IPython specific application directory. Stores are made under the
numba__cache in the directory returned by IPython.paths.get_ipython_cache_dir ().

Also see docs on cache sharing and docs on cache clearing

2.5.5 GPU support

NUMBA_DISABLE_CUDA
If set to non-zero, disable CUDA support.

NUMBA_FORCE_CUDA_CC
If set, force the CUDA compute capability to the given version (a string of the type ma jor .minor), regardless
of attached devices.

NUMBA_CUDA_DEFAULT_PTX CC
The default compute capability (a string of the type ma jor .minor) to target when compiling to PTX using
cuda.compile_ptx. The default is 5.2, which is the lowest non-deprecated compute capability in the most
recent version of the CUDA toolkit supported (10.2 at present).

NUMBA_ENABLE_CUDASIM
If set, don’t compile and execute code for the GPU, but use the CUDA Simulator instead. For debugging
purposes.

NUMBA_CUDA_ARRAY INTERFACE_SYNC
Whether to synchronize on streams provided by objects imported using the CUDA Array Interface. This defaults
to 1. If set to O, then no synchronization takes place, and the user of Numba (and other CUDA libraries) is
responsible for ensuring correctness with respect to synchronization on streams.

2.5.6 Threading Control

NUMBA_NUM_THREADS
If set, the number of threads in the thread pool for the parallel CPU target will take this value. Must be greater
than zero. This value is independent of OMP_NUM_THREADS and MKIL_NUM_THREADS.

Default value: The number of CPU cores on the system as determined at run time. This can be accessed via
numba.config.NUMBA_DEFAULT _NUM_THREADS.

See also the section on Setting the Number of Threads for information on how to set the number of threads at
runtime.

108 Chapter 2. Reference Manual

https://github.com/ActiveState/appdirs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

NUMBA_THREADING_LAYER
This environment variable controls the library used for concurrent execution for the CPU paral-
lel targets (@vectorize (target='parallel'), @guvectorize (target='parallel') and
@njit (parallel=True)). The variable type is string and by default is default which will select a
threading layer based on what is available in the runtime. The valid values are (for more information about these
see the threading layer documentation):

e default - select a threading layer based on what is available in the current runtime.

* safe - select a threading layer that is both fork and thread safe (requires the TBB package).
e forksafe - select a threading layer that is fork safe.

* threadsafe - select a threading layer that is thread safe.

* tbb - A threading layer backed by Intel TBB.

» omp - A threading layer backed by OpenMP.

* workqueue - A simple built-in work-sharing task scheduler.

2.6 Supported Python features

Apart from the Language part below, which applies to both object mode and nopython mode, this page only lists the
features supported in nopython mode.

Warning: Numba behavior differs from Python semantics in some situations. We strongly advise reviewing
Deviations from Python Semantics to become familiar with these differences.

2.6.1 Language

Constructs
Numbea strives to support as much of the Python language as possible, but some language features are not available
inside Numba-compiled functions. Below is a quick reference for the support level of Python constructs.
Supported constructs:

e conditional branch: if .. elif .. else

* loops: while, for .. in,break, continue

* basic generator: yield

e assertion: assert
Partially supported constructs:

e exceptions: try .. except,raise,else and finally (See details in this section)

* context manager: with (only support numba.objmode())

* list comprehension (see details in this section)
Unsupported constructs:

e async features: async with, async for and async def

* class definition: class (except for @jirclass)

2.6. Supported Python features 109

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* set, dict and generator comprehensions

 generator delegation: yield from
Functions
Function calls

Numba supports function calls using positional and named arguments, as well as arguments with default values and
xargs (note the argument for rargs can only be a tuple, not a list). Explicit * xkwargs are not supported.

Function calls to locally defined inner functions are supported as long as they can be fully inlined.

Functions as arguments

Functions can be passed as argument into another function. But, they cannot be returned. For example:

from numba import jit

ejit
def addl (x):
return x + 1

@jit
def bar (fn, x):
return fn (x)

@jit
def foo(x):
return bar (addl, x)

Passing addl within numba compiled code.
print (foo (1))

Passing addl into bar from interpreted code
print (bar (addl, 1))

Note: Numba does not handle function objects as real objects. Once a function is assigned to a variable, the variable
cannot be re-assigned to a different function.

Inner function and closure

Numba now supports inner functions as long as they are non-recursive and only called locally, but not passed as
argument or returned as result. The use of closure variables (variables defined in outer scopes) within an inner function
is also supported.

110 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Recursive calls

Most recursive call patterns are supported. The only restriction is that the recursive callee must have a control-flow
path that returns without recursing. Numba is able to type-infer recursive functions without specifying the function
type signature (which is required in numba 0.28 and earlier). Recursive calls can even call into a different overload of
the function.

Generators
Numba supports generator functions and is able to compile them in object mode and nopython mode. The returned
generator can be used both from Numba-compiled code and from regular Python code.

Coroutine features of generators are not supported (i.e. the generator.send(), generator.throw(),
generator.close () methods).

Exception handling

raise statement

The raise statement is only supported in the following forms:
* raise SomeException

* raise SomeException (<arguments>): in nopython mode, constructor arguments must be compile-
time constants

It is currently unsupported to re-raise an exception created in compiled code.

try .. except

The try .. except construct is partially supported. The following forms of are supported:

* the bare except that captures all exceptions:

try:

except:

using exactly the Exception class in the except clause:

try:

except Exception:

This will match any exception that is a subclass of Exception as expected. Currently, instances of
Exception and it’s subclasses are the only kind of exception that can be raised in compiled code.

Warning: Numba currently masks signals like KeyboardInterrupt and SystemExit. These signaling
exceptions are ignored during the execution of Numba compiled code. The Python interpreter will handle them as
soon as the control is returned to it.

2.6. Supported Python features 111

https://docs.python.org/3/reference/expressions.html#generator.send
https://docs.python.org/3/reference/expressions.html#generator.throw
https://docs.python.org/3/reference/expressions.html#generator.close

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Currently, exception objects are not materialized inside compiled functions. As a result, it is not possible to store an
exception object into a user variable or to re-raise an exception. With this limitation, the only realistic use-case would
look like:

try:
do_work ()

except Exception:
handle_error_case ()
return error_code

try .. except .. else .. finally
The else block and the finally blockofatry .. except are supported:
>>> @jit (nopython=True)
def foo():
try:

print ('main block')
except Exception:
print ('handler block')
else:
print ('else block")
finally:
print ('final block"')
>>> foo ()
main block
else block
final block

The try .. finally construct without the except clause is also supported.

2.6.2 Built-in types
int, bool

Arithmetic operations as well as truth values are supported.
The following attributes and methods are supported:

e .conjugate ()

e .real

* .imag

112 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

float, complex

Arithmetic operations as well as truth values are supported.
The following attributes and methods are supported:

e .conjugate ()

e .real

* .imag

str

Numba supports (Unicode) strings in Python 3. Strings can be passed into nopython mode as arguments, as well as
constructed and returned from nopython mode. As in Python, slices (even of length 1) return a new, reference counted
string. Optimized code paths for efficiently accessing single characters may be introduced in the future.

The in-memory representation is the same as was introduced in Python 3.4, with each string having a tag to indicate
whether the string is using a 1, 2, or 4 byte character width in memory. When strings of different encodings are
combined (as in concatenation), the resulting string automatically uses the larger character width of the two input
strings. String slices also use the same character width as the original string, even if the slice could be represented
with a narrower character width. (These details are invisible to the user, of course.)

The following constructors, functions, attributes and methods are currently supported:
* str(int)
e len()
* + (concatenation of strings)
* « (repetition of strings)
e in, .contains ()
e ==, <, <=, >, >= (comparison)
e .capitalize()
¢ .casefold()
e .center()
e .count ()
e .endswith ()
* .endswith ()
* .expandtabs ()
e .find()
¢ .index()
e .isalnum()
* .isalpha()
e .isdecimal ()
e .isdigit ()
e .isidentifier ()

e .islower ()

2.6. Supported Python features 113

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

e .isnumeric ()
e .isprintable()
* .isspace()

e .istitle()

e _isupper ()

* .join ()

e .1just ()

e _lower ()

e .lstrip()

e .partition()
e .replace()

e .rfind()

¢ .rindex()

e .rjust ()

e .rpartition()
e .rsplit ()

e .rstrip()

e .split ()

e .splitlines()
e .startswith ()
e .strip()

* .swapcase ()

e .title()
* .upper ()
e .z£fill()

Additional operations as well as support for Python 2 strings / Python 3 bytes will be added in a future version of
Numba. Python 2 Unicode objects will likely never be supported.

Warning: The performance of some operations is known to be slower than the CPython implementation. These
include substring search (in, .contains () and £ind ()) and string creation (like .split ()). Improving
the string performance is an ongoing task, but the speed of CPython is unlikely to be surpassed for basic string
operation in isolation. Numba is most successfully used for larger algorithms that happen to involve strings, where
basic string operations are not the bottleneck.

114 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

tuple

Tuple support is categorised into two categories based on the contents of a tuple. The first category is homogeneous
tuples, these are tuples where the type of all the values in the tuple are the same, the second is heterogeneous tuples,
these are tuples where the types of the values are different.

Note: The tuple () constructor itself is NOT supported.

homogeneous tuples

An example of a homogeneous tuple:

homogeneous_tuple = (1, 2, 3, 4)

The following operations are supported on homogeneous tuples:
* Tuple construction.
¢ Tuple unpacking.
* Comparison between tuples.
* Iteration and indexing.
* Addition (concatenation) between tuples.
* Slicing tuples with a constant slice.

* The index method on tuples.

heterogeneous tuples

An example of a heterogeneous tuple:

heterogeneous_tuple = (1, 23j, 3.0, "a")

The following operations are supported on heterogeneous tuples:
* Comparison between tuples.

* Indexing using an index value that is a compile time constant e.g. mytuple[7], where 7 is evidently a
constant.

* Iteration over a tuple (requires experimental 1iteral_unroll () feature, see below).

Warning: The following feature (1iteral_unroll ()) is experimental and was added in version 0.47.

To permit iteration over a heterogeneous tuple the special function numba.literal_unroll () must be used.
This function has no effect other than to act as a token to permit the use of this feature. Example use:

from numba import njit, literal_unroll

@nijit
def foo()
heterogeneous_tuple = (1, 23, 3.0, "a")

(continues on next page)

2.6. Supported Python features 115

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

for i in literal_unroll (heterogeneous_tuple) :
print (i)

Warning: The following restrictions apply to the use of literal_unroll ():
* This feature is only available for Python versions >= 3.6.

e literal_unroll () can only be used on tuples and constant lists of compile time constants, e.g. [1,
23, 3, "a"] and the list not being mutated.

* The only supported use pattern for 1iteral unroll () is loop iteration.

* Only one 1iteral unroll () call is permitted per loop nest (i.e. nested heterogeneous tuple iteration
loops are forbidden).

* The usual type inference/stability rules still apply.

A more involved use of 1iteral unroll () might be type specific dispatch, recall that string and integer literal
values are considered their own type, for example:

from numba import njit, types, literal_unroll
from numba.extending import overload

def dt (x):
dummy function to overload
pass

Qoverload(dt, inline='always')
def ol dt (1i):
if isinstance(li, types.StringLiteral):
value = li.literal_value
if value == "apple":
def impl (1li):
return 1
elif value == "orange":
def impl (1li):
return 2
elif value == "banana':
def impl (1li):
return 3
return impl
elif isinstance(li, types.IntegerlLiteral):
value = li.literal_value
if value == Oxcallable:
def impl (1li):
capture the dispatcher literal value
return Oxb5calable + value
return impl

@njit
def foo():
acc = 0
for t in literal_unroll(('apple', 'orange', 'banana', 3390155550)):
acc += dt(t)
return acc

(continues on next page)

116 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

print (foo())

list

Warning: As of version 0.45.x the internal implementation for the list datatype in Numba is changing. Until
recently, only a single implementation of the list datatype was available, the so-called reflected-list (see below).
However, it was scheduled for deprecation from version 0.44.0 onwards due to its limitations. As of version 0.45.0
a new implementation, the so-called fyped-list (see below), is available as an experimental feature. For more
information, please see: Deprecation Notices.

Creating and returning lists from JIT-compiled functions is supported, as well as all methods and operations. Lists
must be strictly homogeneous: Numba will reject any list containing objects of different types, even if the types are
compatible (for example, [1, 2.5] isrejected as it contains a int anda float).

For example, to create a list of arrays:

In [1]: from numba import njit
In [2]: import numpy as np

In [3]: @njit
def foo(x):
1st = []
for i in range(x):
lst.append (np.arange (i))
return lst

In [4]: foo(4)
Out[4]: [array([], dtype=int64), array([0]), array ([0, 1]), array ([0, 1, 2]1)]

List Reflection

In nopython mode, Numba does not operate on Python objects. 1ist are compiled into an internal representation.
Any 1ist arguments must be converted into this representation on the way in to nopython mode and their contained
elements must be restored in the original Python objects via a process called reflection. Reflection is required to
maintain the same semantics as found in regular Python code. However, the reflection process can be expensive for
large lists and it is not supported for lists that contain reflected data types. Users cannot use list-of-list as an argument
because of this limitation.

Note: When passing a list into a JIT-compiled function, any modifications made to the list will not be visible to the
Python interpreter until the function returns. (A limitation of the reflection process.)

Warning: List sorting currently uses a quicksort algorithm, which has different performance characterics than the
algorithm used by Python.

2.6. Supported Python features 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

20

21

22

23

24

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Initial Values

Warning: This is an experimental feature!

Lists that:
* Are constructed using the square braces syntax
* Have values of a literal type

will have their initial value stored in the . initial_value property on the type so as to permit inspection of these
values at compile time. If required, to force value based dispatch the literally function will accept such a list.

Example:
Listing I: fromtest_ex_initial_value_list_compile_time_consts

of numba/tests/doc_examples/
test_literal_container_usage.py

from numba import njit, literally
from numba.extending import overload

overload this function
def specialize(x):
pass

@overload (specialize)
def ol_specialize(x):
iv = x.initial_value
if iv is None:
return lambda x: literally(x) # Force literal dispatch
assert iv == [1, 2, 3] # INITIAL VALUE
return lambda x: x

@njit
def foo():
1 =11, 2, 3]
1[2] = 20 # no impact on .initial_value

1.append(30) # no impact on .initial_ value
return specialize (1)

result = fool()
print (result) # [1, 2, 20, 30] # NOT INITIAL VALUE!

Typed List

Note: numba.typed.List is an experimental feature, if you encounter any bugs in functionality or suffer from
unexpectedly bad performance, please report this, ideally by opening an issue on the Numba issue tracker.

As of version 0.45.0 a new implementation of the list data type is available, the so-called fyped-list. This is compiled
library backed, type-homogeneous list data type that is an improvement over the reflected-list mentioned above. Ad-
ditionally, lists can now be arbitrarily nested. Since the implementation is considered experimental, you will need to
import it explicitly from the numba.typed module:

118 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

In [1]: from numba.typed import List
In [2]: from numba import njit
In [3]: @njit
def foo(l):
1.append (23)
return 1
In [4]: mylist = List ()

In [5]: mylist.append(l)

In [6]: foo(mylist)
Out [6]: ListTypelint64] ([1, 23])

Note: As the typed-list stabilizes it will fully replace the reflected-list and the constructors [] and list() will create a
typed-list instead of a reflected one.

Here’s an example using List () to create numba.typed.List inside a jit-compiled function and letting the
compiler infer the item type:

Listing 2: from ex_inferred_list_jit of numba/tests/
doc_examples/test_typed_list_usage.py

from numba import njit
from numba.typed import List

@njit
def fool():
Instantiate a typed-list
1 = List ()
Append a value to it, this will set the type to int32/inté64
(depending on platform)
1.append(42)
The usual list operations, getitem, pop and length are

supported
print (1[07) # 42

1[0] = 23

print (1[0]) # 23
print (len(l)) # 1

1.pop ()

print (len(l)) # 0

return 1

foo ()

Here’s an example of using List () to create a numba.typed.List outside of a jit-compiled function and then
using it as an argument to a jit-compiled function:

2.6. Supported Python features 119

20

21

22

23

24

25

26

27

28

29

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Listing 3: from ex_inferred_list of numba/tests/

doc_examples/test_typed_list_usage.py

from numba import njit
from numba.typed import List

@njit
def foo(mylist):
for i in range (10, 20):
mylist.append (i)
return mylist

Instantiate a typed-list, outside of a jit context

1 = List()

Append a value to it, this will set the type to int32/inté64
(depending on platform)

1.append(42)

The usual list operations, getitem, pop and length are supported
print (1[01]) # 42

1[0] = 23

print (1[07) # 23

print (len(l)) # 1

1.pop()

print (len(l)) # O

And you can use the typed-list as an argument for a jit compiled
function

1 = foo(l)

print (len(l)) # 10

You can also directly construct a typed-list from an existing
Python list

py_list = [2, 3, 5]
numba_list = List (py_list)
print (len(numba_list)) # 3

Finally, here’s an example of using a nested Lis#():

120 Chapter 2. Reference Manual

20
21
22

23

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Listing 4: from ex_nested_list of numba/tests/
doc_examples/test_typed_list_usage.py

from numba.typed import List

typed-lists can be nested in typed-lists
mylist = List ()
for i in range (10):

1 = List ()
for i in range(10):
1.append (i)

mylist.append(1l)
mylist is now a list of 10 lists, each containing 10 integers

print (mylist)

Literal List

Warning: This is an experimental feature!

Numba supports the use of literal lists containing any values, for example:

1 =1['a'", 1, 23, np.zeros(5,)]

the predominant use of these lists is for use as a configuration object. The lists appear asa LiteralList type which
inherits from Literal, as a result the literal values of the list items are available at compile time. For example:

Listing 5: from test_ex_literal_ list of numba/tests/
doc_examples/test_literal_container_usage.py

from numba import njit
from numba.extending import overload

overload this function
def specialize(x):
pass

@Qoverload (specialize)
def ol_specialize(x):
1l = x.literal_value
const_expr = []
for v in 1:
const_expr.append (str(v))
const_strings = tuple(const_expr)

def impl (x):
return const_strings
return impl

@nijit

def foo():
const_list = ['a', 10, 13, ['another', 'list']]

return specialize (const_list)

(continues on next page)

2.6. Supported Python features 121

24
25

26

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

result = foo ()
print (result) # ('Literal[str](a)', 'Literal[int] (10)', 'complexl128', 'list (unicode_
—type) ') # noga E501

Important things to note about these kinds of lists:

1. They are immutable, use of mutating methods e.g. .pop () will result in compilation failure. Read-only static
access and read only methods are supported e.g. len ().

2. Dynamic access of items is not possible, e.g. some_list [x], for a value x which is not a compile time
constant. This is because it’s impossible to statically determine the type of the item being accessed.

3. Inside the compiler, these lists are actually just tuples with some extra things added to make them look like they
are lists.

4. They cannot be returned to the interpreter from a compiled function.

List comprehension

Numba supports list comprehension. For example:

In [1]: from numba import njit

In [2]: @njit
: def foo (x):
return [[i for i in range(n)] for n in range (x)]

In [3]: foo(3)
Out [3]: [[], [0], [0, 11]

Note: Prior to version 0.39.0, Numba did not support the creation of nested lists.

Numba also supports “array comprehension” that is a list comprehension followed immediately by a call to numpy .
array (). The following is an example that produces a 2D Numpy array:

from numba import jit
import numpy as np

@jit (nopython=True)
def f(n):
return np.array ([[x » y for x in range(n)] for y in range(n) 1)

In this case, Numba is able to optimize the program to allocate and initialize the result array directly without allocating
intermediate list objects. Therefore, the nesting of list comprehension here is not a problem since a multi-dimensional
array is being created here instead of a nested list.

Additionally, Numba supports parallel array comprehension when combined with the parallel option on CPUs.

122 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

set

All methods and operations on sets are supported in JIT-compiled functions.

Sets must be strictly homogeneous: Numba will reject any set containing objects of different types, even if the types
are compatible (for example, {1, 2.5} isrejected as it contains a int and a £ 1oat). The use of reference counted
types, e.g. strings, in sets is unsupported.

Note: When passing a set into a JIT-compiled function, any modifications made to the set will not be visible to the
Python interpreter until the function returns.

Typed Dict

Warning: numba.typed.Dict is an experimental feature. The API may change in the future releases.

Note: dict () was not supported in versions prior to 0.44. Currently, calling dict () translates to calling numba .
typed.Dict ().

Numba only supports the use of dict () without any arguments. Such use is semantically equivalent to {} and
numba.typed.Dict (). It will create an instance of numba .typed.Dict where the key-value types will be
later inferred by usage.

Numba does not fully support the Python dict because it is an untyped container that can have any Python types as
members. To generate efficient machine code, Numba needs the keys and the values of the dictionary to have fixed
types, declared in advance. To achieve this, Numba has a typed dictionary, numba . typed.Dict, for which the
type-inference mechanism must be able to infer the key-value types by use, or the user must explicitly declare the
key-value type using the Dict .empty () constructor method. This typed dictionary has the same API as the Python
dict, it implements the collections.MutableMapping interface and is usable in both interpreted Python
code and JIT-compiled Numba functions. Because the typed dictionary stores keys and values in Numba’s native,
unboxed data layout, passing a Numba dictionary into nopython mode has very low overhead. However, this means
that using a typed dictionary from the Python interpreter is slower than a regular dictionary because Numba has to box
and unbox key and value objects when getting or setting items.

An important difference of the typed dictionary in comparison to Python’s dict is that implicit casting occurs when
a key or value is stored. As a result the setitem operation may fail should the type-casting fail.

It should be noted that the Numba typed dictionary is implemented using the same algorithm as the CPython 3.7
dictionary. As a consequence, the typed dictionary is ordered and has the same collision resolution as the CPython
implementation.

Further to the above in relation to type specification, there are limitations placed on the types that can be used as
keys and/or values in the typed dictionary, most notably the Numba Set and List types are currently unsupported.
Acceptable key/value types include but are not limited to: unicode strings, arrays (value only), scalars, tuples. It is
expected that these limitations will be relaxed as Numba continues to improve.

Here’s an example of using dict () and { } to create numba.typed.Dict instances and letting the compiler infer
the key-value types:

2.6. Supported Python features 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float

20

21

22

23

24

25

26

27

28

29

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Listing 6: from test_ex_inferred_dict_njit of numba/
tests/doc_examples/test_typed_dict_usage.py

from numba import njit
import numpy as np

@njit

def fool():

= dict ()

k = {1l: np.arange(l), 2: np.arange(2)}

The following tells the compiler what the key type and the
value

type are for “d°

d[3] = np.arange(3)

d[5] = np.arange (5)

return d, k

o}

d, k = foo()
print (d) # {3: [0 1 2], 5: [0 1 2 3 4]}
print (k) # {1: [0], 2: [0 1]}

Here’s an example of creating a numba . typed.Dict instance from interpreted code and using the dictionary in jit

code:

Listing 7: from test_ex_typed_dict_from_cpython of
numba/tests/doc_examples/test_typed_dict_usage.

19

import numpy as np

from numba import njit

from numba.core import types
from numba.typed import Dict

The Dict.empty () constructs a typed dictionary.
The key and value typed must be explicitly declared.
d = Dict.empty (
key_type=types.unicode_type,
value_type=types.float64[:],

The typed-dict can be used from the interpreter.

d['posx'] = np.asarray([l, 0.5, 2], dtype='£f8")
d['posy'] = np.asarray([1l.5, 3.5, 2], dtype='£f8")
d['velx'] = np.asarray([0.5, 0, 0.7], dtype='£f8")
d['vely'] = np.asarray([0.2, -0.2, 0.1], dtype='f8")

Here's a function that expects a typed-dict as the argument
@njit
def move (d) :

inplace operations on the arrays

d['posx'] += d['velx']

d['posy'] += d['vely']

print ('posx: ', d['posx']) # Out: posx: [1. 0.5 2.]
print ('posy: ', d['posy'l) # Out: posy: [1.5 3.5 2.]

Call move (d) to inplace update the arrays in the typed-dict.

(continues on next page)

124 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

move (d)
print ('posx: ', d['posx']) # Out: posx: [1.5 0.5 2.7]
print ('posy: ', d['posy']) # Out: posy: [1.7 3.3 2.1]

Here’s an example of creating a numba . t yped.Dict instance from jit code and using the dictionary in interpreted
code:

Listing 8: from test_ex_typed_dict_njit of numba/tests/
doc_examples/test_typed_dict_usage.py

import numpy as np

from numba import njit

from numba.core import types
from numba.typed import Dict

Make array type. Type—-expression 1s not supported in jit
functions.
float_array = types.float64([:]

@njit
def foo():
Make dictionary
d = Dict.empty (
key_type=types.unicode_type,
value_type=float_array,
)
Fill the dictionary

d["posx"] = np.arange(3) .astype (np.float64)
d["posy"] = np.arange (3, 6).astype(np.float64)
return d

d = foo()

Print the dictionary
print (d) # Out: {posx: [0. 1. 2.], posy: [3. 4. 5.]}

It should be noted that numba . typed.Dict is not thread-safe. Specifically, functions which modify a dictionary
from multiple threads will potentially corrupt memory, causing a range of possible failures. However, the dictionary
can be safely read from multiple threads as long as the contents of the dictionary do not change during the parallel
access.

Initial Values

Warning: This is an experimental feature!

Typed dictionaries that:
* Are constructed using the curly braces syntax
* Have literal string keys
* Have values of a literal type

will have their initial value stored in the . initial_value property on the type so as to permit inspection of these
values at compile time. If required, to force value based dispatch the /iterally function will accept a typed dictionary.

2.6. Supported Python features 125

20

21

22

23

24

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Example:

Listing9: fromtest_ex_initial_value_dict_compile_time_consts
of numba/tests/doc_examples/
test_literal_container_usage.py

from numba import njit, literally
from numba.extending import overload

overload this function
def specialize(x):
pass

@overload (specialize)
def ol_specialize(x):
iv = x.initial_value
if iv is None:
return lambda x: literally(x) # Force literal dispatch
assert iv == {'a': 1, 'b': 2, 'c': 3} # INITIAL VALUE
return lambda x: literally (x)

@niit

def fool():
d={'a'": 1, '"b': 2, 'c': 3}
d['c'] = 20 # no impact on .initial_value
d['d'] = 30 # no impact on .initial_value

return specialize (d)

result = fool()
print (result) # {a: 1, b: 2, c: 20, d: 30} # NOT INITIAL VALUE!

Heterogeneous Literal String Key Dictionary

Warning: This is an experimental feature!

Numba supports the use of statically declared string key to any value dictionaries, for example:

d={'a': 1, 'b': 'data', 'c': 273}

the predominant use of these dictionaries is to orchestrate advanced compilation dispatch or as a container for use as
a configuration object. The dictionaries appear as a LiteralStrKeyDict type which inherits from Literal, as
a result the literal values of the keys and the types of the items are available at compile time. For example:

Listing 10: fromtest_ex_literal_dict_compile_time_consts
of numba/tests/doc_examples/
test_literal_container_usage.py

import numpy as np
from numba import njit, types
from numba.extending import overload

overload this function
def specialize(x):
pass

(continues on next page)

126 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

@overload (specialize)
def ol_specialize(x):
1d = x.literal _value
const_expr = []
for k, v in ld.items () :
if isinstance (v, types.Literal):
lv = v.literal_value

if 1lv == 'cat':
const_expr.append ("Meow!")
elif 1lv == 'dog':

const_expr.append ("Woof!")
elif isinstance(lv, int):
const_expr.append(k.literal_value x 1lv)
else: # it's an array

const_expr.append ("Array (dim= ".format (dim=v.ndim))
const_strings = tuple (const_expr)
def impl (x):

return const_strings
return impl

@njit
def fool():
pets_ints_and_array = {'a': 1,
'b': 2,
'c': 'cat',
'd': 'dog',

'e': np.ones(5,)}
return specialize (pets_ints_and_array)

result = fool()
print (result) # ('a', 'bb', 'Meow!', 'Woof!', 'Array(dim=1")

Important things to note about these kinds of dictionaries:

1. They are immutable, use of mutating methods e.g. . pop () will result in compilation failure. Read-only static
access and read only methods are supported e.g. len ().

2. Dynamic access of items is not possible, e.g. some_dictionary[x], for a value x which is not a compile
time constant. This is because it’s impossible statically determine the type of the item being accessed.

3. Inside the compiler, these dictionaries are actually just named tuples with some extra things added to make them
look like they are dictionaries.

4. They cannot be returned to the interpreter from a compiled function.

5. The .keys (), .values () and .items () methods all functionally operate but return tuples opposed to
iterables.

2.6. Supported Python features 127

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

None

The None value is supported for identity testing (when using an opt ional type).

bytes, bytearray, memoryview

The bytearray type and, on Python 3, the bytes type support indexing, iteration and retrieving the len().

The memoryview type supports indexing, slicing, iteration, retrieving the len(), and also the following attributes:

contiguous
c_contiguous
f_contiguous
itemsize
nbytes

ndim
readonly
shape

strides

2.6.3 Built-in functions

The following built-in functions are supported:

abs ()

bool

chr ()

complex

divmod ()

enumerate ()

filter ()

float

hash () (see Hashing below)

int: only the one-argument form
iter (): only the one-argument form
len()

min ()

map ()

max ()

next () : only the one-argument form

ord()

128

Chapter 2. Reference Manual

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#memoryview
https://docs.python.org/3/library/stdtypes.html#memoryview.contiguous
https://docs.python.org/3/library/stdtypes.html#memoryview.c_contiguous
https://docs.python.org/3/library/stdtypes.html#memoryview.f_contiguous
https://docs.python.org/3/library/stdtypes.html#memoryview.itemsize
https://docs.python.org/3/library/stdtypes.html#memoryview.nbytes
https://docs.python.org/3/library/stdtypes.html#memoryview.ndim
https://docs.python.org/3/library/stdtypes.html#memoryview.readonly
https://docs.python.org/3/library/stdtypes.html#memoryview.shape
https://docs.python.org/3/library/stdtypes.html#memoryview.strides
https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#chr
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#divmod
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/functions.html#filter
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#hash
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#iter
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#next
https://docs.python.org/3/library/functions.html#ord

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

print (): only numbers and strings; no £ile or sep argument

range: The only permitted use of range is as a callable function (cannot pass range as an argument to a jitted
function or return a range from a jitted function).

round ()

sorted (): the key argument is not supported

type () : only the one-argument form, and only on some types (e.g. numbers and named tuples)

zip ()

Hashing

The hash () built-in is supported and produces hash values for all supported hashable types with the following Python
version specific behavior:

Under Python 3, hash values computed by Numba will exactly match those computed in CPython under the condition
that the sys.hash_info.algorithmis siphash24 (default).

The PYTHONHASHSEED environment variable influences the hashing behavior in precisely the manner described in
the CPython documentation.

2.6.4 Standard library modules

array

Limited support for the array.array type is provided through the buffer protocol. Indexing, iteration and taking
the len() is supported. All type codes are supported except for "u".

cmath

The following functions from the cmath module are supported:

cmath

cmath.

cmath.

cmath

cmath.
cmath.
cmath.
cmath.
cmath.
cmath.
cmath.
cmath.
cmath.

cmath.

.acos ()
acosh ()
asin ()
.asinh ()
atan ()
atanh ()
cos ()
cosh ()
exp ()
isfinite()
isinf ()
isnan ()
log()
logl0 ()

2.6. Supported Python features

129

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#sorted
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/functions.html#hash
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/cmath.html#module-cmath

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* cmath.phase ()
* cmath.polar /()
e cmath.rect ()
e cmath.sin()

e cmath.sinh()
* cmath.sqgrt ()
e cmath.tan ()

s cmath.tanh ()

collections
Named tuple classes, as returned by collections.namedtuple (), are supported in the same way regular tuples
are supported. Attribute access and named parameters in the constructor are also supported.

Creating a named tuple class inside Numba code is not supported; the class must be created at the global level.

ctypes

Numbea is able to call ctypes-declared functions with the following argument and return types:
e ctypes.c_int8
e ctypes.c_intl6
e ctypes.c_int32
e ctypes.c_into64
* ctypes.c_uint8
* ctypes.c_uintl6
e ctypes.c_uint32
* ctypes.c_uint64
* ctypes.c_float
e ctypes.c_double

e ctypes.c_void_p

enum

Both enum.Enum and enum. Int Enum subclasses are supported.

130 Chapter 2. Reference Manual

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/ctypes.html#ctypes.c_int8
https://docs.python.org/3/library/ctypes.html#ctypes.c_int16
https://docs.python.org/3/library/ctypes.html#ctypes.c_int32
https://docs.python.org/3/library/ctypes.html#ctypes.c_int64
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint8
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint16
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint32
https://docs.python.org/3/library/ctypes.html#ctypes.c_uint64
https://docs.python.org/3/library/ctypes.html#ctypes.c_float
https://docs.python.org/3/library/ctypes.html#ctypes.c_double
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/enum.html#enum.Enum
https://docs.python.org/3/library/enum.html#enum.IntEnum

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.¢gg

math

The following functions from the math module are supported:

math

math.
math.
math.
math.
math.

math.

math

math.
math.
math.
math.
math.
math.
math.
math.
math.

math.

math

math.
math.
math.

math.

math

math.
math.
math.

math.

math
math

math

math.
math.

math.

.acos ()
acosh ()
asin ()
asinh()
atan()
atan2 ()
atanh ()
.ceil ()
copysign ()
cos ()
cosh ()
degrees ()
erf ()
erfc()
exp ()
expml ()
fabs ()
floor ()
.frexp ()
gamma ()
gcd ()
hypot ()
isfinite()
.isinf ()
isnan()
ldexp ()
lgamma ()
log()
.1ogl0()
.loglp ()
.pow ()
radians ()
sin ()

sinh ()

2.6. Supported Python features

131

https://docs.python.org/3/library/math.html#module-math

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

math.sqgrt ()

math.tan()

math.tanh ()

math.trunc /()

operator

The following functions from the operator module are supported:

* operator.add()

operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.
operator.

operator.

and_ ()

eq ()
floordiv ()
ge ()

gt ()

iadd ()
iand ()
ifloordiv ()
ilshift ()
imatmul () (Python 3.5 and above)
imod ()
imul ()
invert ()
ior ()
ipow ()
irshift ()
isub ()
itruediv ()
ixor ()

le ()
1shift ()

1t ()

matmul () (Python 3.5 and above)
mod ()

mul ()

132

Chapter 2. Reference Manual

https://docs.python.org/3/library/operator.html#module-operator
https://docs.python.org/3/library/operator.html#operator.add
https://docs.python.org/3/library/operator.html#operator.and_
https://docs.python.org/3/library/operator.html#operator.eq
https://docs.python.org/3/library/operator.html#operator.floordiv
https://docs.python.org/3/library/operator.html#operator.ge
https://docs.python.org/3/library/operator.html#operator.gt
https://docs.python.org/3/library/operator.html#operator.iadd
https://docs.python.org/3/library/operator.html#operator.iand
https://docs.python.org/3/library/operator.html#operator.ifloordiv
https://docs.python.org/3/library/operator.html#operator.ilshift
https://docs.python.org/3/library/operator.html#operator.imatmul
https://docs.python.org/3/library/operator.html#operator.imod
https://docs.python.org/3/library/operator.html#operator.imul
https://docs.python.org/3/library/operator.html#operator.invert
https://docs.python.org/3/library/operator.html#operator.ior
https://docs.python.org/3/library/operator.html#operator.ipow
https://docs.python.org/3/library/operator.html#operator.irshift
https://docs.python.org/3/library/operator.html#operator.isub
https://docs.python.org/3/library/operator.html#operator.itruediv
https://docs.python.org/3/library/operator.html#operator.ixor
https://docs.python.org/3/library/operator.html#operator.le
https://docs.python.org/3/library/operator.html#operator.lshift
https://docs.python.org/3/library/operator.html#operator.lt
https://docs.python.org/3/library/operator.html#operator.matmul
https://docs.python.org/3/library/operator.html#operator.mod
https://docs.python.org/3/library/operator.html#operator.mul
https://docs.python.org/3/library/operator.html#operator.ne
https://docs.python.org/3/library/operator.html#operator.neg
https://docs.python.org/3/library/operator.html#operator.not_

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

operator.or_ ()

operator.pos ()

operator.pow ()

operator.rshift ()

operator.sub ()

operator.truediv ()

operator.xor ()

functools

The functools.reduce () function is supported but the initializer argument is required.

random

Numba supports top-level functions from the random module, but does not allow you to create individual Random
instances. A Mersenne-Twister generator is used, with a dedicated internal state. It is initialized at startup with entropy
drawn from the operating system.

e random.betavariate ()

random.
random.
random.
random.
random.
random.
random.
random.
random.
random.
random.

random.

expovariate ()

gammavariate ()

gauss ()
getrandbits (): number of bits must not be greater than 64
lognormvariate ()
normalvariate ()
paretovariate ()

randint ()

random ()

randrange ()

seed () : with an integer argument only

shuffle (): the sequence argument must be a one-dimension Numpy array or buffer-providing

object (suchasabytearray or array.array); the second (optional) argument is not supported

random.
random.
random.

random.

uniform/()
triangular ()
vonmisesvariate ()

welibullvariate ()

Note: Calling random. seed () from non-Numba code (or from object mode code) will seed the Python random
generator, not the Numba random generator.

2.6. Supported Python features 133

https://docs.python.org/3/library/operator.html#operator.or_
https://docs.python.org/3/library/operator.html#operator.pos
https://docs.python.org/3/library/operator.html#operator.pow
https://docs.python.org/3/library/operator.html#operator.rshift
https://docs.python.org/3/library/operator.html#operator.sub
https://docs.python.org/3/library/operator.html#operator.truediv
https://docs.python.org/3/library/operator.html#operator.xor
https://docs.python.org/3/library/functools.html#functools.reduce
https://docs.python.org/3/library/random.html#module-random
https://docs.python.org/3/library/random.html#random.betavariate
https://docs.python.org/3/library/random.html#random.expovariate
https://docs.python.org/3/library/random.html#random.gammavariate
https://docs.python.org/3/library/random.html#random.gauss
https://docs.python.org/3/library/random.html#random.getrandbits
https://docs.python.org/3/library/random.html#random.lognormvariate
https://docs.python.org/3/library/random.html#random.normalvariate
https://docs.python.org/3/library/random.html#random.paretovariate
https://docs.python.org/3/library/random.html#random.randint
https://docs.python.org/3/library/random.html#random.random
https://docs.python.org/3/library/random.html#random.randrange
https://docs.python.org/3/library/random.html#random.seed
https://docs.python.org/3/library/random.html#random.shuffle
https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/array.html#array.array
https://docs.python.org/3/library/random.html#random.uniform
https://docs.python.org/3/library/random.html#random.triangular
https://docs.python.org/3/library/random.html#random.vonmisesvariate
https://docs.python.org/3/library/random.html#random.weibullvariate
https://docs.python.org/3/library/random.html#random.seed

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Note:

Since version 0.28.0, the generator is thread-safe and fork-safe. Each thread and each process will produce
independent streams of random numbers.

See also:

Numba also supports most additional distributions from the Numpy random module.

heapg

The following functions from the heapg module are supported:

heapqg.heapify ()

heapg.heappop ()

heapqg.heappush ()
heapqg.heappushpop ()
heapg.heapreplace ()
heapg.nlargest () : first two arguments only

heapg.nsmallest () : first two arguments only

Note: the heap must be seeded with at least one value to allow its type to be inferred; heap items are assumed to be
homogeneous in type.

2.6.5 Third-party modules

cffi

Similarly to ctypes, Numba is able to call into cffi-declared external functions, using the following C types and any
derived pointer types:

char

short

int

long

long long
unsigned char
unsigned short
unsigned int
unsigned long
unsigned long long
int8_t

uint8_t
intle_t

uintle_t

134

Chapter 2. Reference Manual

https://docs.python.org/3/library/heapq.html#module-heapq
https://docs.python.org/3/library/heapq.html#heapq.heapify
https://docs.python.org/3/library/heapq.html#heapq.heappop
https://docs.python.org/3/library/heapq.html#heapq.heappush
https://docs.python.org/3/library/heapq.html#heapq.heappushpop
https://docs.python.org/3/library/heapq.html#heapq.heapreplace
https://docs.python.org/3/library/heapq.html#heapq.nlargest
https://docs.python.org/3/library/heapq.html#heapq.nsmallest
https://cffi.readthedocs.org/

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

e int32_t
e uint32_t
e int64_t
e uintod_t
e float

* double

* ssize_t
e size_t

e void

The from buffer () method of c££i.FFI and CompiledFFI objects is supported for passing Numpy arrays
and other buffer-like objects. Only contiguous arguments are accepted. The argument to from_buffer () is con-
verted to a raw pointer of the appropriate C type (for example a double « fora float64 array).

Additional type mappings for the conversion from a buffer to the appropriate C type may be registered with Numba.
This may include struct types, though it is only permitted to call functions that accept pointers to structs - passing a
struct by value is unsupported. For registering a mapping, use:

numba.core.typing.cffi_utils.register_type (cffi_type, numba_type)

Out-of-line cffi modules must be registered with Numba prior to the use of any of their functions from within Numba-
compiled functions:

numba.core.typing.cffi_utils.register_module (mod)
Register the cffi out-of-line module mod with Numba.

Inline cffi modules require no registration.

2.7 Supported NumPy features

One objective of Numba is having a seamless integration with NumPy. NumPy arrays provide an efficient storage
method for homogeneous sets of data. NumPy dtypes provide type information useful when compiling, and the
regular, structured storage of potentially large amounts of data in memory provides an ideal memory layout for code
generation. Numba excels at generating code that executes on top of NumPy arrays.

NumPy support in Numba comes in many forms:
* Numba understands calls to NumPy ufuncs and is able to generate equivalent native code for many of them.

* NumPy arrays are directly supported in Numba. Access to Numpy arrays is very efficient, as indexing is lowered
to direct memory accesses when possible.

* Numbea is able to generate ufuncs and gufuncs. This means that it is possible to implement ufuncs and gufuncs
within Python, getting speeds comparable to that of ufuncs/gufuncs implemented in C extension modules using
the NumPy C APL

The following sections focus on the Numpy features supported in nopython mode, unless otherwise stated.

2.7. Supported NumPy features 135

http://www.numpy.org/
http://docs.scipy.org/doc/numpy/reference/ufuncs.html
http://docs.scipy.org/doc/numpy/reference/ufuncs.html
http://docs.scipy.org/doc/numpy/reference/c-api.generalized-ufuncs.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

2.7.1 Scalar types

Numba supports the following Numpy scalar types:

* Integers: all integers of either signedness, and any width up to 64 bits

* Booleans

* Real numbers: single-precision (32-bit) and double-precision (64-bit) reals

* Complex numbers: single-precision (2x32-bit) and double-precision (2x64-bit) complex numbers

* Datetimes and timestamps: of any unit

* Character sequences (but no operations are available on them)

¢ Structured scalars: structured scalars made of any of the types above and arrays of the types above
The following scalar types and features are not supported:

¢ Arbitrary Python objects

» Half-precision and extended-precision real and complex numbers

* Nested structured scalars the fields of structured scalars may not contain other structured scalars

The operations supported on NumPy scalars are almost the same as on the equivalent built-in types such as int
or float. You can use a type’s constructor to convert from a different type or width. In addition you can use the
view (np.<dtype>) method to bitcast all int and f1loat types within the same width. However, you must define
the scalar using a NumPy constructor within a jitted function. For example, the following will work:

>>> import numpy as np
>>> from numba import njit
>>> @nijit
def bitcast () :
i = np.int64 (-1)
print (i.view(np.uint64))

>>> bitcast ()
18446744073709551615

Whereas the following will not work:

>>> import numpy as np
>>> from numba import njit
>>> @njit
def bitcast (1i):
print (i.view(np.uint64))

>>> bitcast(np.int64(-1))

TypingError Traceback (most recent call last)

TypingError: Failed in nopython mode pipeline (step: ensure IR is legal prior to,
—lowering)

'view' can only be called on NumPy dtypes, try wrapping the variable with 'np.<dtype>
= ()

File "<ipython-input-3-fc40aaab84c4>", line 3:
def bitcast (i) :
print (i.view (np.uint64))

136 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Structured scalars support attribute getting and setting, as well as member lookup using constant strings. Strings stored
in a local or global tuple are considered constant strings and can be used for member lookup.

import numpy as np
from numba import njit

arr = np.array([(1, 2)], dtype=[('al', 'f8"), ('az2', '£8")1])
fields_gl = ('al', 'a2'")
@njit
def get_field_sum(rec) :
fields_1lc = ('al', 'az2'")

field_namel = fields_1c[0]
field _name2 = fields_gl[1]
return rec[field_namel] + rec[field_name2]

get_field_sum(arr([0]) # returns 3

It is also possible to use local or global tuples together with 1iteral_unroll:

import numpy as np
from numba import njit, literal_unroll

arr np.array ([(1, 2)], dtype=[('al', '£f8'), ('a2', 'f8")1])
fields_gl = ('al', 'a2'")

@njit
def get_field_sum(rec):
out = 0
for £ in literal unroll (fields_gl):
out += recl[f]
return out

get_field_sum(arr([0]) # returns 3

Record subtyping

Warning: This is an experimental feature.

Numba allows width subtyping of structured scalars. For example, dtype ([('a', '£8'), ('b', 'i8')1])
will be considered a subtype of dtype ([('a', '£8"')], because the second is a strict subset of the first, i.e. field
a is of the same type and is in the same position in both types. The subtyping relationship will matter in cases where
compilation for a certain input is not allowed, but the input is a subtype of another, allowed type.

import numpy as np

from numba import njit, typeof

from numba.core import types

recordl = np.array([1], dtype=[('a', '"£8")1)[0]

record2 = np.array([(2,3)], dtype=[('a', '£8"), ('b', "£8")]1)[0]

@njit (types.float64 (typeof (recordl)))
def foo(rec):
return rec['a']

(continues on next page)

2.7. Supported NumPy features 137

https://en.wikipedia.org/wiki/Subtyping#Record_types

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

foo (recordl)
foo (record?)

Without subtyping the last line would fail. With subtyping, no new compilation will be triggered, but the compiled
function for recordl will be used for record?2.

See also:

Numpy scalars reference.

2.7.2 Array types

Numpy arrays of any of the scalar types above are supported, regardless of the shape or layout.

Array access

Arrays support normal iteration. Full basic indexing and slicing is supported. A subset of advanced indexing is also
supported: only one advanced index is allowed, and it has to be a one-dimensional array (it can be combined with an
arbitrary number of basic indices as well).

See also:

Numpy indexing reference.
Structured array access
Numba presently supports accessing fields of individual elements in structured arrays by attribute as well as by getting

and setting. This goes slightly beyond the NumPy API, which only allows accessing fields by getting and setting. For
example:

from numba import njit
import numpy as np

record_type = np.dtype([("ival", np.int32), ("fval", np.float64)], align=True)
def f (rec):

value = 2.5

rec[0].ival = int (value)

rec[0].fval = wvalue

return rec
arr = np.ones(l, dtype=record_type)
cfunc = njit (f)

Works
print (cfunc(arr))

Does not work
print (f (arr))

The above code results in the output:

138 Chapter 2. Reference Manual

http://docs.scipy.org/doc/numpy/reference/arrays.scalars.html
http://docs.scipy.org/doc/numpy/reference/arrays.ndarray.html
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(2, 2.5)]

Traceback (most recent call last):

File "repro.py",
print (f (arr))
File "repro.py",

AttributeError: 'numpy.void'

line 22,

in <module>

line 9, in f
rec[0].ival = int (value)

object has no attribute

'ival'

The Numba-compiled version of the function executes, but the pure Python version raises an error because of the
unsupported use of attribute access.

Note: This behavior will eventually be deprecated and removed.

Attributes

The following attributes of Numpy arrays are supported:

e dtype

e flags

e flat

e itemsize
* ndim

* shape

* size

* strides
e T

* real

* imag

The flags object

The object returned by the £1lags attribute supports the cont iguous, c_contiguous and f£_contiguous

attributes.

The £1at object

The object returned by the f1at attribute supports iteration and indexing, but be careful: indexing is very slow on

non-C-contiguous arrays.

2.7. Supported NumPy features

139

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dtype.html#numpy.ndarray.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flat.html#numpy.ndarray.flat
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemsize.html#numpy.ndarray.itemsize
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ndim.html#numpy.ndarray.ndim
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.shape.html#numpy.ndarray.shape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html#numpy.ndarray.size
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.strides.html#numpy.ndarray.strides
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.T.html#numpy.ndarray.T
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.real.html#numpy.ndarray.real
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.imag.html#numpy.ndarray.imag
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flags.html#numpy.ndarray.flags
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flat.html#numpy.ndarray.flat

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

The real and imag attributes

Numpy supports these attributes regardless of the dtype but Numba chooses to limit their support to avoid potential
user error. For numeric dtypes, Numba follows Numpy’s behavior. The real attribute returns a view of the real part
of the complex array and it behaves as an identity function for other numeric dtypes. The imag attribute returns a
view of the imaginary part of the complex array and it returns a zero array with the same shape and dtype for other
numeric dtypes. For non-numeric dtypes, including all structured/record dtypes, using these attributes will result in a
compile-time (TypingError) error. This behavior differs from Numpy’s but it is chosen to avoid the potential confusion
with field names that overlap these attributes.

Calculation

The following methods of Numpy arrays are supported in their basic form (without any optional arguments):
e all()
e any ()
* argmax ()
e argmin ()
e conj()
* conjugate ()
e cumprod ()
e cumsum ()
* max ()
* mean ()
e min ()
* nonzero ()
* prod()
e std()
e take ()
e var ()

The corresponding top-level Numpy functions (such as numpy . prod ()) are similarly supported.

Other methods

The following methods of Numpy arrays are supported:
e argsort () (kind key word argument supported for values 'quicksort' and 'mergesort"')
* astype () (only the 1-argument form)
e copy () (without arguments)
e dot () (only the 1-argument form)
e flatten () (no order argument; ‘C’ order only)

e item () (without arguments)

140 Chapter 2. Reference Manual

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.real.html#numpy.ndarray.real
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.imag.html#numpy.ndarray.imag
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.all.html#numpy.ndarray.all
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.any.html#numpy.ndarray.any
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmax.html#numpy.ndarray.argmax
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argmin.html#numpy.ndarray.argmin
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conj.html#numpy.ndarray.conj
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.conjugate.html#numpy.ndarray.conjugate
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumprod.html#numpy.ndarray.cumprod
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.cumsum.html#numpy.ndarray.cumsum
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.max.html#numpy.ndarray.max
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.mean.html#numpy.ndarray.mean
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.min.html#numpy.ndarray.min
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.nonzero.html#numpy.ndarray.nonzero
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.prod.html#numpy.ndarray.prod
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.std.html#numpy.ndarray.std
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.var.html#numpy.ndarray.var
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.argsort.html#numpy.ndarray.argsort
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.astype.html#numpy.ndarray.astype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.copy.html#numpy.ndarray.copy
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.dot.html#numpy.ndarray.dot
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.flatten.html#numpy.ndarray.flatten
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.item.html#numpy.ndarray.item

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

e itemset () (only the 1-argument form)

e ptp () (without arguments)

e ravel () (no order argument; ‘C’ order only)

e repeat () (no axis argument)

e reshape () (only the 1-argument form)

e sort () (without arguments)

e sum () (with or without the axis and/or dt ype arguments.)
— axis only supports integer values.

— If the axis argument is a compile-time constant, all valid values are supported. An out-of-range value
will result in a LoweringError at compile-time.

— If the axis argument is not a compile-time constant, only values from O to 3 are supported. An out-of-
range value will result in a runtime exception.

— All numeric dtypes are supported in the dtype parameter. t imedelta arrays can be used as input
arrays but t imedelta is not supported as dt ype parameter.

— When a dtype is given, it determines the type of the internal accumulator. When it is not, the selection
is made automatically based on the input array’s dtype, mostly following the same rules as NumPy.
However, on 64-bit Windows, Numba uses a 64-bit accumulator for integer inputs (int 64 for int32
inputs and uint 64 for uint 32 inputs), while NumPy would use a 32-bit accumulator in those cases.

* transpose ()
e view () (only the 1-argument form)

e contains__ ()

Warning: Sorting may be slightly slower than Numpy’s implementation.

2.7.3 Functions

Linear algebra

Basic linear algebra is supported on 1-D and 2-D contiguous arrays of floating-point and complex numbers:
* numpy.dot ()
e numpy.kron () (‘C’ and ‘F’ order only)
* numpy.outer ()

e numpy.trace () (only the first argument).

numpy.vdot ()

On Python 3.5 and above, the matrix multiplication operator from PEP 465 (i.e. a @ b where a and b are 1-D
or 2-D arrays).

numpy.linalg.cholesky ()

numpy.linalg.cond () (only non string values in p).

numpy.linalg.det ()

2.7. Supported NumPy features 141

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.itemset.html#numpy.ndarray.itemset
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ptp.html#numpy.ndarray.ptp
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.repeat.html#numpy.ndarray.repeat
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sort.html#numpy.ndarray.sort
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.sum.html#numpy.ndarray.sum
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.transpose.html#numpy.ndarray.transpose
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.view.html#numpy.ndarray.view
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.__contains__.html#numpy.ndarray.__contains__
https://www.python.org/dev/peps/pep-0465

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numpy.

linalg.eig () (only running with data that does not cause a domain change is supported e.g. real

input -> real output, complex input -> complex output).

numpy.

numpy .

linalg.eigh () (only the first argument).

linalg.eigvals () (only running with data that does not cause a domain change is supported e.g.

real input -> real output, complex input -> complex output).

numpy.
numpy.
numpy .
numpy.
numpy.
numpy .
numpy .
numpy.
numpy.
numpy .

numpy.

linalg.eigvalsh () (only the first argument).

linalg.inv ()

linalg.1stsqg/()

linalg.matrix_power ()

linalg.matrix_rank ()

linalg.norm () (only the 2 first arguments and only non string values in ord).
linalg.pinv()

linalg.qgr () (only the first argument).

linalg.slogdet ()

linalg.solve ()

linalg.svd () (only the 2 first arguments).

Note:

The implementation of these functions needs SciPy to be installed.

Reductions

The following reduction functions are supported:

numpy .
numpy .
numpy.
numpy.
numpy .
numpy.
numpy.
numpy .

numpy .
ported)

numpy .
numpy .
numpy .
numpy .
numpy .

numpy .

diff () (only the 2 first arguments)

median () (only the first argument)

nancumprod () (only the first argument, requires NumPy >= 1.12))
nancumsum () (only the first argument, requires NumPy >= 1.12))
nanmax () (only the first argument)

nanmean () (only the first argument)

nanmedian () (only the first argument)

nanmin () (only the first argument)

nanpercentile () (only the 2 first arguments, requires NumPy >= 1.11, complex dtypes unsup-

nanquantile () (only the 2 first arguments, requires NumPy >= 1.15, complex dtypes unsupported)
nanprod () (only the first argument)

nanstd () (only the first argument)

nansum () (only the first argument)

nanvar () (only the first argument)

percentile () (only the 2 first arguments, requires NumPy >= 1.10, complex dtypes unsupported)

142

Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

* numpy.quantile () (only the 2 first arguments, requires NumPy >= 1.15, complex dtypes unsupported)

Other functions

The following top-level functions are supported:

numpy

numpy.
numpy.
numpy .
numpy.
numpy.
numpy.
numpy.
numpy.
numpy.
numpy .
numpy.
numpy.
numpy.
numpy.
numpy.
numpy.
numpy .
numpy.
numpy.
numpy.
numpy.
numpy.
numpy.
numpy .

numpy.

3)
- If

numpy
numpy
numpy

numpy

.append ()

arange ()

argwhere ()

array () (only the 2 first arguments)
array_equal ()

array_split ()

asarray () (only the 2 first arguments)
asarray_chkfinite () (only the 2 first arguments)
asfarray ()
asfortranarray () (only the first argument)
atleast_1d/()

atleast_2d()

atleast_3d()

bartlett ()

bincount ()

blackman ()

column_stack ()

concatenate ()

convolve () (only the 2 first arguments)

copy () (only the first argument)

corrcoef () (only the 3 first arguments, requires SciPy)
correlate () (only the 2 first arguments)
count_nonzero () (axis only supports scalar values)

cov () (only the 5 first arguments)

cross () (only the 2 first arguments; at least one of the input arrays should have shape [-1]

argsort () (kind key word argument supported for values 'quicksort' and 'mergesort')

shape[-1] == 2 for both inputs, please replace your numpy.cross () call with numba.np.
extensions.cross2d().

.delete () (only the 2 first arguments)
.diag/()
.digitize()

.dstack ()

2.7. Supported NumPy features

143

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numpy .
numpy .
numpy.
numpy.
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy.
numpy.
numpy .
numpy .
numpy .
numpy .
numpy .
numpy.
numpy.
numpy .
numpy .
numpy .
numpy .
numpy .
numpy .
numpy.
numpy .

numpy.

numpy

numpy.
numpy.
numpy.
numpy .

dtype () (only the first argument)

ediffld()

empty () (only the 2 first arguments)
empty_like () (only the 2 first arguments)
expand_dims ()

extract ()

eye ()

fill diagonal ()

flatten () (no order argument; ‘C’ order only)
flatnonzero ()

f1ip () (no axis argument)

fliplr()

flipud()

frombuffer () (only the 2 first arguments)
full () (only the 3 first arguments)
full_1like () (only the 3 first arguments)
hamming ()

hanning ()

histogram /() (only the 3 first arguments)
hstack ()

identity()

kaiser()

interp () (only the 3 first arguments; requires NumPy >= 1.10)
intersectld () (only first 2 arguments, arl and ar2)
linspace () (only the 3-argument form)
ndenumerate

ndindex

nditer (only the first argument)

ones () (only the 2 first arguments)
ones_1like () (only the 2 first arguments)

partition () (only the 2 first arguments)

.ptp () (only the first argument)

ravel () (no order argument; ‘C’ order only)
repeat () (no axis argument)
reshape () (no order argument; ‘C’ order only)

roll () (only the 2 first arguments; second argument shift must be an integer)

144

Chapter 2. Reference Manual

https://numpy.org/doc/stable/reference/generated/numpy.ndenumerate.html#numpy.ndenumerate
https://numpy.org/doc/stable/reference/generated/numpy.ndindex.html#numpy.ndindex
https://numpy.org/doc/stable/reference/generated/numpy.nditer.html#numpy.nditer

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

* numpy.roots ()
e numpy.round_ ()
* numpy.searchsorted () (only the 3 first arguments)
e numpy.select () (only using homogeneous lists or tuples for the first two arguments, condlist and
choicelist). Additionally, these two arguments can only contain arrays (unlike Numpy that also accepts tuples).
¢ numpy.shape ()
* numpy.sinc()
* numpy.sort () (no optional arguments)
e numpy.split ()
* numpy.stack ()
* numpy.take () (only the 2 first arguments)
* numpy.transpose ()
e numpy.trapz () (only the 3 first arguments)
* numpy.tri () (only the 3 first arguments; third argument k must be an integer)
e numpy.tril () (second argument k must be an integer)
* numpy.tril_indices () (all arguments must be integer)
e numpy.tril_indices_from() (second argument k must be an integer)
e numpy.triu/() (second argument k must be an integer)
* numpy.triu_indices () (all arguments must be integer)
* numpy.triu_indices_from/() (second argument k must be an integer)
* numpy.unique () (only the first argument)
* numpy.vander ()
* numpy.vstack ()
* numpy.where ()
e numpy.zeros () (only the 2 first arguments)
* numpy.zeros_like () (only the 2 first arguments)
The following constructors are supported, both with a numeric input (to construct a scalar) or a sequence (to construct
an array):
* numpy.bool__
* numpy.complex64
* numpy.complex128
* numpy.float32
* numpy.float64
* numpy.int3
* numpy.intl6
* numpy.int32
* numpy.int64

2.7. Supported NumPy features 145

https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.bool_

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* numpy.intc
* numpy.intp
* numpy.uint8
* numpy.uintlé6
* numpy.uint32
* numpy.uint64
* numpy.uintc
* numpy.uintp
The following machine parameter classes are supported, with all purely numerical attributes:
e numpy.iinfo
e numpy . finfo (machar attribute not supported)

* numpy .MachAr (with no arguments to the constructor)

Literal arrays

Neither Python nor Numba has actual array literals, but you can construct arbitrary arrays by calling numpy .
array () on anested tuple:

a = numpy.array(((a, b, ¢c), (d, e, f)))

(nested lists are not yet supported by Numba)

2.7.4 Modules

random

Numba supports top-level functions from the numpy.random module, but does not allow you to create individual
RandomState instances. The same algorithms are used as for the standard random module (and therefore the same
notes apply), but with an independent internal state: seeding or drawing numbers from one generator won’t affect the
other.

The following functions are supported.

Initialization

* numpy.random. seed (): with an integer argument only

146 Chapter 2. Reference Manual

https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.intc
https://numpy.org/doc/stable/reference/arrays.scalars.html#numpy.uintc
https://numpy.org/doc/stable/reference/generated/numpy.iinfo.html#numpy.iinfo
https://numpy.org/doc/stable/reference/generated/numpy.finfo.html#numpy.finfo
https://numpy.org/doc/stable/reference/generated/numpy.MachAr.html#numpy.MachAr
http://docs.scipy.org/doc/numpy/reference/routines.random.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Simple random data

* numpy.random.rand()

* numpy.random.randint () (only the first two arguments)
* numpy.random.randn ()

* numpy.random.random/()

* numpy.random.random_sample ()

* numpy.random.ranf ()

* numpy.random.sample ()

Permutations

* numpy.random.choice (): the optional p argument (probabilities array) is not supported

* numpy.random.permutation ()

* numpy.random.shuffle (): the sequence argument must be a one-dimension Numpy array or buffer-

providing object (such as abytearray or array.array)

Distributions

Warning: The size argument is not supported in the following functions.

* numpy.random.beta ()

* numpy.random.binomial ()

* numpy.random.chisquare ()

* numpy.random.exponential ()

* numpy.random. £ ()

* numpy.random.gamma ()

* numpy.random.geometric()

* numpy.random.gumbel ()

* numpy.random.hypergeometric ()
* numpy.random.laplace ()

* numpy.random.logistic ()

* numpy.random.lognormal ()

* numpy.random.logseries ()

* numpy.random.multinomial ()

* numpy.random.negative_binomial ()
* numpy.random.normal ()

* numpy.random.pareto ()

2.7. Supported NumPy features

147

https://docs.python.org/3/library/stdtypes.html#bytearray
https://docs.python.org/3/library/array.html#array.array

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* numpy.random.poisson ()

* numpy.random.power ()

* numpy.random.rayleigh ()

* numpy.random.standard _cauchy ()
* numpy.random.standard_exponential ()
* numpy.random.standard_gamma ()
* numpy.random.standard normal ()
* numpy.random.standard_t ()

* numpy.random.triangular ()

* numpy.random.uniform()

* numpy.random.vonmises ()

* numpy.random.wald()

* numpy.random.weibull ()

* numpy.random.zipf ()

Note: Calling numpy.random. seed () from non-Numba code (or from object mode code) will seed the Numpy
random generator, not the Numba random generator.

Note: Since version 0.28.0, the generator is thread-safe and fork-safe. Each thread and each process will produce
independent streams of random numbers.

stride_tricks

The following function from the numpy . 1lib.stride_tricks module is supported:

* as_strided () (the strides argument is mandatory, the subok argument is not supported)

2.7.5 Standard ufuncs

One objective of Numba is having all the standard ufuncs in NumPy understood by Numba. When a supported ufunc
is found when compiling a function, Numba maps the ufunc to equivalent native code. This allows the use of those
ufuncs in Numba code that gets compiled in nopython mode.

148 Chapter 2. Reference Manual

http://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Limitations

Right now, only a selection of the standard ufuncs work in nopython mode. Following is a list of the different standard
ufuncs that Numba is aware of, sorted in the same way as in the NumPy documentation.

Math operations

UFUNC MODE

name object mode nopython mode
add Yes Yes
subtract Yes Yes
multiply Yes Yes
divide Yes Yes
logaddexp Yes Yes
logaddexp2 | Yes Yes
true_divide | Yes Yes
floor_divide | Yes Yes
negative Yes Yes
power Yes Yes
remainder Yes Yes
mod Yes Yes
fmod Yes Yes
divmod (*) | Yes Yes
abs Yes Yes
absolute Yes Yes
fabs Yes Yes
rint Yes Yes
sign Yes Yes
conj Yes Yes
exp Yes Yes
exp2 Yes Yes
log Yes Yes
log2 Yes Yes
log10 Yes Yes
expml Yes Yes
loglp Yes Yes
sqrt Yes Yes
square Yes Yes
reciprocal Yes Yes
conjugate Yes Yes
gcd Yes Yes
lem Yes Yes

(*) not supported on timedelta types

2.7. Supported NumPy features

149

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Trigonometric functions

Bit-twiddling functions

UFUNC | MODE
name object mode | nopython mode
sin Yes Yes
cos Yes Yes
tan Yes Yes
arcsin Yes Yes
arccos Yes Yes
arctan Yes Yes
arctan2 Yes Yes
hypot Yes Yes
sinh Yes Yes
cosh Yes Yes
tanh Yes Yes
arcsinh Yes Yes
arccosh Yes Yes
arctanh Yes Yes
deg2rad | Yes Yes
rad2deg | Yes Yes
degrees | Yes Yes
radians Yes Yes
UFUNC MODE
name object mode | nopython mode
bitwise_and | Yes Yes
bitwise_or Yes Yes
bitwise_xor | Yes Yes
bitwise_not | Yes Yes
invert Yes Yes
left_shift Yes Yes
right_shift Yes Yes

150

Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Comparison functions

UFUNC MODE
name object mode | nopython mode
greater Yes Yes
greater_equal | Yes Yes
less Yes Yes
less_equal Yes Yes
not_equal Yes Yes
equal Yes Yes
logical_and Yes Yes
logical_or Yes Yes
logical_xor Yes Yes
logical_not Yes Yes
maximum Yes Yes
minimum Yes Yes
fmax Yes Yes
fmin Yes Yes
Floating functions
UFUNC | MODE
name object mode | nopython mode
isfinite Yes Yes
isinf Yes Yes
isnan Yes Yes
signbit Yes Yes
copysign | Yes Yes
nextafter | Yes Yes
modf Yes No
ldexp Yes (*) Yes
frexp Yes No
floor Yes Yes
ceil Yes Yes
trunc Yes Yes
spacing | Yes Yes
(*) not supported on windows 32 bit
Datetime functions
UFUNC | MODE
name object mode | nopython mode
isnat Yes Yes

2.7. Supported NumPy features

151

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

2.8 Deviations from Python Semantics

2.8.1 Bounds Checking

By default, instead of causing an IndexError, accessing an out-of-bound index of an array in a Numba-compiled
function will return invalid values or lead to an access violation error (it’s reading from invalid memory locations).
Bounds checking can be enabled on a specific function via the boundscheck option of the jit decorator. Additionally,
the NUMBA_BOUNDSCHECK can be set to O or 1 to globally override this flag.

Note: Bounds checking will slow down typical functions so it is recommended to only use this flag for debugging
purposes.

2.8.2 Exceptions and Memory Allocation

Due to limitations in the current compiler when handling exceptions, memory allocated (almost always NumPy arrays)
within a function that raises an exception will leak. This is a known issue that will be fixed, but in the meantime, it is
best to do memory allocation outside of functions that can also raise exceptions.

2.8.3 Integer width

While Python has arbitrary-sized integers, integers in Numba-compiled functions get a fixed size through type in-
ference (usually, the size of a machine integer). This means that arithmetic operations can wrapround or produce
undefined results or overflow.

Type inference can be overridden by an explicit type specification, if fine-grained control of integer width is desired.
See also:

Enhancement proposal 1: Changes in integer typing

2.8.4 Boolean inversion

Calling the bitwise complement operator (the ~ operator) on a Python boolean returns an integer, while the same
operator on a Numpy boolean returns another boolean:

>>> ~True

-2

>>> ~np.bool_ (True)
False

Numba follows the Numpy semantics.

152 Chapter 2. Reference Manual

https://docs.python.org/3/library/exceptions.html#IndexError

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

2.8.5 Global and closure variables

In nopython mode, global and closure variables are frozen by Numba: a Numba-compiled function sees the value of
those variables at the time the function was compiled. Also, it is not possible to change their values from the function.

Numba may or may not copy global variables referenced inside a compiled function. Small global arrays are copied
for potential compiler optimization with immutability assumption. However, large global arrays are not copied to
conserve memory. The definition of “small” and “large” may change.

Todo: This document needs completing.

2.9 Floating-point pitfalls

2.9.1 Precision and accuracy

For some operations, Numba may use a different algorithm than Python or Numpy. The results may not be bit-
by-bit compatible. The difference should generally be small and within reasonable expectations. However, small
accumulated differences might produce large differences at the end, especially if a divergent function is involved.

Math library implementations

Numba supports a variety of platforms and operating systems, each of which has its own math library implementation
(referred to as 1ibm from here in). The majority of math functions included in 1ibm have specific requirements as
set out by the IEEE 754 standard (like sin (), exp () etc.), but each implementation may have bugs. Thus, on some
platforms Numba has to exercise special care in order to workaround known 1 ibm issues.

Another typical problem is when an operating system’s 1ibm function set is incomplete and needs to be supple-
mented by additional functions. These are provided with reference to the IEEE 754 and C99 standards and are often
implemented in Numba in a manner similar to equivalent CPython functions.

Linear algebra

Numpy forces some linear algebra operations to run in double-precision mode even when a £1oat 32 input is given.
Numba will always observe the input’s precision, and invoke single-precision linear algebra routines when all inputs
are float32 or complex64.

The implementations of the numpy . 1inalg routines in Numba only support the floating point types that are used
in the LAPACK functions that provide the underlying core functionality. As a result only float32, float64,
complex64 and complex128 types are supported. If a user has e.g. an int 32 type, an appropriate type conversion
must be performed to a floating point type prior to its use in these routines. The reason for this decision is to essentially
avoid having to replicate type conversion choices made in Numpy and to also encourage the user to choose the optimal
floating point type for the operation they are undertaking.

2.9. Floating-point pitfalls 153

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Mixed-types operations

Numpy will most often return a £1oat 64 as a result of a computation with mixed integer and floating-point operands
(a typical example is the power operator * x). Numba by contrast will select the highest precision amongst the floating-
point operands, so for example f1loat32 »+ int32 will return a float 32, regardless of the input values. This
makes performance characteristics easier to predict, but you should explicitly cast the input to £1oat 64 if you need
the extra precision.

2.9.2 Warnings and errors

When calling a ufunc created with vectorize (), Numpy will determine whether an error occurred by examining
the FPU error word. It may then print out a warning or raise an exception (such as Runt imeWarning: divide
by zero encountered), depending on the current error handling settings.

Depending on how LLVM optimized the ufunc’s code, however, some spurious warnings or errors may appear. If you
get caught by this issue, we recommend you call numpy . seterr () to change Numpy’s error handling settings, or
the numpy . errstate context manager to switch them temporarily:

with np.errstate(all="ignore'):
x = my_ufunc(y)

2.10 Deprecation Notices

This section contains information about deprecation of behaviours, features and APIs that have become undesir-
able/obsolete. Any information about the schedule for their deprecation and reasoning behind the changes, along
with examples, is provided. However, first is a small section on how to suppress deprecation warnings that may be
raised from Numba so as to prevent warnings propagating into code that is consuming Numba.

2.10.1 Suppressing Deprecation warnings

All Numba deprecations are issued via NumbaDeprecationWarning or
NumbaPendingDeprecationWarning s, to suppress the reporting of these the following code snippet
can be used:

from numba.core.errors import NumbaDeprecationWarning, NumbaPendingDeprecationWarning
import warnings

warnings.simplefilter ('ignore', category=NumbaDeprecationWarning)
warnings.simplefilter ('ignore', category=NumbaPendingDeprecationWarning)

The action used above is ' ignore', other actions are available, see The Warnings Filter documentation for more
information.

Note: It is strongly recommended that applications and libraries which choose to suppress these warnings should
pin their Numba dependency to a suitable version because their users will no longer be aware of the coming incom-
patibility.

154 Chapter 2. Reference Manual

https://numpy.org/doc/stable/reference/generated/numpy.seterr.html#numpy.seterr
https://numpy.org/doc/stable/reference/generated/numpy.errstate.html#numpy.errstate
https://docs.python.org/3/library/warnings.html#the-warnings-filter

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

2.10.2 Deprecation of reflection for List and Set types

Reflection (reflection) is the jargon used in Numba to describe the process of ensuring that changes made by compiled
code to arguments that are mutable Python container data types are visible in the Python interpreter when the compiled
function returns. Numba has for some time supported reflection of 1ist and set data types and it is support for this
reflection that is scheduled for deprecation with view to replace with a better implementation.

Reason for deprecation

First recall that for Numba to be able to compile a function in nopython mode all the variables must have a con-
crete type ascertained through type inference. In simple cases, it is clear how to reflect changes to containers inside
nopython mode back to the original Python containers. However, reflecting changes to complex data structures
with nested container types (for example, lists of lists of integers) quickly becomes impossible to do efficiently and
consistently. After a number of years of experience with this problem, it is clear that providing this behaviour is both
fraught with difficulty and often leads to code which does not have good performance (all reflected data has to go
through special APIs to convert the data to native formats at call time and then back to CPython formats at return
time). As a result of this, the sheer number of reported problems in the issue tracker, and how well a new approach
that was taken with typed.Dict (typed dictionaries) has gone, the core developers have decided to deprecate the
noted reflection behaviour.

Example(s) of the impact

At present only a warning of the upcoming change is issued. In future code such as:

from numba import njit
@njit
def foo(x):

x.append (10)

foo (a)

will require adjustment to use a typed.List instance, this typed container is synonymous to the Typed Dict. An
example of translating the above is:

from numba import njit
from numba.typed import List

@njit
def foo(x):
x.append (10)

a=1[1, 2, 3]

typed_a = List ()
[typed_a.append(x) for x in a]
foo (typed_a)

For more information about t yped.List see Typed List. Further usability enhancements for this feature were made
in the 0.47.0 release cycle.

2.10. Deprecation Notices 155

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Schedule

This feature will be removed with respect to this schedule:
* Pending-deprecation warnings will be issued in version 0.44.0

* Prominent notice will be given for a minimum of two releases prior to full removal.

Recommendations

Projects that need/rely on the deprecated behaviour should pin their dependency on Numba to a version prior to
removal of this behaviour, or consider following replacement instructions that will be issued outlining how to adjust
to the change.

Expected Replacement
As noted above typed.List will be used to permit similar functionality to reflection in the case of 1ist s, a
typed. Set will provide the equivalent for set (not implemented yet!). The advantages to this approach are:

* That the containers are typed means type inference has to work less hard.

» Nested containers (containers of containers of ...) are more easily supported.

» Performance penalties currently incurred translating data to/from native formats are largely avoided.

e Numba’s t yped.Dict will be able to use these containers as values.

2.10.3 Deprecation of object mode fall-back behaviour when using @jit

The numba . jit decorator has for a long time followed the behaviour of first attempting to compile the decorated
function in nopython mode and should this compilation fail it will fall-back and try again to compile but this time in
object mode. 1t it this fall-back behaviour which is being deprecated, the result of which will be that numba . jit will
by default compile in nopython mode and object mode compilation will become opt-in only.

Reason for deprecation

The fall-back has repeatedly caused confusion for users as seemingly innocuous changes in user code can lead to
drastic performance changes as code which may have once compiled in nopython mode mode may silently switch to
compiling in object mode e.g:

from numba import jit

@jit
def foo():
1 =11
for x in range(10):
1.append (x)
return 1

foo ()
assert foo.nopython_signatures # this was compiled in nopython mode

@jit
def bar():

(continues on next page)

156 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

1 =11
for x in range(10):
1.append(x)
return reversed(l) # innocuous change, but no reversed support in nopython mode

bar ()

assert not bar.nopython_signatures # this was not compiled in nopython mode

Another reason to remove the fall-back is that it is confusing for the compiler engineers developing Numba as it
causes internal state problems that are really hard to debug and it makes manipulating the compiler pipelines incredibly
challenging.

Further, it has long been considered best practice that the nopython mode keyword argument in the numba. jit
decorator is set to True and that any user effort spent should go into making code work in this mode as there’s very
little gain if it does not. The result is that, as Numba has evolved, the amount of use object mode gets in practice and
its general utility has decreased. It can be noted that there are some minor improvements available through the notion
of loop-lifting, the cases of this being used in practice are, however, rare and often a legacy from use of less-recent
Numba whereby such behaviour was better accommodated/the use of @ jit with fall-back was recommended.

Example(s) of the impact

At present a warning of the upcoming change is issued if @ jit decorated code uses the fall-back compilation path. In
future code such as:

@jit
def bar():
1 =11
for x in range (10):
1.append(x)
return reversed(1l)

bar ()

will simply not compile, a TypingError would be raised.

2.10. Deprecation Notices 157

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Schedule

This feature will be removed with respect to this schedule:
* Deprecation warnings will be issued in version 0.44.0

* Prominent notice will be given for a minimum of two releases prior to full removal.

Recommendations

Projects that need/rely on the deprecated behaviour should pin their dependency on Numba to a version prior to
removal of this behaviour. Alternatively, to accommodate the scheduled deprecations, users with code compiled at
present with @ jit can supply the nopython=True keyword argument, if the code continues to compile then the
code is already ready for this change. If the code does not compile, continue using the @jit decorator without
nopython=True and profile the performance of the function. Then remove the decorator and again check the
performance of the function. If there is no benefit to having the @ jit decorator present consider removing it! If there is
benefit to having the @ jit decorator present, then to be future proof supply the keyword argument forceob j=True
to ensure the function is always compiled in object mode.

2.10.4 Deprecation of the target kwarg

There have been a number of users attempting to use the target keyword argument that’s meant for internal use
only. We are deprecating this argument, as alternative solutions are available to achieve the same behaviour.

Recommendations

Update the jit decorator as follows:

* Change @numba. jit (..., target='cuda') tonumba.cuda.jit (...).

Schedule

This feature will be moved with respect to this schedule:
* Deprecation warnings will be issued in 0.51.0.

* The target kwarg will be removed in version 0.54.0.

2.10.5 Deprecation of the role of compute capability for CUDA inspection methods

The following methods of the Dispatcher class:
* inspect_asm
e inspect_llvm
* inspect_sass

accept a kwarg called compute_capability. This kwarg is deprecated - it is ignored and accepted for backwards
compatibility only. The use of the kwarg was already problematic, as in most cases the returned values pertain to the
device in the current context, instead of the requested compute capability.

When compute_capability is not provided, these methods return a dict of variants, which was keyed by a
(compute_capability, argtypes) tuple. The dict is now only keyed by argument types, and items in the

158 Chapter 2. Reference Manual

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

dict are for the device in the current context. For backwards compatibility, the returned dict is temporarily a subclass
that will also allow indexing by (compute_capability, argtypes) aswell asby argtypes only.

For specialized Dispatchers (those whose kernels were eagerly compiled by providing a signature), the methods return
only one variant, instead of a dict of variants. For consistency with the CPU target and for support for multiple
signatures to be added to the CUDA target, these methods will always return a dict in future.

The pt x property also returns one variant directly for specialized Dispatchers, and a dict for un-specialized Dispatch-
ers. It too will always return a dict in future.

Recommendations

Update calls to these methods such that:
» They are always called when the device for which their output is required is in the current CUDA context.
e The compute_capability kwarg is not passed to them.
* Any use of their results indexes into them using only a tuple of argument types.

* For specialized Dispatchers, check whether the result is a dict and index into it accordingly if so.

Schedule

In 0.53.0:
* The compute_capability kwarg is deprecated.

e Returned values from the inspection methods will support indexing by (compute_capability,
argtypes) and argtypes.

* Specialized dispatchers and will return a single variant from these methods and the pt x property rather than a
dict, but will produce a warning.

In 0.54.0:
e The compute_capability kwarg will be removed.
* ptx and the inspection methods will always return a dict.

 Support for indexing into the results of these methods using (cc, argtypes) will be removed.

2.10. Deprecation Notices 159

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

160 Chapter 2. Reference Manual

CHAPTER
THREE

NUMBA FOR CUDA GPUS

3.1 Overview

Numba supports CUDA GPU programming by directly compiling a restricted subset of Python code into CUDA
kernels and device functions following the CUDA execution model. Kernels written in Numba appear to have direct
access to NumPy arrays. NumPy arrays are transferred between the CPU and the GPU automatically.

3.1.1 Terminology

Several important terms in the topic of CUDA programming are listed here:
* host: the CPU
* device: the GPU
* host memory: the system main memory
* device memory: onboard memory on a GPU card
* kernels: a GPU function launched by the host and executed on the device

* device function: a GPU function executed on the device which can only be called from the device (i.e. from a
kernel or another device function)

3.1.2 Programming model

Most CUDA programming facilities exposed by Numba map directly to the CUDA C language offered by NVidia.
Therefore, it is recommended you read the official CUDA C programming guide.

3.1.3 Requirements
Supported GPUs

Numba supports CUDA-enabled GPU with compute capability 3.0 or above with an up-to-data Nvidia driver.

161

http://docs.nvidia.com/cuda/cuda-c-programming-guide

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Software

Numba aims to support CUDA Toolkit versions released within the last 3 years. At the present time, you will need the
CUDA toolkit version 9.0 or later installed.

CUDA is supported on 64-bit Linux and Windows. 32-bit platforms, and macOS are unsupported.

If you are using Conda, you can install the CUDA toolkit with:

$ conda install cudatoolkit

If you are not using Conda or if you want to use a different version of CUDA toolkit, the following describe how
Numba searches for a CUDA toolkit installation.

Setting CUDA Installation Path

Numba searches for a CUDA toolkit installation in the following order:
1. Conda installed cudatoolkit package.

2. Environment variable CUDA_HOME, which points to the directory of the installed CUDA toolkit (i.e. /home/
user/cuda-10)

3. System-wide installation at exactly /usr/local/cuda on Linux platforms. Versioned installation paths (i.e.
/usr/local/cuda-10.0) are intentionally ignored. Users can use CUDA__HOME to select specific versions.

In addition to the CUDA toolkit libraries, which can be installed by conda into an environment or installed system-
wide by the CUDA SDK installer, the CUDA target in Numba also requires an up-to-date NVIDIA graphics driver.
Updated graphics drivers are also installed by the CUDA SDK installer, so there is no need to do both. Note that
on macOS, the CUDA SDK must be installed to get the required driver, and the driver is only supported on macOS
prior to 10.14 (Mojave). If the 1ibcuda library is in a non-standard location, users can set environment variable
NUMBA_CUDA_DRIVER to the file path (not the directory path) of the shared library file.

3.1.4 Missing CUDA Features

Numba does not implement all features of CUDA, yet. Some missing features are listed below:
* dynamic parallelism

¢ texture memory

3.2 Writing CUDA Kernels

3.2.1 Introduction

CUDA has an execution model unlike the traditional sequential model used for programming CPUs. In CUDA, the
code you write will be executed by multiple threads at once (often hundreds or thousands). Your solution will be
modeled by defining a thread hierarchy of grid, blocks and threads.

Numba’s CUDA support exposes facilities to declare and manage this hierarchy of threads. The facilities are largely
similar to those exposed by NVidia’s CUDA C language.

Numba also exposes three kinds of GPU memory: global device memory (the large, relatively slow off-chip memory
that’s connected to the GPU itself), on-chip shared memory and local memory. For all but the simplest algorithms, it
is important that you carefully consider how to use and access memory in order to minimize bandwidth requirements
and contention.

162 Chapter 3. Numba for CUDA GPUs

(https://developer.nvidia.com/cuda-downloads)

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

3.2.2 Kernel declaration
A kernel function is a GPU function that is meant to be called from CPU code (*). It gives it two fundamental
characteristics:

¢ kernels cannot explicitly return a value; all result data must be written to an array passed to the function (if
computing a scalar, you will probably pass a one-element array);

* kernels explicitly declare their thread hierarchy when called: i.e. the number of thread blocks and the number of
threads per block (note that while a kernel is compiled once, it can be called multiple times with different block
sizes or grid sizes).

At first sight, writing a CUDA kernel with Numba looks very much like writing a JI7T function for the CPU:

@cuda. jit
def increment_by_one (an_array) :

mmn

Increment all array elements by one.

mmon

code elided here; read further for different implementations

(*) Note: newer CUDA devices support device-side kernel launching; this feature is called dynamic parallelism but
Numba does not support it currently)

3.2.3 Kernel invocation

A kernel is typically launched in the following way:

threadsperblock = 32
blockspergrid = (an_array.size + (threadsperblock - 1)) // threadsperblock
increment_by_one[blockspergrid, threadsperblock] (an_array)

We notice two steps here:

* Instantiate the kernel proper, by specifying a number of blocks (or “blocks per grid”), and a number of threads
per block. The product of the two will give the total number of threads launched. Kernel instantiation is done
by taking the compiled kernel function (here increment_by_one) and indexing it with a tuple of integers.

* Running the kernel, by passing it the input array (and any separate output arrays if necessary). Kernels run
asynchronously: launches queue their execution on the device and then return immediately. You can use cuda .
synchronize () to wait for all previous kernel launches to finish executing.

Note: Passing an array that resides in host memory will implicitly cause a copy back to the host, which will be
synchronous. In this case, the kernel launch will not return until the data is copied back, and therefore appears to
execute synchronously.

3.2. Writing CUDA Kernels 163

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Choosing the block size
It might seem curious to have a two-level hierarchy when declaring the number of threads needed by a kernel. The
block size (i.e. number of threads per block) is often crucial:

* On the software side, the block size determines how many threads share a given area of shared memory.

* On the hardware side, the block size must be large enough for full occupation of execution units; recommenda-
tions can be found in the CUDA C Programming Guide.

Multi-dimensional blocks and grids

To help deal with multi-dimensional arrays, CUDA allows you to specify multi-dimensional blocks and grids. In
the example above, you could make blockspergrid and threadsperblock tuples of one, two or three inte-
gers. Compared to 1D declarations of equivalent sizes, this doesn’t change anything to the efficiency or behaviour of
generated code, but can help you write your algorithms in a more natural way.

3.2.4 Thread positioning

When running a kernel, the kernel function’s code is executed by every thread once. It therefore has to know which
thread it is in, in order to know which array element(s) it is responsible for (complex algorithms may define more
complex responsibilities, but the underlying principle is the same).

One way is for the thread to determine its position in the grid and block and manually compute the corresponding
array position:

@cuda. jit
def increment_by_one (an_array) :
Thread id in a 1D block
tx = cuda.threadIdx.x
Block id in a 1D grid
ty = cuda.blockIdx.x
Block width, i.e. number of threads per block
bw = cuda.blockDim.x
Compute flattened index inside the array
pos = tx + ty x bw
if pos < an_array.size: # Check array boundaries
an_array[pos] += 1

Note: Unless you are sure the block size and grid size is a divisor of your array size, you must check boundaries as
shown above.

threadIdx,blockIdx,blockDimand gridDim are special objects provided by the CUDA backend for the sole
purpose of knowing the geometry of the thread hierarchy and the position of the current thread within that geometry.

These objects can be 1D, 2D or 3D, depending on how the kernel was invoked. To access the value at each dimension,
use the x, y and z attributes of these objects, respectively.

numba.cuda.threadIdx
The thread indices in the current thread block. For 1D blocks, the index (given by the x attribute) is an integer
spanning the range from O inclusive to numba . cuda.blockDim exclusive. A similar rule exists for each
dimension when more than one dimension is used.

164 Chapter 3. Numba for CUDA GPUs

http://docs.nvidia.com/cuda/cuda-c-programming-guide

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.blockDim
The shape of the block of threads, as declared when instantiating the kernel. This value is the same for all
threads in a given kernel, even if they belong to different blocks (i.e. each block is “full”).

numba.cuda.blockIdx
The block indices in the grid of threads launched a kernel. For a 1D grid, the index (given by the x attribute) is
an integer spanning the range from 0 inclusive to numba . cuda . gridDimexclusive. A similar rule exists for
each dimension when more than one dimension is used.

numba.cuda.gridDim
The shape of the grid of blocks, i.e. the total number of blocks launched by this kernel invocation, as declared
when instantiating the kernel.

Absolute positions

Simple algorithms will tend to always use thread indices in the same way as shown in the example above. Numba
provides additional facilities to automate such calculations:

numba . cuda.grid (ndim)
Return the absolute position of the current thread in the entire grid of blocks. ndim should correspond to the
number of dimensions declared when instantiating the kernel. If ndim is 1, a single integer is returned. If ndim
is 2 or 3, a tuple of the given number of integers is returned.

numba .cuda.gridsize (ndim)
Return the absolute size (or shape) in threads of the entire grid of blocks. ndim has the same meaning as in
grid () above.

With these functions, the incrementation example can become:

Qcuda. jit
def increment_by_one (an_array) :
pos = cuda.grid(1l)
if pos < an_array.size:
an_array[pos] += 1

The same example for a 2D array and grid of threads would be:

@cuda. jit
def increment_a_2D_array(an_array) :
X, y = cuda.grid(2)
if x < an_array.shape[0] and y < an_array.shape[l]:
an_arrayl[x, y] += 1

Note the grid computation when instantiating the kernel must still be done manually, for example:

threadsperblock = (16, 16)

blockspergrid_x = math.ceil (an_array.shape[0] / threadsperblock[0])
blockspergrid_y = math.ceil (an_array.shape[l] / threadsperblock[1])
blockspergrid = (blockspergrid_x, blockspergrid_y)
increment_a_2D_array[blockspergrid, threadsperblock] (an_array)

3.2. Writing CUDA Kernels 165

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Further Reading

Please refer to the the CUDA C Programming Guide for a detailed discussion of CUDA programming.

3.3 Memory management

3.3.1 Data transfer

Even though Numba can automatically transfer NumPy arrays to the device, it can only do so conservatively by always
transferring device memory back to the host when a kernel finishes. To avoid the unnecessary transfer for read-only
arrays, you can use the following APIs to manually control the transfer:

numba . cuda.device_array (shape, dtype=np.float_, strides=None, order="C’, stream=0)
Allocate an empty device ndarray. Similar to numpy . empty ().

numba.cuda.device_array_1like (ary, stream=0)
Call device_array () with information from the array.

numba . cuda.to_device (0bj, stream=0, copy=True, to=None)
Allocate and transfer a numpy ndarray or structured scalar to the device.

To copy host->device a numpy array:

ary = np.arange (10)
d_ary = cuda.to_device (ary)

To enqueue the transfer to a stream:

stream = cuda.stream()
d_ary = cuda.to_device(ary, stream=stream)

The resulting d_ary is a DeviceNDArray.

To copy device->host:

hary = d_ary.copy_to_host ()

To copy device->host to an existing array:

ary = np.empty (shape=d_ary.shape, dtype=d_ary.dtype)
d_ary.copy_to_host (ary)

To enqueue the transfer to a stream:

hary = d_ary.copy_to_host (stream=stream)

In addition to the device arrays, Numba can consume any object that implements cuda array interface. These objects
also can be manually converted into a Numba device array by creating a view of the GPU buffer using the following
APIs:

numba.cuda.as_cuda_array (obj, sync=True)
Create a DeviceNDATrray from any object that implements the cuda array interface.

A view of the underlying GPU buffer is created. No copying of the data is done. The resulting DeviceNDArray
will acquire a reference from obyj.

If sync is True, then the imported stream (if present) will be synchronized.

166 Chapter 3. Numba for CUDA GPUs

http://docs.nvidia.com/cuda/cuda-c-programming-guide

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.is_cuda_array (0bj)
Test if the object has defined the __cuda_array_interface__ attribute.

Does not verify the validity of the interface.

Device arrays
Device array references have the following methods. These methods are to be called in host code, not within CUDA-
jitted functions.

class numba.cuda.cudadrv.devicearray.DeviceNDArray (shape, strides, dtype, stream=0,

gpu_data=None)
An on-GPU array type

copy_to_host (ary=None, stream=0)
Copy self to ary or create a new Numpy ndarray if ary is None.

If a CUDA stream is given, then the transfer will be made asynchronously as part as the given stream.
Otherwise, the transfer is synchronous: the function returns after the copy is finished.

Always returns the host array.

Example:

import numpy as np
from numba import cuda

arr = np.arange(1000)
d_arr = cuda.to_device (arr)

my_kernel[100, 100] (d_arr)

result_array = d_arr.copy_to_host ()

is_c_contiguous ()
Return true if the array is C-contiguous.

is_f contiguous ()
Return true if the array is Fortran-contiguous.

ravel (order="'C', stream=0)
Flatten the array without changing its contents, similar to numpy . ndarray.ravel ().

reshape (*newshape, **kws)
Reshape the array without changing its contents, similarly to numpy .ndarray.reshape (). Example:

d_arr = d_arr.reshape (20, 50, order='F")

Note: DeviceNDArray defines the cuda array interface.

3.3. Memory management 167

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

3.3.2 Pinned memory

numba . cuda.pinned (*arylist)
A context manager for temporary pinning a sequence of host ndarrays.

numba . cuda.pinned_array (shape, dtype=np.float_, strides=None, order="C")
Allocate an ndarray with a buffer that is pinned (pagelocked). Similar to np.empty ().

numba.cuda.pinned_array_ like (ary)
Call pinned_array () with the information from the array.

3.3.3 Mapped memory

numba . cuda .mapped (*arylist, **kws)
A context manager for temporarily mapping a sequence of host ndarrays.

numba . cuda.mapped_array (shape, dtype=np.float_, strides=None, order='C', stream=0,

portable=False, wc=False)
Allocate a mapped ndarray with a buffer that is pinned and mapped on to the device. Similar to np.empty()

Parameters

* portable — a boolean flag to allow the allocated device memory to be usable in multiple
devices.

* wc — a boolean flag to enable writecombined allocation which is faster to write by the host
and to read by the device, but slower to write by the host and slower to write by the device.

numba . cuda.mapped_array_like (ary, stream=0, portable=False, wc=False)
Call mapped_array () with the information from the array.

3.3.4 Managed memory

numba .cuda.managed_array (shape, dtype=np.float_, strides=None, order='C’, stream=0, at-

tach_global=True)
Allocate a np.ndarray with a buffer that is managed. Similar to np.empty().

Managed memory is supported on Linux, and is considered experimental on Windows.

Parameters attach_global — A flag indicating whether to attach globally. Global attachment
implies that the memory is accessible from any stream on any device. If False, attachment is
host, and memory is only accessible by devices with Compute Capability 6.0 and later.

3.3.5 Streams

Streams can be passed to functions that accept them (e.g. copies between the host and device) and into kernel launch
configurations so that the operations are executed asynchronously.

numba.cuda.stream /()
Create a CUDA stream that represents a command queue for the device.

numba.cuda.default_stream()
Get the default CUDA stream. CUDA semantics in general are that the default stream is either the legacy default
stream or the per-thread default stream depending on which CUDA APIs are in use. In Numba, the APIs for the
legacy default stream are always the ones in use, but an option to use APIs for the per-thread default stream may
be provided in future.

168 Chapter 3. Numba for CUDA GPUs

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.legacy_default_stream()
Get the legacy default CUDA stream.

numba.cuda.per_thread default_stream()
Get the per-thread default CUDA stream.

numba.cuda.external_stream (pir)
Create a Numba stream object for a stream allocated outside Numba.

Parameters ptr (int)— Pointer to the external stream to wrap in a Numba Stream
CUDA streams have the following methods:

class numba.cuda.cudadrv.driver.Stream (context, handle, finalizer, external=False)

auto_synchronize ()
A context manager that waits for all commands in this stream to execute and commits any pending memory
transfers upon exiting the context.

synchronize ()
Wait for all commands in this stream to execute. This will commit any pending memory transfers.

3.3.6 Shared memory and thread synchronization

A limited amount of shared memory can be allocated on the device to speed up access to data, when necessary. That
memory will be shared (i.e. both readable and writable) amongst all threads belonging to a given block and has faster
access times than regular device memory. It also allows threads to cooperate on a given solution. You can think of it
as a manually-managed data cache.

The memory is allocated once for the duration of the kernel, unlike traditional dynamic memory management.

numba .cuda.shared.array (shape, type)
Allocate a shared array of the given shape and type on the device. This function must be called on the device
(i.e. from a kernel or device function). shape is either an integer or a tuple of integers representing the array’s
dimensions and must be a simple constant expression. type is a Numba type of the elements needing to be stored
in the array.

The returned array-like object can be read and written to like any normal device array (e.g. through indexing).

A common pattern is to have each thread populate one element in the shared array and then wait for all threads
to finish using syncthreads ().

numba.cuda.syncthreads ()
Synchronize all threads in the same thread block. This function implements the same pattern as barriers in
traditional multi-threaded programming: this function waits until all threads in the block call it, at which point
it returns control to all its callers.

See also:

Matrix multiplication example.

3.3. Memory management 169

https://docs.python.org/3/library/functions.html#int
http://en.wikipedia.org/wiki/Barrier_%28computer_science%29

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

3.3.7 Local memory

Local memory is an area of memory private to each thread. Using local memory helps allocate some scratchpad
area when scalar local variables are not enough. The memory is allocated once for the duration of the kernel, unlike
traditional dynamic memory management.

numba.cuda.local.array (shape, type)
Allocate a local array of the given shape and type on the device. shape is either an integer or a tuple of integers
representing the array’s dimensions and must be a simple constant expression. type is a Numba type of the
elements needing to be stored in the array. The array is private to the current thread. An array-like object is
returned which can be read and written to like any standard array (e.g. through indexing).

3.3.8 Constant memory

Constant memory is an area of memory that is read only, cached and off-chip, it is accessible by all threads and is host
allocated. A method of creating an array in constant memory is through the use of:

numba.cuda.const.array_like (arr)
Allocate and make accessible an array in constant memory based on array-like arr.

3.3.9 Deallocation Behavior

This section describes the deallocation behaviour of Numba’s internal memory management. If an External Memory
Management Plugin is in use (see External Memory Management (EMM) Plugin interface), then deallocation be-
haviour may differ; you may refer to the documentation for the EMM Plugin to understand its deallocation behaviour.

Deallocation of all CUDA resources are tracked on a per-context basis. When the last reference to a device memory
is dropped, the underlying memory is scheduled to be deallocated. The deallocation does not occur immediately. It is
added to a queue of pending deallocations. This design has two benefits:

1. Resource deallocation API may cause the device to synchronize; thus, breaking any asynchronous execution.
Deferring the deallocation could avoid latency in performance critical code section.

2. Some deallocation errors may cause all the remaining deallocations to fail. Continued deallocation errors can
cause critical errors at the CUDA driver level. In some cases, this could mean a segmentation fault in the CUDA
driver. In the worst case, this could cause the system GUI to freeze and could only recover with a system
reset. When an error occurs during a deallocation, the remaining pending deallocations are cancelled. Any
deallocation error will be reported. When the process is terminated, the CUDA driver is able to release all
allocated resources by the terminated process.

The deallocation queue is flushed automatically as soon as the following events occur:
* An allocation failed due to out-of-memory error. Allocation is retried after flushing all deallocations.

e The deallocation queue has reached its maximum size, which is default to 10. User can override
by setting the environment variable NUMBA_CUDA_MAX_PENDING _DEALLOCS_COUNT. For example,
NUMBA_CUDA_MAX_PENDING _DEALLOCS_COUNT=20, increases the limit to 20.

e The maximum accumulated byte size of resources that are pending deallocation is reached.
This is default to 20% of the device memory capacity. User can override by setting
the environment variable NUMBA_CUDA_MAX_PENDING_DFEALLOCS_RATIO. For example,
NUMBA_CUDA_MAX_PENDING_DEALLOCS_RATIO=0.5 sets the limit to 50% of the capacity.

Sometimes, it is desired to defer resource deallocation until a code section ends. Most often, users want to avoid any
implicit synchronization due to deallocation. This can be done by using the following context manager:

170 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.defer_cleanup ()
Temporarily disable memory deallocation. Use this to prevent resource deallocation breaking asynchronous
execution.

For example:

with defer_cleanup() :
all cleanup 1is deferred in here
do_speed_critical_code ()

cleanup can occur here

Note: this context manager can be nested.

3.4 Writing Device Functions

CUDA device functions can only be invoked from within the device (by a kernel or another device function). To define
a device function:

from numba import cuda

@cuda. jit (device=True)
def a_device_function(a, b):
return a + b

Unlike a kernel function, a device function can return a value like normal functions.

3.5 Supported Python features in CUDA Python

This page lists the Python features supported in the CUDA Python. This includes all kernel and device functions
compiled with @cuda . jit and other higher level Numba decorators that targets the CUDA GPU.

3.5.1 Language

Execution Model

CUDA Python maps directly to the single-instruction multiple-thread execution (SIMT) model of CUDA. Each in-
struction is implicitly executed by multiple threads in parallel. With this execution model, array expressions are less
useful because we don’t want multiple threads to perform the same task. Instead, we want threads to perform a task in
a cooperative fashion.

For details please consult the CUDA Programming Guide.

3.4. Writing Device Functions 171

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#programming-model

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Constructs

The following Python constructs are not supported:
e Exception handling (try .. except,try .. finally)
» Context management (the with statement)
» Comprehensions (either list, dict, set or generator comprehensions)
* Generator (any yield statements)
The raise statement is supported.

The assert statement is supported, but only has an effect when debug=True is passed to the numba. cuda.
jit () decorator. This is similar to the behavior of the assert keyword in CUDA C/C++, which is ignored unless
compiling with device debug turned on.

Printing of strings, integers, and floats is supported, but printing is an asynchronous operation - in order to ensure
that all output is printed after a kernel launch, it is necessary to call numba. cuda. synchronize (). Eliding the
call to synchronize is acceptable, but output from a kernel may appear during other later driver operations (e.g.
subsequent kernel launches, memory transfers, etc.), or fail to appear before the program execution completes.

3.5.2 Built-in types

The following built-in types support are inherited from CPU nopython mode.
* int
* float
e complex
* bool
* None
* tuple

See nopython built-in types.

3.5.3 Built-in functions

The following built-in functions are supported:
* abs ()
* bool
e complex
¢ enumerate ()
e float
e int: only the one-argument form
e len ()
e min (): only the multiple-argument form
e max (): only the multiple-argument form

* pow ()

172 Chapter 3. Numba for CUDA GPUs

https://docs.python.org/3/library/functions.html#abs
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#complex
https://docs.python.org/3/library/functions.html#enumerate
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#len
https://docs.python.org/3/library/functions.html#min
https://docs.python.org/3/library/functions.html#max
https://docs.python.org/3/library/functions.html#pow

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

* range
e round ()

* zip ()

3.5.4 Standard library modules

cmath

The following functions from the cmath module are supported:

* cmath.acos ()
e cmath.acosh ()
e cmath.asin()
e cmath.asinh ()
e cmath.atan/()
* cmath.atanh ()
* cmath.cos ()

e cmath.cosh()
* cmath.exp ()

e cmath.isfinite ()
e cmath.isinf ()
* cmath.isnan ()
* cmath.log()

e cmath.logl0()
* cmath.phase ()
* cmath.polar/()
* cmath.rect ()
e cmath.sin()

e cmath.sinh()
* cmath.sqgrt ()
e cmath.tan ()

e cmath.tanh ()

3.5. Supported Python features in CUDA Python 173

https://docs.python.org/3/library/stdtypes.html#range
https://docs.python.org/3/library/functions.html#round
https://docs.python.org/3/library/functions.html#zip
https://docs.python.org/3/library/cmath.html#module-cmath

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

math

The following functions from the math module are supported:

math

math.
math.
math.
math.
math.

math.

math

math.
math.
math.
math.
math.
math.
math.
math.
math.

math.

math

math.
math.
math.
math.
math.
math.
math.
math.

math.

math

math

math.
math.
math.

math.

.acos ()
asin()
atan ()
acosh ()
asinh ()
atanh ()
cos ()
.sin()
tan ()
hypot ()
cosh ()
sinh ()
tanh ()
atan2 ()
erf ()
erfc()
exp ()
expml ()
.fabs ()
frexp()
ldexp ()
gamma ()
lgamma ()
log()
logz ()
loglO ()
loglp()
sqre ()
.remainder (): Python 3.7+
-pow ()
ceil ()
floor ()
copysign ()
fmod ()

174

Chapter 3. Numba for CUDA GPUs

https://docs.python.org/3/library/math.html#module-math
https://docs.python.org/3/library/math.html#math.log2
https://docs.python.org/3/library/math.html#math.remainder
https://docs.python.org/3/library/math.html#math.fmod

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.¢gg

math.modf ()
math.isnan/()
math.isinf ()

math.isfinite()

operator

The following functions from the operator module are supported:

operator.add()
operator.and_ ()
operator.eq()
operator.floordiv ()
operator.ge()
operator.gt ()
operator.iadd()
operator.iand()
operator.ifloordiv ()
operator.ilshift ()
operator.imod ()
operator.imul ()
operator.invert ()
operator.ior ()
operator.ipow ()
operator.irshift ()
operator.isub ()
operator.itruediv ()
operator.ixor ()
operator.le ()
operator.lshift ()
operator.lt ()
operator.mod ()
operator.mul ()
operator.ne ()
operator.neg()
operator.not_ ()
operator.or_ ()

operator.pos ()

3.5. Supported Python features in CUDA Python 175

https://docs.python.org/3/library/math.html#math.modf
https://docs.python.org/3/library/operator.html#module-operator
https://docs.python.org/3/library/operator.html#operator.add
https://docs.python.org/3/library/operator.html#operator.and_
https://docs.python.org/3/library/operator.html#operator.eq
https://docs.python.org/3/library/operator.html#operator.floordiv
https://docs.python.org/3/library/operator.html#operator.ge
https://docs.python.org/3/library/operator.html#operator.gt
https://docs.python.org/3/library/operator.html#operator.iadd
https://docs.python.org/3/library/operator.html#operator.iand
https://docs.python.org/3/library/operator.html#operator.ifloordiv
https://docs.python.org/3/library/operator.html#operator.ilshift
https://docs.python.org/3/library/operator.html#operator.imod
https://docs.python.org/3/library/operator.html#operator.imul
https://docs.python.org/3/library/operator.html#operator.invert
https://docs.python.org/3/library/operator.html#operator.ior
https://docs.python.org/3/library/operator.html#operator.ipow
https://docs.python.org/3/library/operator.html#operator.irshift
https://docs.python.org/3/library/operator.html#operator.isub
https://docs.python.org/3/library/operator.html#operator.itruediv
https://docs.python.org/3/library/operator.html#operator.ixor
https://docs.python.org/3/library/operator.html#operator.le
https://docs.python.org/3/library/operator.html#operator.lshift
https://docs.python.org/3/library/operator.html#operator.lt
https://docs.python.org/3/library/operator.html#operator.mod
https://docs.python.org/3/library/operator.html#operator.mul
https://docs.python.org/3/library/operator.html#operator.ne
https://docs.python.org/3/library/operator.html#operator.neg
https://docs.python.org/3/library/operator.html#operator.not_
https://docs.python.org/3/library/operator.html#operator.or_
https://docs.python.org/3/library/operator.html#operator.pos

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* operator.pow ()

* operator.rshift ()
* operator.sub ()

e operator.truediv ()

* operator.xor ()

3.5.5 Numpy support

Due to the CUDA programming model, dynamic memory allocation inside a kernel is inefficient and is often not
needed. Numba disallows any memory allocating features. This disables a large number of NumPy APIs. For best
performance, users should write code such that each thread is dealing with a single element at a time.

Supported numpy features:
* accessing ndarray attributes .shape, .strides, .ndim, .size, etc..
* scalar ufuncs that have equivalents in the math module; i.e. np.sin (x[0]), where x is a 1D array.
* indexing and slicing works.
Unsupported numpy features:
e array creation APIs.
e array methods.

* functions that returns a new array.

3.6 Supported Atomic Operations

Numba provides access to some of the atomic operations supported in CUDA. Those that are presently implemented
are as follows:

class numba.cuda.atomic
Namespace for atomic operations

class add (ary, idx, val)
Perform atomic ary[idx] += val. Supported on int32, float32, and float64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class and_ (ary, idx, val)
Perform atomic ary[idx] &= val. Supported on int32, int64, uint32 and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class compare_and_swap (ary, old, val)
Conditionally assign val to the first element of an 1D array ary if the current value matches o1d.

Returns the current value as if it is loaded atomically.

class dec (ary, idx, val)
Perform ary[idx] = (value if (array[idx] == 0) or (array[idx] > value) else array[idx] - 1).
Supported on uint32, and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

176 Chapter 3. Numba for CUDA GPUs

https://docs.python.org/3/library/operator.html#operator.pow
https://docs.python.org/3/library/operator.html#operator.rshift
https://docs.python.org/3/library/operator.html#operator.sub
https://docs.python.org/3/library/operator.html#operator.truediv
https://docs.python.org/3/library/operator.html#operator.xor

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

class exch (ary, idx, val)
Perform atomic ary[idx] = val. Supported on int32, int64, uint32 and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class inc (ary, idx, val)
Perform atomic ary[idx] += 1 up to val, then reset to 0. Supported on uint32, and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class max (ary, idx, val)
Perform atomic ary[idx] = max(ary[idx], val).

Supported on int32, int64, uint32, uint64, float32, float64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class min (ary, idx, val)
Perform atomic ary[idx] = min(ary[idx], val).

Supported on int32, int64, uint32, uint64, float32, float64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class nanmax (ary, idx, val)
Perform atomic ary[idx] = max(ary[idx], val).

NOTE: NaN is treated as a missing value such that: nanmax(NaN, n) == n, nanmax(n, NaN) ==n
Supported on int32, int64, uint32, uint64, float32, float64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class nanmin (ary, idx, val)
Perform atomic ary[idx] = min(ary[idx], val).

NOTE: NaN is treated as a missing value, such that: nanmin(NaN, n) == n, nanmin(n, NaN) ==n
Supported on int32, int64, uint32, uint64, float32, float64 operands only.
Returns the old value at the index location as if it is loaded atomically.

class or_ (ary, idx, val)
Perform atomic ary[idx] |= val. Supported on int32, int64, uint32 and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class sub (ary, idx, val)
Perform atomic ary[idx] -= val. Supported on int32, float32, and float64 operands only.

Returns the old value at the index location as if it is loaded atomically.

class =xor (ary, idx, val)
Perform atomic ary[idx] A= val. Supported on int32, int64, uint32 and uint64 operands only.

Returns the old value at the index location as if it is loaded atomically.

3.6.

Supported Atomic Operations 177

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

3.6.1 Example

The following code demonstrates the use of numba. cuda.atomic.max to find the maximum value in an array.
Note that this is not the most efficient way of finding a maximum in this case, but that it serves as an example:

from numba import cuda
import numpy as np

@Qcuda. jit
def max_example (result, values):
"""Eind the maximum value in values and store in result[0]"""
tid = cuda.threadIdx.x
bid = cuda.blockIdx.x
bdim = cuda.blockDim.x
i = (bid * bdim) + tid
cuda.atomic.max (result, 0, values[il])

arr = np.random.rand(16384)
result = np.zeros(l, dtype=np.float64)

max_example[256, 64] (result, arr)
print (result[0]) # Found using cuda.atomic.max
print (max (arr)) # Print max (arr) for comparison (should be equall!)

Multiple dimension arrays are supported by using a tuple of ints for the index:

@Qcuda. jit

def max_example_3d(result, values):
Find the maximum value in values and store in result[0].
Both result and values are 3d arrays.
i, j, k = cuda.grid(3)
Atomically store to result[0,1,2] from values([i, F, k]
cuda.atomic.max (result, (0, 1, 2), wvalues[i, j, k])

arr = np.random.rand(1000) .reshape(10,10,10)

result = np.zeros((3, 3, 3), dtype=np.float64)
max_example_3d[(2, 2, 2), (5, 5, 5)](result, arr)
print (result([0, 1, 2], '==', np.max(arr))

3.7 Cooperative Groups

3.7.1 Supported features

Numba’s Cooperative Groups support presently provides grid groups and grid synchronization, along with cooperative
kernel launches.

Cooperative groups are supported on Linux, and Windows for devices in TCC mode. Cooperative Groups also require
the CUDA Device Runtime library, cudadevrt, to be available - for conda default channel-installed CUDA toolkit
packages, it is only available in versions 10.2 onwards. System-installed toolkits (e.g. from NVIDIA distribution
packages or runfiles) all include cudadevrt.

178 Chapter 3. Numba for CUDA GPUs

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#tesla-compute-cluster-mode-for-windows

Bow N =

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

3.7.2 Using Grid Groups

To get the current grid group, use the cg. this grid () function:

’g = cuda.cg.this_grid()

Synchronizing the grid is done with the sync () method of the grid group:

’g.sync()

3.7.3 Cooperative Launches

Unlike the CUDA C/C++ API, a cooperative launch is invoked using the same syntax as a normal kernel launch -
Numba automatically determines whether a cooperative launch is required based on whether a grid group is synchro-
nized in the kernel.

The grid size limit for a cooperative launch is more restrictive than for a normal launch - the grid must be no
larger than the maximum number of active blocks on the device on which it is launched. To get maximum grid
size for a cooperative launch of a kernel with a given block size and dynamic shared memory requirement, use the
max_cooperative_grid_blocks () method of kernel definitions:

_Kernel .max_cooperative_grid_blocks (blockdim, dynsmemsize=0)
Calculates the maximum number of blocks that can be launched for this kernel in a cooperative grid in the
current context, for the given block and dynamic shared memory sizes.

Parameters

* blockdim — Block dimensions, either as a scalar for a 1D block, or a tuple for 2D or 3D
blocks.

* dynsmemsize — Dynamic shared memory size in bytes.
Returns The maximum number of blocks in the grid.

This can be used to ensure that the kernel is launched with no more than the maximum number
of blocks. Exceeding the maximum number of blocks for the cooperative launch will result in a
CUDA_ERROR_COOPERATIVE_LAUNCH_TOO_LARGE error.

3.7.4 Applications and Example

Grid group synchronization can be used to implement a global barrier across all threads in the grid - applications of
this include a global reduction to a single value, or looping over rows of a large matrix sequentially using the entire
grid to operate on column elements in parallel.

In the following example, rows are written sequentially by the grid. Each thread in the grid reads a value from the
previous row written by it’s opposite thread. A grid sync is needed to ensure that threads in the grid don’t run ahead
of threads in other blocks, or fail to see updates from their opposite thread.

First we’ll define our kernel:

Listing 1: from test_grid_sync of numba/cuda/tests/
doc_example/test_cg.py

from numba import cuda, int32, void
import numpy as np

@Qcuda. jit (void(int32[:, ::11))

(continues on next page)

3.7. Cooperative Groups 179

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

def sequential_rows (M) :
col = cuda.grid(1l)
g = cuda.cg.this_grid()

rows = M.shape[0]
cols = M.shape[l]

for row in range(l, rows):

opposite = cols - col - 1
Each row's elements are one greater than the previous row
M[row, col] = M[row — 1, opposite] + 1

Wait until all threads have written their column element,
and that the write is visible to all other threads
g.sync ()

Then create some empty input data and determine the grid and block sizes:

Listing 2: from test_grid_sync of numba/cuda/tests/
doc_example/test_cg.py

Empty input data

A = np.zeros((1024, 1024), dtype=np.int32)

A somewhat arbitrary choice (one warp), but generally smaller block sizes
allow more blocks to be launched (noting that other limitations on

occupancy apply such as shared memory size)

blockdim = 32

griddim = A.shape[l] // blockdim

Finally we launch the kernel and print the result:

Listing 3: from test_grid_sync of numba/cuda/tests/
doc_example/test_cg.py

Kernel launch - this is implicitly a cooperative launch
sequential_rows[griddim, blockdim] (A)

What do the results look like?

#

print (A)

#

[[0 0 0 ... 0 0 0]

[1 1 1 ... 1 1 1]

[2 2 2 ... 2 2 2]

oL,

[1021 1021 1021 ... 1021 1021 1021]

[1022 1022 1022 ... 1022 1022 1022]

[1023 1023 1023 ... 1023 1023 1023]]

The maximum grid size for sequential_rows can be enquired using:

defn = sequential_rows.definition

max_blocks = defn.max_cooperative_grid_blocks (blockdim)

print (max_blocks)

1152 (e.g. on Quadro RTX 8000 with Numba 0.52.1 and CUDA 11.0)

180 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

3.8 Random Number Generation

Numba provides a random number generation algorithm that can be executed on the GPU. Due to technical issues with
how NVIDIA implemented cuRAND, however, Numba’s GPU random number generator is not based on cuRAND.
Instead, Numba’s GPU RNG is an implementation of the xoroshiro128+ algorithm. The xoroshiro128+ algorithm has
aperiod of 2x+«128 - 1, which is shorter than the period of the XORWOW algorithm used by default in cuRAND,
but xoroshiro128+ still passes the BigCrush tests of random number generator quality.

When using any RNG on the GPU, it is important to make sure that each thread has its own RNG state, and they have
been initialized to produce non-overlapping sequences. The numba.cuda.random module provides a host function to
do this, as well as CUDA device functions to obtain uniformly or normally distributed random numbers.

Note: Numba (like cuRAND) uses the Box-Muller transform <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>

to generate normally distributed random numbers from a uniform generator. However, Box-Muller generates pairs
of random numbers, and the current implementation only returns one of them. As a result, generating normally
distributed values is half the speed of uniformly distributed values.

numba.cuda.random.create_xoroshirol28p_states (n, seed, subsequence_start=0, stream=0)
Returns a new device array initialized for n random number generators.

This initializes the RNG states so that each state in the array corresponds subsequences in the separated by
2**64 steps from each other in the main sequence. Therefore, as long no CUDA thread requests more than
2**64 random numbers, all of the RNG states produced by this function are guaranteed to be independent.

The subsequence_start parameter can be used to advance the first RNG state by a multiple of 2**64 steps.
Parameters
e n (int)—number of RNG states to create
* seed (uint64) — starting seed for list of generators
* subsequence_start (uint64)—
e stream (CUDA stream) - stream to run initialization kernel on

numba.cuda.random.init_xoroshirol28p_states (states, seed, subsequence_start=0,

stream=0)
Initialize RNG states on the GPU for parallel generators.

This initializes the RNG states so that each state in the array corresponds subsequences in the separated by
2*%*64 steps from each other in the main sequence. Therefore, as long no CUDA thread requests more than
2**%64 random numbers, all of the RNG states produced by this function are guaranteed to be independent.

The subsequence_start parameter can be used to advance the first RNG state by a multiple of 2**64 steps.
Parameters

* states (ID DeviceNDArray, dtype=xoroshirol28p_dtype) — array of
RNG states

* seed (uint64) — starting seed for list of generators

numba.cuda.random.xoroshirol28p_normal_ float32 (states, index)
Return a normally distributed float32 and advance states [index].

The return value is drawn from a Gaussian of mean=0 and sigma=1 using the Box-Muller transform. This
advances the RNG sequence by two steps.

Parameters

3.8. Random Number Generation 181

http://xoroshiro.di.unimi.it/
https://docs.python.org/3/library/functions.html#int

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* states (ID array, dtype=xoroshirolZ28p_dtype)— array of RNG states
* index (int64) — offset in states to update

Return type float32

numba.cuda.random.xoroshirol28p_normal_float64 (states, index)

Return a normally distributed float32 and advance states [index].

The return value is drawn from a Gaussian of mean=0 and sigma=1 using the Box-Muller transform. This
advances the RNG sequence by two steps.

Parameters
* states (ID array, dtype=xoroshirolZ28p_dtype)— array of RNG states
* index (int64) — offset in states to update

Return type float64

numba . cuda.random.xoroshirol28p_uniform_ float32 (states, index)

Return a float32 in range [0.0, 1.0) and advance states[index].
Parameters
* states (ID array, dtype=xoroshirolZ28p_dtype)— array of RNG states
* index (int 64) — offset in states to update

Return type float32

numba.cuda.random.xoroshirol28p_uniform_float64 (states, index)

Return a float64 in range [0.0, 1.0) and advance states [index].
Parameters
* states (ID array, dtype=xoroshirolZ28p_dtype)— array of RNG states
* index (int64) — offset in states to update

Return type float64

3.8.1 A simple example

Here is a sample program that uses the random number generator:

from _ future_ import print_function, absolute_import

from numba import cuda

from numba.cuda.random import create_xoroshirol28p_states, xoroshirol28p_uniform_
—float32

import numpy as np

@Qcuda. jit

def

compute_pi (rng_states, iterations, out):
"""Find the maximum value in values and store in result[0]"""
thread_id = cuda.grid(1l)

Compute pi by drawing random (x, y) points and finding what
fraction lie inside a unit circle
inside = 0
for i in range(iterations):
x = xoroshirol28p_uniform_ float32 (rng_states, thread_id)

(continues on next page)

182

Chapter 3. Numba for CUDA GPUs

20

21

22

23

24

25

26

27

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

(continued from previous page)

y = xoroshirol28p_uniform_float32 (rng_states, thread_id)
if x*%x2 + y**2 <= 1.0:
inside += 1

out [thread_id] = 4.0 * inside / iterations

threads_per_block = 64

blocks = 24

rng_states = create_xoroshirol28p_states (threads_per_block * blocks, seed=1l)
out = np.zeros (threads_per_block % blocks, dtype=np.float32)

compute_pi[blocks, threads_per_block] (rng_states, 10000, out)
print('pi:', out.mean())

3.8.2 An example of managing RNG state size and using a 3D grid

The number of RNG states scales with the number of threads using the RNG, so it is often better to use strided loops
in conjunction with the RNG in order to keep the state size manageable.

In the following example, which initializes a large 3D array with random numbers, using one thread per output element
would result in 453,617,100 RNG states. This would take a long time to initialize and poorly utilize the GPU. Instead,
it uses a fixed size 3D grid with a total of 2,097,152 ((16 %+ 3) * (8 =« 3)) threads striding over the output
array. The 3D thread indices startx, starty, and startz are linearized into a 1D index, t id, to index into the
2,097,152 RNG states.

Listing 4: from test_ex_3d_grid of " 'numba/cuda/
tests/doc_example/test_random.py

from numba import cuda

from numba.cuda.random import (create_xoroshirol28p_states,
xoroshirol28p_uniform_float32)

import numpy as np

@Qcuda. jit

def random_3d(arr, rng_states):
Per—-dimension thread indices and strides
startx, starty, startz = cuda.grid(3)
stridex, stridey, stridez = cuda.gridsize(3)

Linearized thread index
tid = (startz » stridey » stridex) + (starty * stridex) + startx

Use strided loops over the array to assign a random value to each entry
for i in range(startz, arr.shape[0], stridez):
for j in range(starty, arr.shapell], stridey):
for k in range(startx, arr.shape[2], stridex):
arr[i, j, k] = xoroshirol28p_uniform_float32 (rng_states, tid)

Array dimensions
X, ¥, z =701, 900, 719

Block and grid dimensions
bx, by, bz =8, 8, 8
gx, 9y, gz = 16, 16, 16

(continues on next page)

3.8. Random Number Generation 183

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

Total number of threads
nthreads = bx * by * bz * gx * gy * gz

Initialize a state for each thread
rng_states = create_xoroshirol28p_states (nthreads, seed=1)

Generate random numbers
arr = cuda.device_array((X, Y, Z), dtype=np.float32)
random_3d[(gx, gy, g9z), (bx, by, bz)](arr, rng_states)

3.9 Device management

For multi-GPU machines, users may want to select which GPU to use. By default the CUDA driver selects the fastest
GPU as the device 0, which is the default device used by Numba.

The features introduced on this page are generally not of interest unless working with systems hosting/offering more
than one CUDA-capable GPU.

3.9.1 Device Selection

If at all required, device selection must be done before any CUDA feature is used.

from numba import cuda
cuda.select_device (0)

The device can be closed by:

’cuda.close()

Users can then create a new context with another device.

’cuda.select_device(l) # assuming we have 2 GPUs

numba.cuda.select_device (device_id)
Create a new CUDA context for the selected device_id. device_id should be the number of the device (starting
from O; the device order is determined by the CUDA libraries). The context is associated with the current thread.
Numba currently allows only one context per thread.

If successful, this function returns a device instance.

numba.cuda.close ()
Explicitly close all contexts in the current thread.

Note: Compiled functions are associated with the CUDA context. This makes it not very useful to close and
create new devices, though it is certainly useful for choosing which device to use when the machine has multiple
GPUs.

184 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

3.10 The Device List

The Device List is a list of all the GPUs in the system, and can be indexed to obtain a context manager that ensures
execution on the selected GPU.

numba.cuda.gpus
numba.cuda.cudadrv.devices.gpus

numba . cuda.gpus is an instance of the _DeviceList class, from which the current GPU context can also be
retrieved:

class numba.cuda.cudadrv.devices._DeviceList

property current
Returns the active device or None if there’s no active device

3.11 Examples

3.11.1 Matrix multiplication

Here is a naive implementation of matrix multiplication using a CUDA kernel:

@Qcuda. jit
def matmul (A, B, C):
"""pPerform square matrix multiplication of C = A x B
mmwn
i, J = cuda.grid(2)
if i < C.shape[0] and j < C.shapel[l]:
tmp = 0.
for k in range (A.shape[l]):
tmp += A[i, k] = B[k, 7]
cli, jl = tmp

This implementation is straightforward and intuitive but performs poorly, because the same matrix elements will be
loaded multiple times from device memory, which is slow (some devices may have transparent data caches, but they
may not be large enough to hold the entire inputs at once).

It will be faster if we use a blocked algorithm to reduce accesses to the device memory. CUDA provides a fast shared
memory for threads in a block to cooperately compute on a task. The following implements a faster version of the
square matrix multiplication using shared memory:

from numba import cuda, float32

Controls threads per block and shared memory usage.
The computation will be done on blocks of TPBxTPB elements.
TPB = 16

@Qcuda. jit
def fast_matmul (A, B, C):
Define an array in the shared memory
The size and type of the arrays must be known at compile time
sA = cuda.shared.array (shape=(TPB, TPB), dtype=float32)
sB = cuda.shared.array (shape=(TPB, TPB), dtype=float32)

(continues on next page)

3.10. The Device List 185

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

(continued from previous page)

%X, vy = cuda.grid(2)

tx = cuda.threadIdx.x
ty = cuda.threadIdx.y
bpg = cuda.gridDim.x # blocks per grid

if x >= C.shape[0] and y >= C.shape[l]:
Quit if (x, y) 1is outside of valid C boundary
return

Each thread computes one element in the result matrix.
The dot product is chunked into dot products of TPB-long vectors.
tmp = 0.
for i in range (bpg) :
Preload data into shared memory
sA[tx, ty] = A[x, ty + 1 * TPB]
sB[tx, ty] = B[tx + 1 % TPB, V]

Wait until all threads finish preloading
cuda.syncthreads ()

Computes partial product on the shared memory
for j in range (TPB):

tmp += sA[tx, Jj] % sB[j, tyl

Wait until all threads finish computing
cuda.syncthreads ()

Clx, yl = tmp

Because the shared memory is a limited resources, the code preloads small block at a time from the input arrays. Then,
it calls syncthreads () to wait until all threads have finished preloading and before doing the computation on the
shared memory. It synchronizes again after the computation to ensure all threads have finished with the data in shared
memory before overwriting it in the next loop iteration.

3.12 Debugging CUDA Python with the the CUDA Simulator

Numba includes a CUDA Simulator that implements most of the semantics in CUDA Python using the Python in-
terpreter and some additional Python code. This can be used to debug CUDA Python code, either by adding print
statements to your code, or by using the debugger to step through the execution of an individual thread.

The simulator deliberately allows running non-CUDA code like starting a debugger and printing arbitrary expressions
for debugging purposes. Therefore, it is best to start from code that compiles for the CUDA target, and then move
over to the simulator to investigate issues.

Execution of kernels is performed by the simulator one block at a time. One thread is spawned for each thread in the
block, and scheduling of the execution of these threads is left up to the operating system.

186 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

3.12.1 Using the simulator

The simulator is enabled by setting the environment variable NUMBA ENABLE CUDASIM to 1 prior to importing
Numba. CUDA Python code may then be executed as normal. The easiest way to use the debugger inside a kernel is
to only stop a single thread, otherwise the interaction with the debugger is difficult to handle. For example, the kernel
below will stop in the thread <<<(3,0,0), (1, 0, 0)>>>:

@cuda. jit
def vec_add(A, B, out):
x = cuda.threadIdx.x
bx = cuda.blockIdx.x
bdx = cuda.blockDim.x
if x == 1 and bx ==
from pdb import set_trace; set_trace()
i = bx % bdx + x
out [i] = A[i] + BI[1i]

when invoked with a one-dimensional grid and one-dimensional blocks.

3.12.2 Supported features
The simulator aims to provide as complete a simulation of execution on a real GPU as possible - in particular, the
following are supported:

* Atomic operations

* Constant memory

* Local memory

» Shared memory: declarations of shared memory arrays must be on separate source lines, since the simulator
uses source line information to keep track of allocations of shared memory across threads.

* Mapped arrays.
* Host and device memory operations: copying and setting memory.

* syncthreads () 1is supported - however, in the case where divergent threads enter different
syncthreads () calls, the launch will not fail, but unexpected behaviour will occur. A future version of
the simulator may detect this condition.

* The stream API is supported, but all operations occur sequentially and synchronously, unlike on a real device.
Synchronising on a stream is therefore a no-op.

* The event API is also supported, but provides no meaningful timing information.

e Data transfer to and from the GPU - in particular, creating array objects with device array () and
device_array_like (). The APIs for pinned memory pinned () and pinned _array () are also sup-
ported, but no pinning takes place.

* The driver API implementation of the list of GPU contexts (cuda . gpus and cuda.cudadrv.devices.
gpus) is supported, and reports a single GPU context. This context can be closed and reset as the real one
would.

e The detect () function is supported, and reports one device called SIMULATOR.

» Cooperative grids: A cooperative kernel can be launched, but with only one block - the simulator always returns
1 from a kernel definition’s max_cooperative_grid _blocks () method.

Some limitations of the simulator include:

3.12. Debugging CUDA Python with the the CUDA Simulator 187

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* It does not perform type checking/type inference. If any argument types to a jitted function are incorrect, or if
the specification of the type of any local variables are incorrect, this will not be detected by the simulator.

* Only one GPU is simulated.

» Multithreaded accesses to a single GPU are not supported, and will result in unexpected behaviour.
* Most of the driver API is unimplemented.

* It is not possible to link PTX code with CUDA Python functions.

* Warps and warp-level operations are not yet implemented.

* Because the simulator executes kernels using the Python interpreter, structured array access by attribute that
works with the hardware target may fail in the simulator - see Structured array access.

» QOperations directly against device arrays are only partially supported, that is, testing equality, less than, greater
than, and basic mathematical operations are supported, but many other operations, such as the in-place operators
and bit operators are not.

Obviously, the speed of the simulator is also much lower than that of a real device. It may be necessary to reduce the
size of input data and the size of the CUDA grid in order to make debugging with the simulator tractable.

3.13 GPU Reduction

Writing a reduction algorithm for CUDA GPU can be tricky. Numba provides a @ reduce decorator for converting a
simple binary operation into a reduction kernel. An example follows:

import numpy
from numba import cuda

@cuda.reduce
def sum_reduce (a, b):

return a + b

A = (numpy.arange (1234, dtype=numpy.floaté64)) + 1

expect = A.sum() # numpy sum reduction
got = sum_reduce (A) # cuda sum reduction
assert expect == got

Lambda functions can also be used here:

sum_reduce = cuda.reduce (lambda a, b: a + b)

3.13.1 The Reduce class

The reduce decorator creates an instance of the Reduce class. Currently, reduce is an alias to Reduce, but this
behavior is not guaranteed.

class numba.cuda.Reduce (functor)
Create a reduction object that reduces values using a given binary function. The binary function is compiled
once and cached inside this object. Keeping this object alive will prevent re-compilation.

__init__ (functor)

Parameters functor — A function implementing a binary operation for reduction. It will be
compiled as a CUDA device function using cuda. jit (device=True).

188 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

__call__ (arr, size=None, res=None, init=0, stream=0)
Performs a full reduction.

Parameters

arr — A host or device array.

size — Optional integer specifying the number of elements in arr to reduce. If this
parameter is not specified, the entire array is reduced.

res — Optional device array into which to write the reduction result to. The result is writ-
ten into the first element of this array. If this parameter is specified, then no communication
of the reduction output takes place from the device to the host.

init — Optional initial value for the reduction, the type of which must match arr.
dtype.

stream — Optional CUDA stream in which to perform the reduction. If no stream is
specified, the default stream of O is used.

Returns If res is specified, None is returned. Otherwise, the result of the reduction is returned.

3.14 CUDA Ufuncs and Generalized Ufuncs

This page describes the CUDA ufunc-like object.

To support the programming pattern of CUDA programs, CUDA Vectorize and GUVectorize cannot produce a con-
ventional ufunc. Instead, a ufunc-like object is returned. This object is a close analog but not fully compatible with a
regular NumPy ufunc. The CUDA ufunc adds support for passing intra-device arrays (already on the GPU device) to
reduce traffic over the PCI-express bus. It also accepts a stream keyword for launching in asynchronous mode.

3.14.1 Example: Basic Example

import math

from numba import vectorize, cuda
import numpy as np

@vectorize (['float32(float32, float32, float32)',
'float64 (float64, floated, floated)'],
target='cuda')
def cu_discriminant (a, b, c):
return math.sqgrt (b «x 2 - 4 %« a * c)

N = 10000

dtype = np.float32

prepare the input

A = np.array(np.random.sample (N), dtype=dtype)

B = np.array(np.random.sample (N) + 10, dtype=dtype)
C = np.array (np.random.sample (N), dtype=dtype)

D = cu_discriminant (A, B, C)

print (D) # print result

3.14. CUDA Ufuncs and Generalized Ufuncs

189

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

3.14.2 Example: Calling Device Functions

All CUDA ufunc kernels have the ability to call other CUDA device functions:

from numba import vectorize, cuda

define a device function
Qcuda.jit ('float32 (float32, float32, float32)', device=True, inline=True)
def cu_device_fn(x, vy, z):

return x *x y / z

define a ufunc that calls our device function
@vectorize(['float32(float32, float32, float32)'], target='cuda')
def cu_ufunc(x, vy, z):

return cu_device_fn(x, vy, z)

3.14.3 Generalized CUDA ufuncs

Generalized ufuncs may be executed on the GPU using CUDA, analogous to the CUDA ufunc functionality. This may
be accomplished as follows:

from numba import guvectorize

@guvectorize (['void(float32[:,:], float32[:,:], float32[:,:])'],
"(m,n), (n,p)->(m,p) ", target='cuda')
def matmulcore (A, B, C):

There are times when the gufunc kernel uses too many of a GPU’s resources, which can cause the kernel launch to
fail. The user can explicitly control the maximum size of the thread block by setting the max_blocksize attribute on
the compiled gufunc object.

from numba import guvectorize

@guvectorize (..., target='cuda')
def very_complex_kernel (A, B, C):

very_complex_kernel.max_blocksize = 32 # limits to 32 threads per block

3.15 Sharing CUDA Memory

3.15.1 Sharing between process

Warning: This feature is limited to Linux only.

Export device array to another process

A device array can be shared with another process in the same machine using the CUDA IPC API. To do so, use the
.get_ipc_handle () method on the device array to get a IpcArrayHandle object, which can be transferred to
another process.

190 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

DeviceNDArray.get_ipc_handle ()
Returns a IpcArrayHandle object that is safe to serialize and transfer to another process to share the local
allocation.

Note: this feature is only available on Linux.

class numba.cuda.cudadrv.devicearray.IpcArrayHandle (ipc_handle, array_desc)
An IPC array handle that can be serialized and transfer to another process in the same machine for share a GPU
allocation.

On the destination process, use the .open() method to creates a new DeviceNDArray object that shares the
allocation from the original process. To release the resources, call the .close() method. After that, the destination
can no longer use the shared array object. (Note: the underlying weakref to the resource is now dead.)

This object implements the context-manager interface that calls the .open() and .close() method automatically:

with the_ipc_array_handle as ipc_array:
use ipc_array here as a normal gpu array object
some_code (ipc_array)

ipc_array is dead at this point

close ()
Closes the IPC handle to the array.

open ()
Returns a new DeviceNDArray that shares the allocation from the original process. Must not be used on
the original process.

Import IPC memory from another process

The following function is used to open IPC handle from another process as a device array.

cuda.open_ipc_array (shape, dtype, strides=None, offset=0)
A context manager that opens a IPC handle (CUipcMemHandle) that is represented as a sequence of bytes (e.g.
bytes, tuple of int) and represent it as an array of the given shape, strides and dtype. The strides can be omitted.
In that case, it is assumed to be a 1D C contiguous array.

Yields a device array.

The IPC handle is closed automatically when context manager exits.

3.16 CUDA Array Interface (Version 3)

The CUDA Array Interface (or CAl) is created for interoperability between different implementations of CUDA array-
like objects in various projects. The idea is borrowed from the NumPy array interface.

Note: Currently, we only define the Python-side interface. In the future, we may add a C-side interface for efficient
exchange of the information in compiled code.

3.16. CUDA Array Interface (Version 3) 191

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html#__array_interface__

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

3.16.1 Python Interface Specification

Note: Experimental feature. Specification may change.

The __cuda_array_interface___ attribute returns a dictionary (dict) that must contain the following entries:
e shape: (integer, ...)
A tuple of int (or 1ong) representing the size of each dimension.
* typestr: str
The type string. This has the same definition as t ypestr in the numpy array interface.
e data: (integer, boolean)

The data is a 2-tuple. The first element is the data pointer as a Python int (or long). The data must be
device-accessible. For zero-size arrays, use 0 here. The second element is the read-only flag as a Python bool.

Because the user of the interface may or may not be in the same context, the most common case is to use
cuPointerGetAttribute with CU_POINTER_ATTRIBUTE_DEVICE_POINTER in the CUDA driver
API (or the equivalent CUDA Runtime API) to retrieve a device pointer that is usable in the currently active
context.

e version: integer
An integer for the version of the interface being exported. The current version is 3.
The following are optional entries:
e strides: None or (integer, ...)

If strides is not given, or it is None, the array is in C-contiguous layout. Otherwise, a tuple of int (or long)
is explicitly given for representing the number of bytes to skip to access the next element at each dimension.

e descr

This is for describing more complicated types. This follows the same specification as in the numpy array
interface.

* mask: None or object exposing the __cuda_array_interface_
If None then all values in data are valid. All elements of the mask array should be interpreted only as true or

not true indicating which elements of this array are valid. This has the same definition as mask in the numpy
array interface.

Note: Numba does not currently support working with masked CUDA arrays and will raise a
NotImplementedError exception if one is passed to a GPU function.

¢ stream: None or integer

An optional stream upon which synchronization must take place at the point of consumption, either by synchro-
nizing on the stream or enqueuing operations on the data on the given stream. Integer values in this entry are as
follows:

— 0: This is disallowed as it would be ambiguous between None and the default stream, and also between
the legacy and per-thread default streams. Any use case where 0 might be given should either use None,
1, or 2 instead for clarity.

— 1: The legacy default stream.

192 Chapter 3. Numba for CUDA GPUs

https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html#__array_interface__
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html#__array_interface__
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html#__array_interface__
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html#__array_interface__
https://docs.scipy.org/doc/numpy-1.13.0/reference/arrays.interface.html#__array_interface__

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

— 2: The per-thread default stream.
— Any other integer: a cudaStream_t represented as a Python integer.
When None, no synchronization is required. See the Synchronization section below for further details.

In a future revision of the interface, this entry may be expanded (or another entry added) so that an event to
synchronize on can be specified instead of a stream.

Synchronization

Definitions

When discussing synchronization, the following definitions are used:
* Producer: The library / object on which __cuda_array_interface__is accessed.
* Consumer: The library / function that accesses the ___cuda_array_interface__ of the Producer.
* User Code: Code that induces a Producer and Consumer to share data through the CAL

e User: The person writing or maintaining the User Code. The User may implement User Code without knowl-
edge of the CAI, since the CAI accesses can be hidden from their view.

In the following example:

import cupy
from numba import cuda

@Qcuda. jit
def add(x, y, out):
start = cuda.grid(1l)
stride = cuda.gridsize (1)
for i in range(start, x.shape[0], stride):

out[i] = x[1i] + yI[i]
a = cupy.arange (10)
b=a=x* 2
out = cupy.zeros_like (a)

add[1l, 32](a, b, out)

When the add kernel is launched:
* a, b, out are Producers.
* The add kernel is the Consumer.
e The User Code is specifically add[1, 32] (a, b, out).

¢ The author of the code is the User.

3.16. CUDA Array Interface (Version 3) 193

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Design Motivations

Elements of the CAI design related to synchronization seek to fulfill these requirements:

1.
2.

3.

Producers and Consumers that exchange data through the CAI must be able to do so without data races.

Requirement 1 should be met without requiring the user to be aware of any particulars of the CAI - in other
words, exchanging data between Producers and Consumers that operate on data asynchronously should be cor-
rect by default.

* An exception to this requirement is made for Producers and Consumers that explicitly document that the
User is required to take additional steps to ensure correctness with respect to synchronization. In this case,
Users are required to understand the details of the CUDA Array Interface, and the Producer/Consumer
library documentation must specify the steps that Users are required to take.

Use of this exception should be avoided where possible, as it is provided for libraries that cannot implement
the synchronization semantics without the involvement of the User - for example, those interfacing with
third-party libraries oblivious to the CUDA Array Interface.

Where the User is aware of the particulars of the CAI and implementation details of the Producer and Consumer,
they should be able to, at their discretion, override some of the synchronization semantics of the interface to
reduce the synchronization overhead. Overriding synchronization semantics implies that:

e The CAI design, and the design and implementation of the Producer and Consumer do not specify or
guarantee correctness with respect to data races.

* Instead, the User is responsible for ensuring correctness with respect to data races.

Interface Requirements

The st ream entry enables Producers and Consumers to avoid hazards when exchanging data. Expected behaviour of
the Consumer is as follows:

e When st ream is not present or is None:

— No synchronization is required on the part of the Consumer.

— The Consumer may enqueue operations on the underlying data immediately on any stream.

e When stream is an integer, its value indicates the stream on which the Producer may have in-progress opera-

tions on the data, and which the Consumer is expected to either:
— Synchronize on before accessing the data, or
— Enqueue operations in when accessing the data.
The Consumer can choose which mechanism to use, with the following considerations:

— If the Consumer synchronizes on the provided stream prior to accessing the data, then it must ensure that
no computation can take place in the provided stream until its operations in its own choice of stream have
taken place. This could be achieved by either:

+ Placing a wait on an event in the provided stream that occurs once all of the Consumer’s operations
on the data are completed, or

* Avoiding returning control to the user code until after its operations on its own stream have completed.

— If the consumer chooses to only enqueue operations on the data in the provided stream, then it may return
control to the User code immediately after enqueueing its work, as the work will all be serialized on the
exported array’s stream. This is sufficient to ensure correctness even if the User code were to induce the
Producer to subsequently start enqueueing more work on the same stream.

194

Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

* If the User has set the Consumer to ignore CAI synchronization semantics, the Consumer may assume it can
operate on the data immediately in any stream with no further synchronization, even if the st ream member
has an integer value.

When exporting an array through the CAI, Producers must ensure that:

e If there is work on the data enqueued in one or more streams, then synchronization on the provided st ream is
sufficient to ensure synchronization with all pending work.

— If the Producer has no enqueued work, or work only enqueued on the stream identified by st ream, then
this condition is met.

— If the Producer has enqueued work on the data on multiple streams, then it must enqueue events on those
streams that follow the enqueued work, and then wait on those events in the provided stream. For
example:

1. Work is enqueued by the Producer on streams 7, 9, and 15.
2. Events are then enqueued on each of streams 7, 9, and 15.
3. Producer then tells stream 3 to wait on the events from Step 2, and the st ream entry is set to 3.
* If there is no work enqueued on the data, then the st ream entry may be either None, or not provided.
Optionally, to facilitate the User relaxing conformance to synchronization semantics:
* Producers may provide a configuration option to always set st ream to None.

» Consumers may provide a configuration option to ignore the value of st ream and act as if it were None or not
provided. This elides synchronization on the Producer-provided streams, and allows enqueuing work on streams
other than that provided by the Producer.

These options should not be set by default in either a Producer or a Consumer. The CAI specification does not prescribe
the exact mechanism by which these options are set, or related options that Producers or Consumers might provide to
allow the user further control over synchronization behavior.

Synchronization in Numba

Numba is neither strictly a Producer nor a Consumer - it may be used to implement either by a User. In order to
facilitate the correct implementation of synchronization semantics, Numba exhibits the following behaviors related to
synchronization of the interface:

e When Numba acts as a Consumer (for example when an array-like object is passed to a kernel launch): If
streamis an integer, then Numba will immediately synchronize on the provided st ream. A Numba Device
Array created from an array-like object has its default stream set to the provided stream.

* When Numba acts as a Producer (when the __cuda_array_interface__ property of a Numba CUDA
Array is accessed): If the exported CUDA Array has a default stream, then it is given as the st ream entry.
Otherwise, st ream is set to None.

Note: In Numba’s terminology, an array’s default stream is a property specifying the stream that Numba will enqueue
asynchronous transfers in if no other stream is provided as an argument to the function invoking the transfer. It is not
the same as the Default Stream in normal CUDA terminology.

Numba’s synchronization behavior results in the following intended consequences:

» Exchanging data either as a Producer or a Consumer will be correct without the need for any further action from
the User, provided that the other side of the interaction also follows the CAI synchronization semantics.

* The User is expected to either:

3.16. CUDA Array Interface (Version 3) 195

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#default-stream

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

— Avoid launching kernels or other operations on streams that are not the default stream for their parameters,
or

— When launching operations on a stream that is not the default stream for a given parameter, they should
then insert an event into the stream that they are operating in, and wait on that event in the default stream
for the parameter. For an example of this, see below.

The User may override Numba’s synchronization behavior by setting the environment variable
NUMBA_CUDA_ARRAY_INTERFACE_SYNC or the config variable CUDA_ARRAY_INTERFACE_SYNC to O
(see GPU Support Environment Variables). When set, Numba will not synchronize on the streams of imported arrays,
and it is the responsibility of the user to ensure correctness with respect to stream synchronization. Synchronization
when creating a Numba CUDA Array from an object exporting the CUDA Array Interface may also be elided
by passing sync=False when creating the Numba CUDA Array with numba. cuda.as_cuda_array () or
numba.cuda.from _cuda_array_interface ().

There is scope for Numba’s synchronization implementation to be optimized in the future, by eliding synchronizations
when a kernel or driver API operation (e.g. a memcopy or memset) is launched on the same stream as an imported
array.

An example launching on an array’s non-default stream

This example shows how to ensure that a Consumer can safely consume an array with a default stream when it is
passed to a kernel launched in a different stream.

First we need to import Numba and a consumer library (a fictitious library named other_cai_library for this
example):

from numba import cuda, int32, void
import other_cai_library

Now we’ll define a kernel - this initializes the elements of the array, setting each entry to its index:

@cuda. jit (void, int32[::11])
def initialize_array(x):
i = cuda.grid(1l)
if 1 < len(x):
x[1] = 1

Next we will create two streams:

array_stream = cuda.stream()
kernel_stream = cuda.stream()

Then create an array with one of the streams as its default stream:

N = 16384
cuda.device_array (N, stream=array_stream)

X

Now we launch the kernel in the other stream:

nthreads = 256
nblocks = N // nthreads

initialize_array[nthreads, nblocks, kernel_ stream] (x)

If we were to pass x to a Consumer now, there is a risk that it may operate on it in array_ st ream whilst the kernel
is still running in kernel_stream. To prevent operations in array_stream starting before the kernel launch is
finished, we create an event and wait on it:

196 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Create event

evt = cuda.event ()

Record the event after the kernel launch in kernel_stream
evt.record (kernel_ stream)

Wait for the event in array_stream

evt.wait (array_stream)

It is now safe for other_cai_library to consume x:

other_cai_library.consume (x)

Lifetime management

Data

Obtaining the value of the __cuda_array_interface__ property of any object has no effect on the lifetime of
the object from which it was created. In particular, note that the interface has no slot for the owner of the data.

The User code must preserve the lifetime of the object owning the data for as long as the Consumer might use it.

Streams

Like data, CUDA streams also have a finite lifetime. It is therefore required that a Producer exporting data on the
interface with an associated stream ensures that the exported stream’s lifetime is equal to or surpasses the lifetime of
the object from which the interface was exported.

Lifetime management in Numba

Producing Arrays

Numba takes no steps to maintain the lifetime of an object from which the interface is exported - it is the user’s
responsibility to ensure that the underlying object is kept alive for the duration that the exported interface might be
used.

The lifetime of any Numba-managed stream exported on the interface is guaranteed to equal or surpass the lifetime of
the underlying object, because the underlying object holds a reference to the stream.

Note: Numba-managed streams are those created with cuda.default_stream(), cuda.
legacy_default_stream(), or cuda.per_thread_default_stream(). Streams not managed
by Numba are created from an external stream with cuda.external_stream().

3.16. CUDA Array Interface (Version 3) 197

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Consuming Arrays

Numba provides two mechanisms for creating device arrays from objects exporting the CUDA Array Interface. Which
to use depends on whether the created device array should maintain the life of the object from which it is created:

* as_cuda_array: This creates a device array that holds a reference to the owning object. As long as a
reference to the device array is held, its underlying data will also be kept alive, even if all other references to the
original owning object have been dropped.

e from_cuda_array_interface: This creates a device array with no reference to the owning object by
default. The owning object, or some other object to be considered the owner can be passed in the owner
parameter.

The interfaces of these functions are:

cuda.as_cuda_array (sync=True)
Create a DeviceNDATrray from any object that implements the cuda array interface.

A view of the underlying GPU buffer is created. No copying of the data is done. The resulting DeviceNDArray
will acquire a reference from obyj.

If sync is True, then the imported stream (if present) will be synchronized.

cuda.from_cuda_array_interface (owner=None, sync=True)
Create a DeviceNDArray from a cuda-array-interface description. The owner is the owner of the underlying
memory. The resulting DeviceNDArray will acquire a reference from it.

If sync is True, then the imported stream (if present) will be synchronized.
Pointer Attributes

Additional information about the data pointer can be retrieved using cuPointerGetAttribute or
cudaPointerGetAttributes. Such information include:

 the CUDA context that owns the pointer;
* is the pointer host-accessible?
* is the pointer a managed memory?

Differences with CUDA Array Interface (Version 0)

Version 0 of the CUDA Array Interface did not have the optional mask attribute to support masked arrays.

Differences with CUDA Array Interface (Version 1)

Versions 0 and 1 of the CUDA Array Interface neither clarified the strides attribute for C-contiguous arrays nor
specified the treatment for zero-size arrays.

198 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Differences with CUDA Array Interface (Version 2)

Prior versions of the CUDA Array Interface made no statement about synchronization.

Interoperability

The following Python libraries have adopted the CUDA Array Interface:

* Numba

e CuPy

* PyTorch

* PyArrow

* mpidpy

e ArrayViews

* JAX

* The RAPIDS stack:
- cuDF
- cuML

cuSignal
- RMM

If your project is not on this list, please feel free to report it on the Numba issue tracker.

3.17 External Memory Management (EMM) Plugin interface

The CUDA Array Interface enables sharing of data between different Python libraries that access CUDA devices.
However, each library manages its own memory distinctly from the others. For example:

* By default, Numba allocates memory on CUDA devices by interacting with the CUDA driver API to call func-
tions such as cuMemAlloc and cuMemF ree, which is suitable for many use cases.

e The RAPIDS libraries (cuDF, cuML, etc.) use the RAPIDS Memory Manager (RMM) for allocating device
memory.

* CuPy includes a memory pool implementation for both device and pinned memory.

When multiple CUDA-aware libraries are used together, it may be preferable for Numba to defer to another library
for memory management. The EMM Plugin interface facilitates this, by enabling Numba to use another CUDA-aware
library for all allocations and deallocations.

An EMM Plugin is used to facilitate the use of an external library for memory management. An EMM Plugin can be
a part of an external library, or could be implemented as a separate library.

3.17. External Memory Management (EMM) Plugin interface 199

https://docs-cupy.chainer.org/en/stable/reference/interoperability.html
https://pytorch.org
https://arrow.apache.org/docs/python/generated/pyarrow.cuda.Context.html#pyarrow.cuda.Context.buffer_from_object
https://mpi4py.readthedocs.io/en/latest/overview.html#support-for-cuda-aware-mpi
https://github.com/xnd-project/arrayviews
https://jax.readthedocs.io/en/latest/index.html
https://rapidsai.github.io/projects/cudf/en/0.11.0/10min-cudf-cupy.html
https://docs.rapids.ai/api/cuml/nightly/
https://github.com/rapidsai/cusignal
https://docs.rapids.ai/api/rmm/stable/
https://github.com/numba/numba/issues
https://github.com/rapidsai/rmm
https://cupy.chainer.org/
https://docs-cupy.chainer.org/en/stable/reference/memory.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

3.17.1 Overview of External Memory Management

When an EMM Plugin is in use (see Setting the EMM Plugin), Numba will make memory allocations and deallocations
through the Plugin. It will never directly call functions such as cuMemAlloc, cuMemFree, etc.

EMM Plugins always take responsibility for the management of device memory. However, not all CUDA-aware
libraries also support managing host memory, so a facility for Numba to continue the management of host memory
whilst ceding control of device memory to the EMM is provided (see The Host-Only CUDA Memory Manager).

Effects on Deallocation Strategies

Numba’s internal Deallocation Behavior is designed to increase efficiency by deferring deallocations until a significant
quantity are pending. It also provides a mechanism for preventing deallocations entirely during critical sections, using
the defer cleanup () context manager.

When an EMM Plugin is in use, the deallocation strategy is implemented by the EMM, and Numba’s internal deallo-
cation mechanism is not used. The EMM Plugin could implement:

* A similar strategy to the Numba deallocation behaviour, or

* Something more appropriate to the plugin - for example, deallocated memory might immediately be returned to
a memory pool.

The defer_cleanup context manager may behave differently with an EMM Plugin - an EMM Plugin should be
accompanied by documentation of the behaviour of the defer_cleanup context manager when it is in use. For
example, a pool allocator could always immediately return memory to a pool even when the context manager is in use,
but could choose not to free empty pools until defer_cleanup is not in use.

Management of other objects

In addition to memory, Numba manages the allocation and deallocation of events, streams, and modules (a module
is a compiled object, which is generated from @cuda . jit-ted functions). The management of events, streams, and
modules is unchanged by the use of an EMM Plugin.

Asynchronous allocation and deallocation

The present EMM Plugin interface does not provide support for asynchronous allocation and deallocation. This may
be added to a future version of the interface.

3.17.2 Implementing an EMM Plugin

An EMM Plugin is implemented by deriving from BaseCUDAMemoryManager. A summary of considerations for
the implementation follows:

* Numba instantiates one instance of the EMM Plugin class per context. The context that owns an EMM Plugin
object is accessible through self.context, if required.

¢ The EMM Plugin is transparent to any code that uses Numba - all its methods are invoked by Numba, and never
need to be called by code that uses Numba.

e The allocation methods memalloc, memhostalloc, and mempin, should use the underlying library to
allocate and/or pin device or host memory, and construct an instance of a memory pointer representing the
memory to return back to Numba. These methods are always called when the current CUDA context is the
context that owns the EMM Plugin instance.

200 Chapter 3. Numba for CUDA GPUs

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

The initialize method is called by Numba prior to the first use of the EMM Plugin object for a context.
This method should do anything required to prepare the underlying library for allocations in the current context.
This method may be called multiple times, and must not invalidate previous state when it is called.

The reset method is called when all allocations in the context are to be cleaned up. It may be called even prior
to initialize, and an EMM Plugin implementation needs to guard against this.

To support inter-GPU communication, the get_ipc_handle method should provide an TpcHandle for a
given MemoryPointer instance. This method is part of the EMM interface (rather than being handled within
Numba) because the base address of the allocation is only known by the underlying library. Closing an IPC
handle is handled internally within Numba.

It is optional to provide memory info from the get_memory_info method, which provides a count of the
total and free memory on the device for the context. It is preferrable to implement the method, but this may not
be practical for all allocators. If memory info is not provided, this method should raise a Runt imeError.

The defer_cleanup method should return a context manager that ensures that expensive cleanup operations
are avoided whilst it is active. The nuances of this will vary between plugins, so the plugin documentation
should include an explanation of how deferring cleanup affects deallocations, and performance in general.

The interface_version property is used to ensure that the plugin version matches the interface provided
by the version of Numba. At present, this should always be 1.

Full documentation for the base class follows:

class numba.cuda.BaseCUDAMemoryManager (*args, **kwargs)

Abstract base class for External Memory Management (EMM) Plugins.

abstract memalloc (size)
Allocate on-device memory in the current context.

Parameters size (int)— Size of allocation in bytes
Returns A memory pointer instance that owns the allocated memory
Return type MemoryPointer

abstract memhostalloc (size, mapped, portable, wc)
Allocate pinned host memory.

Parameters
* size (int) - Size of the allocation in bytes

* mapped (bool) — Whether the allocated memory should be mapped into the CUDA
address space.

e portable (bool)— Whether the memory will be considered pinned by all contexts, and
not just the calling context.

e we (bool)— Whether to allocate the memory as write-combined.

Returns A memory pointer instance that owns the allocated memory. The return type depends
on whether the region was mapped into device memory.

Return type MappedMemory or PinnedMemory

abstract mempin (owner, pointer, size, mapped)
Pin a region of host memory that is already allocated.

Parameters
* owner — The object that owns the memory.

* pointer (int)— The pointer to the beginning of the region to pin.

3.17. External Memory Management (EMM) Plugin interface 201

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* size (int)— The size of the region in bytes.

* mapped (bool)— Whether the region should also be mapped into device memory.
Returns A memory pointer instance that refers to the allocated memory.
Return type MappedMemory or PinnedMemory

abstract initialize()
Perform any initialization required for the EMM plugin instance to be ready to use.

Returns None

abstract get_ipc_handle (memory)
Return an IPC handle from a GPU allocation.

Parameters memory (MemoryPointer)— Memory for which the IPC handle should be cre-
ated.

Returns IPC handle for the allocation
Return type IpcHandle

abstract get_memory info ()
Returns (free, total) memory in bytes in the context. May raise Not ImplementedError, if
returning such information is not practical (e.g. for a pool allocator).

Returns Memory info
Return type MemoryInfo

abstract reset ()
Clears up all memory allocated in this context.

Returns None

abstract defer_ cleanup ()
Returns a context manager that ensures the implementation of deferred cleanup whilst it is active.

Returns Context manager

abstract property interface_version
Returns an integer specifying the version of the EMM Plugin interface supported by the plugin implemen-
tation. Should always return 1 for implementations of this version of the specification.

The Host-Only CUDA Memory Manager

Some external memory managers will support management of on-device memory but not host memory. For imple-
menting EMM Plugins using one of these memory managers, a partial implementation of a plugin that implements
host-side allocation and pinning is provided. To use it, derive from HostOnlyCUDAMemoryManager instead of
BaseCUDAMemoryManager. Guidelines for using this class are:

e The host-only memory manager implements memhostalloc and mempin - the EMM Plugin should still
implement memalloc.

* If reset is overridden, it must also call super () . reset () to allow the host allocations to be cleaned up.

e If defer_cleanup is overridden, it must hold an active context manager from super ().
defer_cleanup () to ensure that host-side cleanup is also deferred.

Documentation for the methods of HostOnlyCUDAMemoryManager follows:

202 Chapter 3. Numba for CUDA GPUs

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#NotImplementedError

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

class numba.cuda.HostOnlyCUDAMemoryManager (*args, **kwargs)
Base class for External Memory Management (EMM) Plugins that only implement on-device allocation. A
subclass need not implement the memhostalloc and mempin methods.

This class also implements reset and defer_cleanup (see numba.cuda.
BaseCUDAMemoryManager) for its own internal state management. If an EMM Plugin based on this
class also implements these methods, then its implementations of these must also call the method from
super () to give HostOnlyCUDAMemoryManager an opportunity to do the necessary work for the host
allocations it is managing.

This class does not implement interface_version, as it will always be consistent with the ver-
sion of Numba in which it is implemented. An EMM Plugin subclassing this class should implement
interface_version instead.

memhostalloc (size, mapped=False, portable=False, wc=False)
Implements the allocation of pinned host memory.

It is recommended that this method is not overridden by EMM Plugin implementations - instead, use the
BaseCUDAMemoryManager.

mempin (owner, pointer, size, mapped=~False)
Implements the pinning of host memory.

It is recommended that this method is not overridden by EMM Plugin implementations - instead, use the
BaseCUDAMemoryManager.

reset ()
Clears up all host memory (mapped and/or pinned) in the current context.

EMM Plugins that override this method must call super () . reset () to ensure that host allocations are
also cleaned up.

defer_cleanup ()
Returns a context manager that disables cleanup of mapped or pinned host memory in the current context
whilst it is active.

EMM Plugins that override this method must obtain the context manager from this method before yielding
to ensure that cleanup of host allocations is also deferred.

The IPC Handle Mixin

An implementation of the get _ipc_handle () function is is provided in the Get IpcHandleMixin class. This
uses the driver API to determine the base address of an allocation for opening an IPC handle. If this implementation
is appropriate for an EMM plugin, it can be added by mixing in the Get IpcHandleMixin class:

class numba.cuda.GetIpcHandleMixin
A class that provides a default implementation of get_ipc_handle ().

get_ipc_handle (memory)
Open an IPC memory handle by using cuMemGetAddressRange to determine the base pointer of
the allocation. An IPC handle of type cu_ipc_mem_handle is constructed and initialized with
culpcGetMemHandle. A numba.cuda.IpcHandle is returned, populated with the underlying
ipc_mem_handle.

3.17. External Memory Management (EMM) Plugin interface 203

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

3.17.3 Classes and structures of returned objects

This section provides an overview of the classes and structures that need to be constructed by an EMM Plugin.

Memory Pointers
EMM Plugins should construct memory pointer instances that represent their allocations, for return to Numba. The
appropriate memory pointer class to use in each method is:

e MemoryPointer: returned from memalloc

* MappedMemory: returned from memhostalloc or mempin when the host memory is mapped into the
device memory space.

e PinnedMemory: return from memhostalloc or mempin when the host memory is not mapped into the
device memory space.

Memory pointers can take a finalizer, which is a function that is called when the buffer is no longer needed. Usually
the finalizer will make a call to the memory management library (either internal to Numba, or external if allocated
by an EMM Plugin) to inform it that the memory is no longer required, and that it could potentially be freed and/or
unpinned. The memory manager may choose to defer actually cleaning up the memory to any later time after the
finalizer runs - it is not required to free the buffer immediately.

Documentation for the memory pointer classes follows.

class numba.cuda.MemoryPointer (context, pointer, size, owner=None, finalizer=None)
A memory pointer that owns a buffer, with an optional finalizer. Memory pointers provide reference counting,
and instances are initialized with a reference count of 1.

The base MemoryPointer class does not use the reference count for managing the buffer lifetime. Instead,
the buffer lifetime is tied to the memory pointer instance’s lifetime:

* When the instance is deleted, the finalizer will be called.
* When the reference count drops to 0, no action is taken.

Subclasses of MemoryPointer may modify these semantics, for example to tie the buffer lifetime to the
reference count, so that the buffer is freed when there are no more references.

Parameters
* context (Context)— The context in which the pointer was allocated.
e pointer (ctypes.c_void_p)- The address of the buffer.
* size (int) - The size of the allocation in bytes.

* owner (NoneType) — The owner is sometimes set by the internals of this class, or used
for Numba’s internal memory management. It should not be provided by an external user of
the MemoryPointer class (e.g. from within an EMM Plugin); the default of None should
always suffice.

e finalizer (function)— A function that is called when the buffer is to be freed.

The AutoFreePointer class need not be used directly, but is documented here as it is subclassed by numba.
cuda.MappedMemory:

class numba.cuda.cudadrv.driver.AutoFreePointer (*args, **kwargs)
Modifies the ownership semantic of the MemoryPointer so that the instance lifetime is directly tied to the number
of references.

When the reference count reaches zero, the finalizer is invoked.

204 Chapter 3. Numba for CUDA GPUs

https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Constructor arguments are the same as for MemoryPointer.

class numba.cuda.MappedMemory (context, pointer, size, owner=None, finalizer=None)
A memory pointer that refers to a buffer on the host that is mapped into device memory.

Parameters

context (Context) — The context in which the pointer was mapped.
pointer (ctypes.c _void_p)— The address of the buffer.
size (int)— The size of the buffer in bytes.

owner (NoneType) — The owner is sometimes set by the internals of this class, or used
for Numba’s internal memory management. It should not be provided by an external user of
the MappedMemory class (e.g. from within an EMM Plugin); the default of None should
always suffice.

finalizer (function)— A function that is called when the buffer is to be freed.

class numba.cuda.PinnedMemory (context, pointer, size, owner=None, finalizer=None)
A pointer to a pinned buffer on the host.

Parameters

Memory Info

context (Context) — The context in which the pointer was mapped.

owner — The object owning the memory. For EMM plugin implementation, this ca
pointer (ctypes.c _void_p)— The address of the buffer.

size (int)— The size of the buffer in bytes.

owner — An object owning the buffer that has been pinned. For EMM plugin implementa-
tion, the default of None suffices for memory allocated in memhostalloc - for mempin,
it should be the owner passed in to the mempin method.

finalizer (function)— A function that is called when the buffer is to be freed.

If an implementation of get_memory_info () is to provide a result, then it should return an instance of the
MemoryInfo named tuple:

class numba.cuda.MemoryInfo (free, total)
Free and total memory for a device.

free

Free device memory in bytes.

total

Total device memory in bytes.

3.17. External Memory Management (EMM) Plugin interface 205

https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/ctypes.html#ctypes.c_void_p
https://docs.python.org/3/library/functions.html#int

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

IPC

An instance of IpcHandle is required to be returned from an implementation of get__ipc_handle ():

class numba.cuda.IpcHandle (base, handle, size, source_info=None, offset=0)
CUDA IPC handle. Serialization of the CUDA IPC handle object is implemented here.

Parameters
* base (MemoryPointer) — A reference to the original allocation to keep it alive
* handle — The CUDA IPC handle, as a ctypes array of bytes.
* size (int)— Size of the original allocation
* source_info (dict)— The identity of the device on which the IPC handle was opened.

» offset (int) - The offset into the underlying allocation of the memory referred to by this
IPC handle.

Guidance for constructing an IPC handle in the context of implementing an EMM Plugin:

* The memory parameter passed to the get__ipc_handle method of an EMM Plugin can be passed as the
base parameter.

* A suitable type for the handle can be constructed as ctypes.c_byte * 64. The data for handle must
be populated using a method for obtaining a CUDA IPC handle appropriate to the underlying library.

* size should match the size of the original allocation, which can be obtained with memory.size in
get_ipc_handle.

e An appropriate value for source_info can be created by calling self.context.device.
get_device_identity ().

¢ If the underlying memory does not point to the base of an allocation returned by the CUDA driver or runtime
API (e.g. if a pool allocator is in use) then the of fset from the base must be provided.

3.17.4 Setting the EMM Plugin

By default, Numba uses its internal memory management - if an EMM Plugin is to be used, it must be configured.
There are two mechanisms for configuring the use of an EMM Plugin: an environment variable, and a function.

Environment variable

A module name can be provided in the environment variable, NUMBA_CUDA_MEMORY_MANAGER. If this environ-
ment variable is set, Numba will attempt to import the module, and and use its _numba_memory_manager global
variable as the memory manager class. This is primarily useful for running the Numba test suite with an EMM Plugin,

e.g.:

$ NUMBA_CUDA_MEMORY_MANAGER=rmm python -m numba.runtests numba.cuda.tests

206 Chapter 3. Numba for CUDA GPUs

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Function
The set_memory manager () function can be used to set the memory manager at runtime. This should be called
prior to the initialization of any contexts, as EMM Plugin instances are instantiated along with contexts.

numba .cuda.set_memory_manager (mm_plugin)
Configure Numba to use an External Memory Management (EMM) Plugin. If the EMM Plugin version does
not match one supported by this version of Numba, a RuntimeError will be raised.

Parameters mm_plugin (BaseCUDAMemoryManager) — The class implementing the EMM
Plugin.

Returns None

Resetting the memory manager

It is recommended that the memory manager is set once prior to using any CUDA functionality, and left unchanged
for the remainder of execution. It is possible to set the memory manager multiple times, noting the following:

* At the time of their creation, contexts are bound to an instance of a memory manager for their lifetime.

¢ Changing the memory manager will have no effect on existing contexts - only contexts created after the memory
manager was updated will use instances of the new memory manager.

* numba.cuda.close () can be used to destroy contexts after setting the memory manager so that they get
re-created with the new memory manager.

— This will invalidate any arrays, streams, events, and modules owned by the context.

— Attempting to use invalid arrays, streams, or events will likely fail with an exception being raised due
to a CUDA_ERROR_INVALID_CONTEXT or CUDA_ERROR_CONTEXT_IS_DESTROYED return code
from a Driver API function.

— Attempting to use an invalid module will result in similar, or in some cases a segmentation fault / access
violation.

Note: The invalidation of modules means that all functions compiled with @cuda. jit prior to context destruction
will need to be redefined, as the code underlying them will also have been unloaded from the GPU.

3.18 CUDA Frequently Asked Questions

3.18.1 nvprof reports “No kernels were profiled”

When using the nvprof tool to profile Numba jitted code for the CUDA target, the output contains No kernels
were profiled but there are clearly running kernels present, what is going on?

This is quite likely due to the profiling data not being flushed on program exit, see the NVIDIA CUDA documentation
for details. To fix this simply add a call to numba .cuda.profile_stop () prior to the exit point in your program
(or wherever you want to stop profiling). For more on CUDA profiling support in Numba, see Profiling.

3.18. CUDA Frequently Asked Questions 207

http://docs.nvidia.com/cuda/profiler-users-guide/#flush-profile-data

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

208 Chapter 3. Numba for CUDA GPUs

CHAPTER
FOUR

CUDA PYTHON REFERENCE

4.1 CUDA Host API

4.1.1 Device Management
Device detection and enquiry

The following functions are available for querying the available hardware:

numba.cuda.is_available ()
Returns a boolean to indicate the availability of a CUDA GPU.

This will initialize the driver if it hasn’t been initialized.

numba.cuda.detect ()
Detect supported CUDA hardware and print a summary of the detected hardware.

Returns a boolean indicating whether any supported devices were detected.

Context management

CUDA Python functions execute within a CUDA context. Each CUDA device in a system has an associated CUDA
context, and Numba presently allows only one context per thread. For further details on CUDA Contexts, refer
to the CUDA Driver API Documentation on Context Management and the CUDA C Programming Guide Context
Documentation. CUDA Contexts are instances of the Context class:

class numba.cuda.cudadrv.driver.Context (device, handle)
This object wraps a CUDA Context resource.

Contexts should not be constructed directly by user code.

get_memory_ info ()
Returns (free, total) memory in bytes in the context.

pop ()
Pops this context off the current CPU thread. Note that this context must be at the top of the context stack,
otherwise an error will occur.

push ()
Pushes this context on the current CPU Thread.

reset ()
Clean up all owned resources in this context.

The following functions can be used to get or select the context:

209

http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__CTX.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#context
http://docs.nvidia.com/cuda/cuda-c-programming-guide/#context

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numba.cuda.current_context (devnum=None)
Get the current device or use a device by device number, and return the CUDA context.

numba.cuda.require_context (fn)
A decorator that ensures a CUDA context is available when f is executed.

Note: The function fin cannot switch CUDA-context.
The following functions affect the current context:

numba.cuda.synchronize ()
Synchronize the current context.

numba.cuda.close ()
Explicitly clears all contexts in the current thread, and destroys all contexts if the current thread is the main
thread.

Device management

Numba maintains a list of supported CUDA-capable devices:

numba.cuda.gpus
An indexable list of supported CUDA devices. This list is indexed by integer device ID.

Alternatively, the current device can be obtained:

numba.cuda.gpus.current ()
Return the currently-selected device.

Getting a device through numba.cuda.gpus always provides an instance of numba.cuda.cudadrv.
devices._DeviceContextManager, which acts as a context manager for the selected device:

class numba.cuda.cudadrv.devices._DeviceContextManager (device)
Provides a context manager for executing in the context of the chosen device. The normal use of instances of
this type is from numba . cuda . gpus. For example, to execute on device 2:

with numba.cuda.gpus[2]:
d_a = numba.cuda.to_device (a)

to copy the array a onto device 2, referred to by d_a.
One may also select a context and device or get the current device using the following three functions:

numba.cuda.select_device (device_id)
Make the context associated with device device_id the current context.

Returns a Device instance.
Raises exception on error.

numba.cuda.get_current_device ()
Get current device associated with the current thread

numba.cuda.list_devices ()
Return a list of all detected devices

The numba . cuda. cudadrv.driver.Device class can be used to enquire about the functionality of the selected
device:

class numba.cuda.cudadrv.driver.Device
The device associated with a particular context.

210 Chapter 4. CUDA Python Reference

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

compute_capability
A tuple, (major, minor) indicating the supported compute capability.

id
The integer ID of the device.

name
The name of the device (e.g. “GeForce GTX 970”)

reset ()
Delete the context for the device. This will destroy all memory allocations, events, and streams created
within the context.

4.1.2 Compilation
Numba provides an entry point for compiling a Python function to PTX without invoking any of the driver API. This
can be useful for:

* Generating PTX that is to be inlined into other PTX code (e.g. from outside the Numba / Python ecosystem).

* Generating code when there is no device present.

* Generating code prior to a fork without initializing CUDA.

Note: It is the user’s responsibility to manage any ABI issues arising from the use of compilation to PTX.

numba .cuda.compile_ptx (pyfunc, args, debug=False, device=False, fastmath=False, cc=None,
opt=True)
Compile a Python function to PTX for a given set of argument types.

Parameters
* pyfunc — The Python function to compile.
* args — A tuple of argument types to compile for.
* debug (bool) — Whether to include debug info in the generated PTX.

* device (bool)— Whether to compile a device function. Defaults to False, to compile
global kernel functions.

* fastmath (bool) — Whether to enable fast math flags (ftz=1, prec_sqrt=0, prec_div=,
and fma=1)

* cc (tuple)— Compute capability to compile for, as a tuple (MAJOR, MINOR). Defaults
to (5, 2).

* opt (bool) - Enable optimizations. Defaults to True.
Returns (ptx, resty): The PTX code and inferred return type
Return type tuple

The environment variable NUMBA__CUDA_DEFAULT_PTX_CC can be set to control the default compute capability
targeted by compile_ptx - see GPU support. If PTX for the compute capability of the current device is required,
the compile_ptx_for_current_device function can be used:

numba.cuda.compile_ptx for_current_device (pyfunc, args, debug=False, device=False, fast-

math=False, opt=True)
Compile a Python function to PTX for a given set of argument types for the current device’s compute capabilility.

This calls compile ptx () with an appropriate cc value for the current device.

4.1. CUDA Host API 211

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

4.1.3 Measurement
Profiling

The NVidia Visual Profiler can be used directly on executing CUDA Python code - it is not a requirement to insert calls
to these functions into user code. However, these functions can be used to allow profiling to be performed selectively
on specific portions of the code. For further information on profiling, see the NVidia Profiler User’s Guide.

numba.cuda.profile_start ()
Enable profile collection in the current context.

numba.cuda.profile_stop ()
Disable profile collection in the current context.

numba.cuda.profiling ()
Context manager that enables profiling on entry and disables profiling on exit.

Events

Events can be used to monitor the progress of execution and to record the timestamps of specific points being reached.
Event creation returns immediately, and the created event can be queried to determine if it has been reached. For
further information, see the CUDA C Programming Guide Events section.

The following functions are used for creating and measuring the time between events:

numba . cuda .event (timing=True)
Create a CUDA event. Timing data is only recorded by the event if it is created with t iming=True.

numba.cuda.event_elapsed_time (evistart, evtend)
Compute the elapsed time between two events in milliseconds.

Events are instances of the numba . cuda . cudadrv.driver.Event class:

class numba.cuda.cudadrv.driver.Event (context, handle, finalizer=None)

query ()
Returns True if all work before the most recent record has completed; otherwise, returns False.

record (stream=0)
Set the record point of the event to the current point in the given stream.

The event will be considered to have occurred when all work that was queued in the stream at the time of
the call to record () has been completed.

synchronize ()
Synchronize the host thread for the completion of the event.

wait (stream=0)
All future works submitted to stream will wait util the event completes.

212 Chapter 4. CUDA Python Reference

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#events

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

4.1.4 Stream Management

Streams allow concurrency of execution on a single device within a given context. Queued work items in the same
stream execute sequentially, but work items in different streams may execute concurrently. Most operations involving
a CUDA device can be performed asynchronously using streams, including data transfers and kernel execution. For
further details on streams, see the CUDA C Programming Guide Streams section.

Streams are instances of numba . cuda.cudadrv.driver.Stream:

class numba.cuda.cudadrv.driver.Stream (context, handle, finalizer, external=False)

add_callback (callback, arg)
Add a callback to a compute stream. The user provided function is called from a driver thread once all
preceding stream operations are complete.

Callback functions are called from a CUDA driver thread, not from the thread that invoked add_callback.
No CUDA API functions may be called from within the callback function.

The duration of a callback function should be kept short, as the callback will block later work in the stream
and may block other callbacks from being executed.

Note: The driver function underlying this method is marked for eventual deprecation and may be replaced
in a future CUDA release.

Parameters
* callback — Callback function with arguments (stream, status, arg).
* arg — User data to be passed to the callback function.

async_done () — _asyncio.Future
Return an awaitable that resolves once all preceding stream operations are complete.

auto_synchronize ()
A context manager that waits for all commands in this stream to execute and commits any pending memory
transfers upon exiting the context.

synchronize ()
Wait for all commands in this stream to execute. This will commit any pending memory transfers.

To create a new stream:

numba.cuda.stream()
Create a CUDA stream that represents a command queue for the device.

To get the default stream:

numba.cuda.default_stream()
Get the default CUDA stream. CUDA semantics in general are that the default stream is either the legacy default
stream or the per-thread default stream depending on which CUDA APIs are in use. In Numba, the APIs for the
legacy default stream are always the ones in use, but an option to use APIs for the per-thread default stream may
be provided in future.

To get the default stream with an explicit choice of whether it is the legacy or per-thread default stream:

numba.cuda.legacy default_stream()
Get the legacy default CUDA stream.

numba.cuda.per_thread default_stream()
Get the per-thread default CUDA stream.

4.1. CUDA Host API 213

http://docs.nvidia.com/cuda/cuda-c-programming-guide/#streams

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

To construct a Numba Stream object using a stream allocated elsewhere, the external_stream function is
provided. Note that the lifetime of external streams must be managed by the user - Numba will not deallocate an
external stream, and the stream must remain valid whilst the Numba St ream object is in use.

numba.cuda.external stream (pir)
Create a Numba stream object for a stream allocated outside Numba.

Parameters ptr (int)— Pointer to the external stream to wrap in a Numba Stream

4.1.5 Runtime

Numba generally uses the Driver API, but it provides a simple wrapper to the Runtime API so that the version of
the runtime in use can be queried. This is accessed through cuda . runt ime, which is an instance of the numba.
cuda.cudadrv. runtime.Runt ime class:

class numba.cuda.cudadrv.runtime.Runtime
Runtime object that lazily binds runtime API functions.

get_version ()
Returns the CUDA Runtime version as a tuple (major, minor).

is_supported_version ()
Returns True if the CUDA Runtime is a supported version.

property supported versions
A tuple of all supported CUDA toolkit versions. Versions are given in the form (major_version,
minor_version).

Whether the current runtime is officially supported and tested with the current version of Numba can also be queried:

numba.cuda.is_supported version ()
Returns True if the CUDA Runtime is a supported version.

Unsupported versions (e.g. newer versions than those known to Numba) may still work; this function provides
a facility to check whether the current Numba version is tested and known to work with the current runtime
version. If the current version is unsupported, the caller can decide how to act. Options include:

* Continuing silently,
* Emitting a warning,

¢ Generating an error or otherwise preventing the use of CUDA.

4.2 CUDA Kernel API

4.2.1 Kernel declaration

The @cuda. jit decorator is used to create a CUDA dispatcher object that can be configured and launched:

numba .cuda. jit (func_or_sig=None, device=False, inline=False, link=[], debug=None, opt=True,

k)
JIT compile a python function conforming to the CUDA Python specification. If a signature is supplied, then a

function is returned that takes a function to compile.
Parameters

* func_or_sig — A function to JIT compile, or a signature of a function to compile. If
a function is supplied, then a numba . cuda.compiler.AutoJitCUDAKernel is re-
turned. If a signature is supplied, then a function is returned. The returned function accepts

214 Chapter 4. CUDA Python Reference

https://docs.python.org/3/library/functions.html#int

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

another function, which it will compile and then return a numba.cuda.compiler.
AutoJitCUDAKernel.

Note: A kernel cannot have any return value.

e device (bool) - Indicates whether this is a device function.
* link (11ist)— Alist of files containing PTX source to link with the function

* debug - If True, check for exceptions thrown when executing the kernel. Since
this degrades performance, this should only be used for debugging purposes. De-
faults to False. (The default value can be overridden by setting environment variable
NUMBA_CUDA_DEBUGINFO=1.)

* fastmath - If true, enables flush-to-zero and fused-multiply-add, disables precise division
and square root. This parameter has no effect on device function, whose fastmath setting
depends on the kernel function from which they are called.

* max_registers — Request that the kernel is limited to using at most this number of
registers per thread. The limit may not be respected if the ABI requires a greater number of
registers than that requested. Useful for increasing occupancy.

* opt (bool) — Whether to compile from LLVM IR to PTX with optimization enabled.
When True, —opt=3 is passed to NVVM. When False, —opt=0 is passed to NVVM.
Defaults to True.

4.2.2 Dispatcher objects

The usual syntax for configuring a Dispatcher with a launch configuration uses subscripting, with the arguments being
as in the following:

func is some function decorated with @cuda. jit
func[griddim, blockdim, stream, sharedmem]

The griddim and blockdim arguments specify the size of the grid and thread blocks, and may be either integers
or tuples of length up to 3. The st ream parameter is an optional stream on which the kernel will be launched, and
the sharedmem parameter specifies the size of dynamic shared memory in bytes.

Subscripting the Dispatcher returns a configuration object that can be called with the kernel arguments:

configured = func[griddim, blockdim, stream, sharedmem]
configured(x, y, z)

However, it is more idiomatic to configure and call the kernel within a single statement:

’func[griddim, blockdim, stream, sharedmem] (x, y, 2z)

This is similar to launch configuration in CUDA C/C++:

’func<<<griddim, blockdim, sharedmem, stream>>>(x, vy, 2z)

Note: The order of st ream and sharedmem are reversed in Numba compared to in CUDA C/C++.

Dispatcher objects also provide several utility methods for inspection and creating a specialized instance:

4.2. CUDA Kernel API 215

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

class numba.cuda.compiler.Dispatcher (py_func, sigs, targetoptions)
CUDA Dispatcher object. When configured and called, the dispatcher will specialize itself for the given ar-
guments (if no suitable specialized version already exists) & compute capability, and launch on the device
associated with the current context.

Dispatcher objects are not to be constructed by the user, but instead are created using the numba . cuda. jit ()
decorator.

property extensions
A list of objects that must have a prepare_args function. When a specialized kernel is called, each argument
will be passed through to the prepare_args (from the last object in this list to the first). The arguments to
prepare_args are:

* ty the numba type of the argument

* val the argument value itself

o stream the CUDA stream used for the current call to the kernel

* retr a list of zero-arg functions that you may want to append post-call cleanup work to.

The prepare_args function must return a tuple (#y, val), which will be passed in turn to the next right-most
extension. After all the extensions have been called, the resulting (#y, val) will be passed into Numba’s
default argument marshalling logic.

forall (ntasks, tpb=0, stream=0, sharedmem=0)
Returns a 1D-configured kernel for a given number of tasks.

This assumes that:
* the kernel maps the Global Thread ID cuda.grid (1) to tasks on a 1-1 basis.
* the kernel checks that the Global Thread ID is upper-bounded by ntasks, and does nothing if it is
not.
Parameters
* ntasks — The number of tasks.
* tpb - The size of a block. An appropriate value is chosen if this parameter is not supplied.
e stream — The stream on which the configured kernel will be launched.
* sharedmem — The number of bytes of dynamic shared memory required by the kernel.
Returns A configured kernel, ready to launch on a set of arguments.
get_regs_per_thread (signature=None)
Returns the number of registers used by each thread in this kernel for the device in the current context.

Parameters signature — The signature of the compiled kernel to get register usage for. This
may be omitted for a specialized kernel.

Returns The number of registers used by the compiled variant of the kernel for the given signa-
ture and current device.

inspect_asm (signature=None, compute_capability=None)
Return this kernel’s PTX assembly code for for the device in the current context.

Parameters
* signature — A tuple of argument types.

* compute_capability — Deprecated: accepted but ignored, provided only for back-
wards compatibility.

216 Chapter 4. CUDA Python Reference

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Returns The PTX code for the given signature, or a dict of PTX codes for all previously-
encountered signatures. If the dispatcher is specialized, the PTX code for the single spe-
cialization is returned even if no signature was provided.

inspect_11lvm (signature=None, compute_capability=None)
Return the LLVM IR for this kernel.

Parameters
* signature — A tuple of argument types.

* compute_capability — Deprecated: accepted but ignored, provided only for back-
wards compatibility.

Returns The LLVM IR for the given signature, or a dict of LLVM IR for all previously-
encountered signatures. If the dispatcher is specialized, the IR for the single specialization is
returned even if no signature was provided.

inspect_sass (signature=None, compute_capability=None)
Return this kernel’s SASS assembly code for for the device in the current context.

Parameters
* signature - A tuple of argument types.

* compute_capability — Deprecated: accepted but ignored, provided only for back-
wards compatibility.

Returns The SASS code for the given signature, or a dict of SASS codes for all previously-
encountered signatures. If the dispatcher is specialized, the SASS code for the single spe-
cialization is returned even if no signature was provided.

SASS for the device in the current context is returned.
Requires nvdisasm to be available on the PATH.

inspect_types (file=None)
Produce a dump of the Python source of this function annotated with the corresponding Numba IR and
type information. The dump is written to file, or sys.stdout if file is None.

specialize (*args)
Create a new instance of this dispatcher specialized for the given args.

property specialized
True if the Dispatcher has been specialized.

4.2.3 Intrinsic Attributes and Functions

The remainder of the attributes and functions in this section may only be called from within a CUDA Kernel.

4.2. CUDA Kernel API 217

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Thread Indexing

numba.cuda.threadIdx
The thread indices in the current thread block, accessed through the attributes x, y, and z. Each index is
an integer spanning the range from 0 inclusive to the corresponding value of the attribute in numba . cuda.
blockDim exclusive.

numba.cuda.blockIdx
The block indices in the grid of thread blocks, accessed through the attributes x, y, and z. Each index is
an integer spanning the range from 0 inclusive to the corresponding value of the attribute in numba . cuda.
gridDim exclusive.

numba.cuda.blockDim
The shape of a block of threads, as declared when instantiating the kernel. This value is the same for all threads
in a given kernel, even if they belong to different blocks (i.e. each block is “full”).

numba.cuda.gridDim
The shape of the grid of blocks, accessed through the attributes %, y, and z.

numba.cuda.laneid
The thread index in the current warp, as an integer spanning the range from 0 inclusive to the numba. cuda.
warpsize exclusive.

numba.cuda.warpsize
The size in threads of a warp on the GPU. Currently this is always 32.

numba . cuda.grid (ndim)
Return the absolute position of the current thread in the entire grid of blocks. ndim should correspond to the
number of dimensions declared when instantiating the kernel. If ndim is 1, a single integer is returned. If ndim
is 2 or 3, a tuple of the given number of integers is returned.

Computation of the first integer is as follows:

cuda.threadIdx.x + cuda.blockIdx.x * cuda.blockDim.x

and is similar for the other two indices, but using the y and z attributes.

numba.cuda.gridsize (ndim)
Return the absolute size (or shape) in threads of the entire grid of blocks. ndim should correspond to the number
of dimensions declared when instantiating the kernel.

Computation of the first integer is as follows:

cuda.blockDim.x * cuda.gridDim.x

and is similar for the other two indices, but using the y and z attributes.

Memory Management

numba .cuda.shared.array (shape, dtype)
Creates an array in the local memory space of the CUDA kernel with the given shape and dtype.

Returns an array with its content uninitialized.

Note: All threads in the same thread block sees the same array.

218 Chapter 4. CUDA Python Reference

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.local.array (shape, dtype)
Creates an array in the local memory space of the CUDA kernel with the given shape and dtype.

Returns an array with its content uninitialized.

Note: Each thread sees a unique array.

numba.cuda.const.array_ like (ary)
Copies the ary into constant memory space on the CUDA kernel at compile time.

Returns an array like the ary argument.

Note: All threads and blocks see the same array.

Synchronization and Atomic Operations

numba . cuda.atomic.add (array, idx, value)
Perform array [idx] += wvalue. Support int32, int64, float32 and float64 only. The i dx argument can be
an integer or a tuple of integer indices for indexing into multiple dimensional arrays. The number of element in
idx must match the number of dimension of array.

Returns the value of array [1dx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic. sub (array, idx, value)
Perform array[idx] -= value. Supports int32, int64, float32 and float64 only. The idx argument can
be an integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements
in idx must match the number of dimensions of array.

Returns the value of array [1dx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.and_ (array, idx, value)
Perform array[idx] &= value. Supports int32, uint32, int64, and uint64 only. The i dx argument can be
an integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in
idx must match the number of dimensions of array.

Returns the value of array [1dx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.oxr_ (array, idx, value)
Perform array [idx] |= value. Supports int32, uint32, int64, and uint64 only. The idx argument can be
an integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in
idx must match the number of dimensions of array.

Returns the value of array [1dx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.xor (array, idx, value)
Perform array [idx] "= wvalue. Supports int32, uint32, int64, and uint64 only. The i dx argument can be
an integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in
idx must match the number of dimensions of array.

Returns the value of array [idx] before the storing the new value. Behaves like an atomic load.

numba .cuda.atomic.exch (array, idx, value)
Perform array [idx] = wvalue. Supports int32, uint32, int64, and uint64 only. The idx argument can be
an integer or a tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in
idx must match the number of dimensions of array.

Returns the value of array [idx] before the storing the new value. Behaves like an atomic load.

4.2. CUDA Kernel API 219

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numba.cuda.atomic.inec (array, idx, value)
Perform array[idx] = (0 if array[idx] >= value else array[idx] + 1). Supports
uint32, and uint64 only. The idx argument can be an integer or a tuple of integer indices for indexing into
multi-dimensional arrays. The number of elements in i dx must match the number of dimensions of array.

Returns the value of array [1dx] before the storing the new value. Behaves like an atomic load.

numba . cuda.atomic.dec (array, idx, value)
Perform array[idx] = (value if (array[idx] == 0) or (arrayl[idx] > wvalue)
else array[idx] - 1). Supports uint32, and uint64 only. The idx argument can be an integer or a
tuple of integer indices for indexing into multi-dimensional arrays. The number of elements in 1 dx must match
the number of dimensions of array.

Returns the value of array [1dx] before the storing the new value. Behaves like an atomic load.

numba.cuda.atomic.max (array, idx, value)
Perform array[idx] = max(array[idx], wvalue). Support int32, int64, float32 and float64 only.
The 1idx argument can be an integer or a tuple of integer indices for indexing into multiple dimensional arrays.
The number of element in i dx must match the number of dimension of array.

Returns the value of array [1dx] before the storing the new value. Behaves like an atomic load.

numba.cuda.syncthreads ()
Synchronize all threads in the same thread block. This function implements the same pattern as barriers in
traditional multi-threaded programming: this function waits until all threads in the block call it, at which point
it returns control to all its callers.

numba . cuda.syncthreads_count (predicate)
An extension to numba.cuda.syncthreads where the return value is a count of the threads where
predicate is true.

numba . cuda.syncthreads_and (predicate)
An extension to numba . cuda. syncthreads where 1 is returned if predicate is true for all threads or 0
otherwise.

numba .cuda.syncthreads_or (predicate)
An extension to numba . cuda . syncthreads where 1 is returned if predicate is true for any thread or 0
otherwise.

Warning: All syncthreads functions must be called by every thread in the thread-block. Falling to do so
may result in undefined behavior.

Cooperative Groups
numba.cuda.cg.this_grid()
Get the current grid group.
Returns The current grid group
Return type numba.cuda.cg.GridGroup

class numba.cuda.cg.GridGroup
A grid group. Users should not construct a GridGroup directly - instead, get the current grid group using cg.
this_grid().

sync ()
Synchronize the current grid group.

220 Chapter 4. CUDA Python Reference

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Memory Fences

The memory fences are used to guarantee the effect of memory operations are visible by other threads within the same
thread-block, the same GPU device, and the same system (across GPUs on global memory). Memory loads and stores
are guaranteed to not move across the memory fences by optimization passes.

Warning: The memory fences are considered to be advanced API and most usercases should use the thread
barrier (e.g. syncthreads ()).

numba.cuda.threadfence ()
A memory fence at device level (within the GPU).

numba.cuda.threadfence_block ()
A memory fence at thread block level.

numba.cuda.threadfence_system()
A memory fence at system level (across GPUs).

Warp Intrinsics

The argument membermask is a 32 bit integer mask with each bit corresponding to a thread in the warp, with 1
meaning the thread is in the subset of threads within the function call. The membermask must be all 1 if the GPU
compute capability is below 7.x.

numba . cuda.syncwarp (membermask)
Synchronize a masked subset of the threads in a warp.

numba . cuda.all_sync (membermask, predicate)
If the predicate is true for all threads in the masked warp, then a non-zero value is returned, otherwise O is
returned.

numba . cuda.any_sync (membermask, predicate)
If the predicate is true for any thread in the masked warp, then a non-zero value is returned, otherwise 0 is
returned.

numba . cuda.eq_sync (membermask, predicate)
If the boolean predicate is the same for all threads in the masked warp, then a non-zero value is returned,
otherwise 0 is returned.

numba . cuda.ballot_sync (membermask, predicate)
Returns a mask of all threads in the warp whose predicate is true, and are within the given mask.

numba.cuda.shfl_sync (membermask, value, src_lane)
Shuffles value across the masked warp and returns the value from src_lane. If this is outside the warp,
then the given value is returned.

numba.cuda.shfl_up_sync (membermask, value, delta)
Shuffles value across the masked warp and returns the value from laneid - delta. If this is outside
the warp, then the given value is returned.

numba .cuda.shfl_down_sync (membermask, value, delta)
Shuffles value across the masked warp and returns the value from laneid + delta. If this is outside
the warp, then the given value is returned.

numba.cuda.shfl_xor_ sync (membermask, value, lane_mask)
Shuffles value across the masked warp and returns the value from laneid ~ lane_mask.

4.2. CUDA Kernel API 221

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numba . cuda.match_any_sync (membermask, value, lane_mask)
Returns a mask of threads that have same value as the given value from within the masked warp.

numba.cuda.match_all_sync (membermask, value, lane_mask)
Returns a tuple of (mask, pred), where mask is a mask of threads that have same value as the given value
from within the masked warp, if they all have the same value, otherwise it is 0. And pred is a boolean of whether
or not all threads in the mask warp have the same warp.

Integer Intrinsics

A subset of the CUDA Math API’s integer intrinsics are available. For further documentation, including semantics,
please refer to the CUDA Toolkit documentation.

numba.cuda.popc ()
Returns the number of set bits in the given value.

numba.cuda.brev ()
Reverses the bit pattern of an integer value, for example Ob10110110 becomes 0b01101101.

numba.cuda.clz ()
Counts the number of leading zeros in a value.

numba.cuda.f£fs ()
Find the position of the least significant bit set to 1 in an integer.

Floating Point Intrinsics

A subset of the CUDA Math API’s floating point intrinsics are available. For further documentation, including seman-
tics, please refer to the single and double precision parts of the CUDA Toolkit documentation.

numba.cuda.fma ()
Perform the fused multiply-add operation. Named after the fma and fmaf in the C api, but maps to the fma.
rn.f32 and fma.rn. f64 (round-to-nearest-even) PTX instructions.

numba.cuda.cbrt (x)
Perform the cube root operation, x ** (1/3). Named after the functions cbrt and cbrt £ in the C api. Supports
float32, and float64 arguments only.

Control Flow Instructions

A subset of the CUDA’s control flow instructions are directly available as intrinsics. Avoiding branches is a key way to
improve CUDA performance, and using these intrinsics mean you don’t have to rely on the nvcc optimizer identifying
and removing branches. For further documentation, including semantics, please refer to the relevant CUDA Toolkit
documentation.

numba.cuda.selp ()
Select between two expressions, depending on the value of the first argument. Similar to LLVM’s select
instruction.

222 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__INTRINSIC__INT.html
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__SINGLE.html
https://docs.nvidia.com/cuda/cuda-math-api/group__CUDA__MATH__DOUBLE.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#comparison-and-selection-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#comparison-and-selection-instructions

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

4.3 Memory Management

numba . cuda.to_device (0bj, stream=0, copy=True, to=None)
Allocate and transfer a numpy ndarray or structured scalar to the device.

To copy host->device a numpy array:

ary = np.arange (10)
d_ary = cuda.to_device (ary)

To enqueue the transfer to a stream:

stream = cuda.stream()
d_ary = cuda.to_device(ary, stream=stream)

The resulting d_ary is a DeviceNDArray.

To copy device->host:

hary = d_ary.copy_to_host ()

To copy device->host to an existing array:

ary = np.empty (shape=d_ary.shape, dtype=d_ary.dtype)
d_ary.copy_to_host (ary)

To enqueue the transfer to a stream:

hary = d_ary.copy_to_host (stream=stream)

numba . cuda.device_array (shape, dtype=np.float_, strides=None, order="C', stream=0)
Allocate an empty device ndarray. Similar to numpy . empty ().

numba.cuda.device_array_like (ary, stream=0)
Call device_array () with information from the array.

numba.cuda.pinned_array (shape, dtype=np.float_, strides=None, order="C")
Allocate an ndarray with a buffer that is pinned (pagelocked). Similar to np. empty ().

numba.cuda.pinned_array_like (ary)
Call pinned_array () with the information from the array.

numba . cuda .mapped_array (shape, dtype=np.float_, strides=None, order='C', stream=0,

portable=False, wc=False)
Allocate a mapped ndarray with a buffer that is pinned and mapped on to the device. Similar to np.empty()

Parameters

* portable - a boolean flag to allow the allocated device memory to be usable in multiple
devices.

* wc — a boolean flag to enable writecombined allocation which is faster to write by the host
and to read by the device, but slower to write by the host and slower to write by the device.

numba . cuda.mapped_array_like (ary, stream=0, portable=False, wc=False)
Call mapped_array () with the information from the array.

’

numba .cuda.managed_array (shape, dtype=np.float_, strides=None, order='C’, stream=0, at-

tach_global=True)
Allocate a np.ndarray with a buffer that is managed. Similar to np.empty().

Managed memory is supported on Linux, and is considered experimental on Windows.

4.3. Memory Management

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Parameters attach_global — A flag indicating whether to attach globally. Global attachment
implies that the memory is accessible from any stream on any device. If False, attachment is
host, and memory is only accessible by devices with Compute Capability 6.0 and later.

numba .cuda.pinned (*arylist)
A context manager for temporary pinning a sequence of host ndarrays.

numba . cuda .mapped (*arylist, **kws)
A context manager for temporarily mapping a sequence of host ndarrays.

4.3.1 Device Objects

class numba.cuda.cudadrv.devicearray.DeviceNDArray (shape, strides, dtype, stream=0,

gpu_data=None)
An on-GPU array type

copy_to_device (ary, stream=0)
Copy ary to self.

If ary is a CUDA memory, perform a device-to-device transfer. Otherwise, perform a a host-to-device
transfer.

copy_to_host (ary=None, stream=0)
Copy self to ary or create a new Numpy ndarray if ary is None.

If a CUDA stream is given, then the transfer will be made asynchronously as part as the given stream.
Otherwise, the transfer is synchronous: the function returns after the copy is finished.

Always returns the host array.

Example:

import numpy as np
from numba import cuda

arr = np.arange(1000)
d_arr = cuda.to_device (arr)

my_kernel[100, 100] (d_arr)

result_array = d_arr.copy_to_host ()

is_c_contiguous ()
Return true if the array is C-contiguous.

is_f contiguous ()
Return true if the array is Fortran-contiguous.

ravel (order="'C', stream=0)
Flatten the array without changing its contents, similar to numpy . ndarray.ravel ().

reshape (*newshape, **kws)
Reshape the array without changing its contents, similarly to numpy .ndarray.reshape (). Example:

d_arr = d_arr.reshape (20, 50, order='F")

split (section, stream=0)
Split the array into equal partition of the section size. If the array cannot be equally divided, the last section
will be smaller.

224 Chapter 4. CUDA Python Reference

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.ravel.html#numpy.ndarray.ravel
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.reshape.html#numpy.ndarray.reshape

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

class numba.cuda.cudadrv.devicearray.DeviceRecord (dtype, stream=0, gpu_data=None)
An on-GPU record type

copy_to_device (ary, stream=0)
Copy ary to self.

If ary is a CUDA memory, perform a device-to-device transfer. Otherwise, perform a a host-to-device
transfer.

copy_to_host (ary=None, stream=0)
Copy self to ary or create a new Numpy ndarray if ary is None.

If a CUDA stream is given, then the transfer will be made asynchronously as part as the given stream.
Otherwise, the transfer is synchronous: the function returns after the copy is finished.

Always returns the host array.

Example:

import numpy as np
from numba import cuda

arr = np.arange (1000)
d_arr = cuda.to_device (arr)

my_kernel[100, 100] (d_arr)

result_array = d_arr.copy_to_host ()

class numba.cuda.cudadrv.devicearray.MappedNDArray (shape, strides, dtype, stream=0,

gpu_data=None)
A host array that uses CUDA mapped memory.

copy_to_device (ary, stream=0)
Copy ary to self.

If ary is a CUDA memory, perform a device-to-device transfer. Otherwise, perform a a host-to-device
transfer.

copy_to_host (ary=None, stream=0)
Copy self to ary or create a new Numpy ndarray if ary is None.

If a CUDA stream is given, then the transfer will be made asynchronously as part as the given stream.
Otherwise, the transfer is synchronous: the function returns after the copy is finished.

Always returns the host array.

Example:

import numpy as np
from numba import cuda

arr = np.arange (1000)
d_arr = cuda.to_device (arr)

my_kernel[100, 100] (d_arr)

result_array = d_arr.copy_to_host ()

split (section, stream=0)
Split the array into equal partition of the section size. If the array cannot be equally divided, the last section
will be smaller.

4.3. Memory Management 225

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

4.4 Libdevice functions

All wrapped libdevice functions are listed in this section. All functions in libdevice are wrapped, with the exception
of __nv_nanand __nv_nanf. These functions return a representation of a quiet NaN, but the argument they take
(a pointer to an object specifying the representation) is undocumented, and follows an unusual form compared to the
rest of libdevice - it is not an output like every other pointer argument. If a NaN is required, one can be obtained in
CUDA Python by other means, e.g. math.nan.

4.4.1 Wrapped functions
numba.cuda.libdevice.abs (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_abs.html
Parameters x (int32)— Argument.
Return type int32

numba.cuda.libdevice.acos (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acos.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.acosf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acosf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.acosh (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acosh.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.acoshf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acoshf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.asin (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asin.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.asinf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.asinh (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinh.html

Parameters x (float64)— Argument.

226 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_abs.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acos.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acosf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acosh.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_acoshf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asin.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinh.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Return type float64

numba.cuda.libdevice.asinhf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinhf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.atan (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.atan2 (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan2.html

Parameters
* x (float64)— Argument.
* y(floaté64)— Argument.
Return type float64

numba.cuda.libdevice.atan2f (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan2f.html

Parameters
* X (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.atanf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.atanh (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanh.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.atanhf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanhf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.brev (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_brev.html

Parameters x (int32) — Argument.
Return type int32

numba.cuda.libdevice.brevll (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_brevll.html

4.4. Libdevice functions 227

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_asinhf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan2.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atan2f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanh.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_atanhf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_brev.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_brevll.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Parameters x (inté64)— Argument.
Return type int64

numba.cuda.libdevice.byte_ perm(x,y,z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_byte_perm.html

Parameters
* x (int32)— Argument.
* y (int32)— Argument.
* z (int32)— Argument.
Return type int32

numba.cuda.libdevice.cbrt (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cbrt.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.cbrtf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cbrtf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.ceil (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ceil.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.ceilf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ceilf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.eclz (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_clz.html

Parameters x (int32)— Argument.
Return type int32

numba.cuda.libdevice.eclzll (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_clzll.html

Parameters x (inté64)— Argument.
Return type int32

numba.cuda.libdevice.copysign (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_copysign.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.

Return type float64

228 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_byte_perm.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cbrt.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cbrtf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ceil.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ceilf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_clz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_clzll.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_copysign.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.libdevice.copysignf (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_copysignf.html

Parameters
* x (float32)— Argument.
* vy (float32)— Argument.
Return type float32

numba.cuda.libdevice.cos (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cos.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.cosf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cosf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.cosh (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cosh.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.coshf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_coshf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.cospi (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cospi.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.cospif (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cospif.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.dadd_rd (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rd.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.dadd_rn(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rn.html

Parameters

4.4. Libdevice functions

229

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_copysignf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cos.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cosf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cosh.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_coshf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cospi.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_cospif.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rn.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.dadd_ru (x,Yy)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_ru.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.dadd _rz (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rz.html

Parameters
* x (float64)— Argument.
* y(floaté64)— Argument.
Return type float64

numba.cuda.libdevice.ddiv_rd (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rd.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.ddiv_rn (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rn.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.ddiv_ru(x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_ru.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.ddiv_rz (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rz.html

Parameters
* x (float64)— Argument.

* y(float64)— Argument.

230

Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dadd_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ddiv_rz.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Return type float64

numba.cuda.libdevice.dmul_rd(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rd.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.dmul_rn (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rn.html

Parameters
* x (float64)— Argument.
* vy (float64)— Argument.
Return type float64

numba.cuda.libdevice.dmul_ru(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_ru.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.dmul_rz (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rz.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.double2float_rd (d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rd.html

Parameters d (float64)— Argument.
Return type float32

numba.cuda.libdevice.double2float_rn (d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rn.html

Parameters d (float64)— Argument.
Return type float32

numba.cuda.libdevice.double2float_ru (d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_ru.html

Parameters d (float64)— Argument.
Return type float32

numba.cuda.libdevice.double2float_rz (d)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rz.html

4.4. Libdevice functions 231

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dmul_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2float_rz.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Parameters d (float64)— Argument.
Return type float32
numba.cuda.libdevice.double2hiint (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2hiint.html

Parameters d (float64)— Argument.
Return type int32
numba.cuda.libdevice.double2int_rd (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rd.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2int_rn (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rn.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2int_ru (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_ru.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2int_rz (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rz.html

Parameters d (float64)— Argument.
Return type int32
numba.cuda.libdevice.double21l_rd (f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double21l_rd.html

Parameters £ (float64)— Argument.
Return type int64
numba.cuda.libdevice.double2ll_rn (f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double21]l_rn.html

Parameters £ (float64)— Argument.
Return type int64
numba.cuda.libdevice.double2ll_ru (f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double21l_ru.html

Parameters £ (float64)— Argument.
Return type int64
numba.cuda.libdevice.double2ll_rz (f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_rz.html

Parameters £ (float64)— Argument.

Return type int64

232

Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2hiint.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2int_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ll_rz.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.libdevice.double2loint (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2loint.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2uint_rd (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rd.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2uint_ rn (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rn.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2uint_ru (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_ru.html

Parameters d (float64)— Argument.
Return type int32

numba.cuda.libdevice.double2uint_rz (d)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rz.html

Parameters d (float64)— Argument.
Return type int32
numba.cuda.libdevice.double2ull_rd (f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rd.html

Parameters f (float64)— Argument.
Return type int64
numba.cuda.libdevice.double2ull_rn (f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rn.html

Parameters f (float64)— Argument.
Return type int64
numba.cuda.libdevice.double2ull_ru (f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_ru.html

Parameters £ (float64)— Argument.
Return type int64
numba.cuda.libdevice.double2ull_rz (f)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rz.html

Parameters £ (float64)— Argument.
Return type int64

numba.cuda.libdevice.double_as_longlong (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double_as_longlong.html

Parameters x (float 64)— Argument.

4.4. Libdevice functions

233

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2loint.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2uint_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double2ull_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_double_as_longlong.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Return type int64

numba.cuda.libdevice.drecp_rd (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rd.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.drecp_rn (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rn.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.drecp_ru (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_ru.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.drecp_rz (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rz.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.dsqgrt_rd (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rd.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.dsqgrt_rn (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rn.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.dsqgrt_ru (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_ru.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.dsqrt_rz (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rz.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erf.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfec (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfc.html

234 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_drcp_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_dsqrt_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfc.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfcf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.erfcinv (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcinv.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfcinvf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcinvf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.erfex (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcx.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfexf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcxf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.erff (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erff.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.erfinv (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfinv.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.erfinvf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfinvf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.exp (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp.html

Parameters x (float64)— Argument.

Return type float64

4.4. Libdevice functions

235

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcinv.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcinvf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcx.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfcxf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erff.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfinv.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_erfinvf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numba.cuda.libdevice.explO (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp10.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.explOf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp10f.html

Parameters x (float32) - Argument.
Return type float32

numba.cuda.libdevice.exp2 (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp2.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.exp2f (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp2f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.expf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expf.html

Parameters x (float32) - Argument.
Return type float32

numba.cuda.libdevice.expml (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expm]1.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.expmlf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expmIf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fabs (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fabs.html

Parameters £ (float64)— Argument.
Return type float64

numba.cuda.libdevice. fabsf (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fabsf.html

Parameters £ (float32)— Argument.
Return type float32

numba.cuda.libdevice.fadd_rd(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rd.html

Parameters

236 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp10.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp10f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp2.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_exp2f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expm1.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_expm1f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fabs.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fabsf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rd.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice.fadd_rn (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rn.html

Parameters
* x (float32)— Argument.
* vy (float32)— Argument.
Return type float32

numba.cuda.libdevice.fadd_ru(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_ru.html

Parameters
* x (float32)— Argument.
* y (float32)— Argument.
Return type float32

numba.cuda.libdevice.fadd_rz (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rz.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice. fast_cosf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_cosf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.fast_explOf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_exp10f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.fast_expf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_expf.html

Parameters x (f1oat32)— Argument.
Return type float32

numba.cuda.libdevice.fast_fdividef (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_fdividef.html

Parameters
* x (float32)— Argument.

* y(float32)— Argument.

4.4. Libdevice functions

237

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fadd_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_cosf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_exp10f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_expf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_fdividef.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Return type float32

numba.cuda.libdevice.fast_loglOf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_logl10f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.fast_log2f (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_log2f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.fast_logf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_logf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fast_powf (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_powf.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fast_sincosf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_sincosf.html

Parameters x (float32)— Argument.
Return type UniTuple(float32 x 2)

numba.cuda.libdevice.fast_sinf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_sinf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.fast_tanf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_tanf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fdim(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdim.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice. fdimf (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdimf.html

238 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_log10f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_log2f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_logf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_powf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_sincosf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_sinf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fast_tanf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdim.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdimf.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fdiv_rd(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rd.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fdiv_rn (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rn.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fdiv_ru(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_ru.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice.fdiv_rz (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rz.html

Parameters
* x (float32)— Argument.
* vy (float32)— Argument.
Return type float32

numba.cuda.libdevice.ffs (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_{fs.html

Parameters x (int32)— Argument.
Return type int32

numba.cuda.libdevice.f£fsll (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_{fsll.html

Parameters x (int64)— Argument.
Return type int32

numba.cuda.libdevice.finitef (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_finitef.html

4.4. Libdevice functions

239

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fdiv_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ffs.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ffsll.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_finitef.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice.float2half rn (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2half_rn.html

Parameters £ (float32) - Argument.
Return type intl6

numba.cuda.libdevice.float2int_rd (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rd.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice.float2int_rn (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rn.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice.float2int_ru (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_ru.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice.float2int_rz (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rz.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice.float21ll_rd (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_rd.html

Parameters £ (float32)— Argument.
Return type int64

numba.cuda.libdevice.float21ll_rn (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_rn.html

Parameters £ (float32)— Argument.
Return type int64

numba.cuda.libdevice.float21ll_ru (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_ru.html

Parameters £ (float32)— Argument.
Return type int64

numba.cuda.libdevice.float2ll_rz (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_rz.html

Parameters £ (float32)— Argument.
Return type int64

240 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2half_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2int_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ll_rz.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.libdevice.float2uint_rd (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rd.html

Parameters in (float32)— Argument.
Return type int32

numba.cuda.libdevice.float2uint_rn (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rn.html

Parameters in (float32)-— Argument.
Return type int32

numba.cuda.libdevice.float2uint_ru (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_ru.html

Parameters in (float32)- Argument.
Return type int32

numba.cuda.libdevice.float2uint_rz (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rz.html

Parameters in (float32)-— Argument.
Return type int32

numba.cuda.libdevice.float2ull_rd (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rd.html

Parameters f (float32) - Argument.
Return type int64

numba.cuda.libdevice.float2ull_rn (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rn.html

Parameters f (float32) - Argument.
Return type int64

numba.cuda.libdevice.float2ull_ru (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_ru.html

Parameters f (float32)— Argument.
Return type int64

numba.cuda.libdevice.float2ull_rz (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rz.html

Parameters £ (float32)— Argument.
Return type int64

numba.cuda.libdevice.float_as_int (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float_as_int.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice. floor (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_floor.html

Parameters £ (float64)— Argument.

4.4. Libdevice functions 241

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2uint_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float2ull_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_float_as_int.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_floor.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Return type float64

numba.cuda.libdevice. floorf (f)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_floorf.html

Parameters £ (float32)— Argument.
Return type float32

numba.cuda.libdevice. fma (x, Yy, 7)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
* z (float64)— Argument.
Return type float64

numba.cuda.libdevice.fma_rd(x,y, 7)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rd.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
* z (float64)— Argument.
Return type float64

numba.cuda.libdevice.fma_rn (x, Y, 2)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rn.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
* z (float64)— Argument.
Return type float64

numba.cuda.libdevice.fma_ru (x, Y, 2)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_ru.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
* z (float64)— Argument.
Return type float64

numba.cuda.libdevice.fma_rz (x,y, 2)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rz.html

Parameters
* x (float64)— Argument.

* y(float64)— Argument.

242 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_floorf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fma_rz.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

* z (float64)— Argument.
Return type float64

numba.cuda.libdevice. fmaf (x,y, 7)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
* z (float32)— Argument.
Return type float32

numba.cuda.libdevice.fmaf rd(x,y,z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf rd.html

Parameters
* x (float32)— Argument.
* y (float32)— Argument.
* z (float32)— Argument.
Return type float32

numba.cuda.libdevice.fmaf rn(x,y,)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf_rn.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
* z (float32)— Argument.
Return type float32

numba.cuda.libdevice.fmaf ru(x,y,z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf_ru.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
* z (float32)— Argument.
Return type float32

numba.cuda.libdevice.fmaf_ rz(x,y,z)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf rz.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
* z (float32)— Argument.

Return type float32

4.4. Libdevice functions

243

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaf_rz.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numba.cuda.libdevice. fmax (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmax.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice. fmaxf (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaxf.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice. fmin (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmin.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.fminf (x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fminf.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice. fmod (x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmod.html

Parameters
* x (float64)— Argument.
* y(floaté64)— Argument.
Return type float64

numba.cuda.libdevice. fmodf (x, y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmodf.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fmul_rd(x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rd.html

244

Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmax.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmaxf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmin.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fminf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmod.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmodf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rd.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fmul_rn (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rn.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fmul_ru (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_ru.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fmul_rz(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rz.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice. frep_rd (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rd.html

Parameters x (fl1oat32)— Argument.
Return type float32

numba.cuda.libdevice.frep_rn (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rn.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.frep_ru (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_ru.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.frep_rz (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rz.html

Parameters x (float32)— Argument.

Return type float32

4.4. Libdevice functions

245

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fmul_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frcp_rz.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numba.cuda.libdevice. frexp (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frexp.html

Parameters x (float 64)— Argument.
Return type Tuple(float64, int32)

numba.cuda.libdevice. frexpf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frexpf.html

Parameters x (float32) - Argument.
Return type Tuple(float32, int32)

numba.cuda.libdevice. frsqrt_rn (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frsqrt_rn.html

Parameters x (float32) - Argument.
Return type float32

numba.cuda.libdevice. fsqrt_rd (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rd.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fsqgrt_rn (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rn.html

Parameters x (float32) - Argument.
Return type float32

numba.cuda.libdevice. fsqgrt_ru (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_ru.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fsqgrt_rz (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rz.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. fsub_rd(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rd.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice.fsub_rn (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rn.html

Parameters
* x (float32)— Argument.

* y(float32) - Argument.

246 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frexp.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frexpf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_frsqrt_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsqrt_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rn.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Return type float32

numba.cuda.libdevice. fsub_ru(x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_ru.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.fsub_rz (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rz.html

Parameters
* x (float32)— Argument.
* y(float32)— Argument.
Return type float32

numba.cuda.libdevice.hadd (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hadd.html

Parameters
* x (1nt32) — Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.half2float (/)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_half2float.html

Parameters h (int16)— Argument.
Return type float32

numba.cuda.libdevice.hiloint2double (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hiloint2double.html

Parameters
* x (int32)— Argument.
* vy (int32)— Argument.
Return type float64

numba.cuda.libdevice.hypot (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hypot.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.hypotf (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hypotf.html

Parameters

4.4. Libdevice functions

247

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_fsub_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hadd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_half2float.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hiloint2double.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hypot.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_hypotf.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice.ilogb (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ilogb.html

Parameters x (float64)— Argument.
Return type int32

numba.cuda.libdevice.ilogbf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ilogbf.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice.int2double rn (i)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2double_rn.html

Parameters i (int32)— Argument.
Return type float64

numba.cuda.libdevice.int2float_rd (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rd.html

Parameters in (int32)— Argument.
Return type float32

numba.cuda.libdevice.int2float_rn (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rn.html

Parameters in (int32)— Argument.
Return type float32

numba.cuda.libdevice.int2float_ru (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_ru.html

Parameters in (int32)— Argument.
Return type float32

numba.cuda.libdevice.int2float_rz (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rz.html

Parameters in (int32)— Argument.
Return type float32

numba.cuda.libdevice.int_as_float (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int_as_float.html

Parameters x (int32)— Argument.
Return type float32

numba.cuda.libdevice.isfinited (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isfinited.html

Parameters x (float64)— Argument.

Return type int32

248

Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ilogb.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ilogbf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2double_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int2float_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_int_as_float.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isfinited.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.libdevice.isinfd (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isinfd.html

Parameters x (float 64)— Argument.
Return type int32

numba.cuda.libdevice.isinff (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isinff.html

Parameters x (float32) - Argument.
Return type int32

numba.cuda.libdevice.isnand (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isnand.html

Parameters x (float64)— Argument.
Return type int32

numba.cuda.libdevice.isnanf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isnanf.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice. jO (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j0.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice. jOf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jOf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. j1 (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jl.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice. j1f (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jlf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice. jn (n, x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jn.html

Parameters
* n (int32)— Argument.
* x (float64)— Argument.

Return type float64

4.4. Libdevice functions 249

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isinfd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isinff.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isnand.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_isnanf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j0.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j0f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j1.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_j1f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jn.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numba.cuda.libdevice. jnf (n, x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jnf.html

Parameters

* n (int32)— Argument.

* x (float32)— Argument.
Return type float32

numba.cuda.libdevice.ldexp (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ldexp.html

Parameters
* x (float64)— Argument.
* y (int32) — Argument.
Return type float64

numba.cuda.libdevice.ldexpf (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ldexpf.html

Parameters
* x (float32)— Argument.
* y (int32) — Argument.
Return type float32

numba.cuda.libdevice.lgamma (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_lgamma.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.lgammaf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_lgammaf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.ll2double_rd (/)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_l12double_rd.html

Parameters 1 (int64)— Argument.
Return type float64

numba.cuda.libdevice.ll2double_rn (/)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_l12double_rn.html

Parameters 1 (int64)— Argument.
Return type float64

numba.cuda.libdevice.ll2double_ru (/)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_l12double_ru.html

Parameters 1 (int64)— Argument.

Return type float64

250 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_jnf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ldexp.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ldexpf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_lgamma.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_lgammaf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ll2double_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ll2double_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ll2double_ru.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.libdevice.ll2double_rz (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_l12double_rz.html

Parameters 1 (int64)— Argument.
Return type float64
numba.cuda.libdevice.ll2float_xrd (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_II12float_rd.html

Parameters 1 (int64)— Argument.
Return type float32

numba.cuda.libdevice.ll2float_xrn (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_II12float_rn.html

Parameters 1 (int64)— Argument.
Return type float32

numba.cuda.libdevice.ll2float_ru (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_I12float_ru.html

Parameters 1 (int64)— Argument.
Return type float32

numba.cuda.libdevice.ll2float_rz (/)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_lI12float_rz.html

Parameters 1 (int64)— Argument.
Return type float32

numba.cuda.libdevice.llabs (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llabs.html

Parameters x (int64)— Argument.
Return type int64

numba.cuda.libdevice.llmax (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llmax.html

Parameters
* x (int64)— Argument.
* y(int64)— Argument.
Return type int64

numba.cuda.libdevice.llmin (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llmin.html

Parameters
* x (int64) — Argument.
* vy (int64)— Argument.
Return type int64

numba.cuda.libdevice.llrint (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llrint.html

Parameters x (float 64)— Argument.

4.4. Libdevice functions

251

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ll2double_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ll2float_rd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ll2float_rn.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ll2float_ru.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_ll2float_rz.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llabs.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llmax.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llmin.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llrint.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Return type int64

numba.cuda.libdevice.llrintf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_lIrintf.html

Parameters x (float32)— Argument.
Return type int64

numba.cuda.libdevice.llround (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llround.html

Parameters x (float 64)— Argument.
Return type int64

numba.cuda.libdevice.llroundf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llroundf.html

Parameters x (float32)— Argument.
Return type int64

numba.cuda.libdevice.log (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.loglO0 (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log10.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.loglOf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log10f.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.loglp (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_loglp.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.loglpf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log1pf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.log2 (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log2.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.log2f (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log2f.html

252 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llrintf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llround.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_llroundf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log10.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log10f.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log1p.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log1pf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log2.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_log2f.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.logb (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logb.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.logbf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logbf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.logf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.longlong_as_double (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_longlong_as_double.html

Parameters x (int64)— Argument.
Return type float64

numba.cuda.libdevice.max (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_max.html

Parameters
* x (int32)— Argument.
* y (int32) - Argument.
Return type int32

numba.cuda.libdevice.min (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_min.html

Parameters
* x (int32)— Argument.
* y (int32)— Argument.
Return type int32

numba.cuda.libdevice .modf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_modf.html

Parameters x (float64)— Argument.
Return type UniTuple(float64 x 2)

numba.cuda.libdevice.modff (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_modff.html

Parameters x (float32)— Argument.

Return type UniTuple(float32 x 2)

4.4. Libdevice functions

253

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logb.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logbf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_logf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_longlong_as_double.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_max.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_min.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_modf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_modff.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

numba.cuda.libdevice.mul24 (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mul24.html

Parameters
* x (int32)— Argument.
* vy (int32)— Argument.
Return type int32

numba.cuda.libdevice.mul64hi (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mul64hi.html

Parameters
* x (int64)— Argument.
* y (int64)— Argument.
Return type int64

numba.cuda.libdevice.mulhi (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mulhi.html

Parameters
* x (int32)— Argument.
* y (int32) — Argument.
Return type int32

numba.cuda.libdevice.nearbyint (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nearbyint.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.nearbyintf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nearbyintf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.nextafter (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nextafter.html

Parameters
* x (float64)— Argument.
* vy (float64)— Argument.
Return type float64

numba.cuda.libdevice.nextafterf (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nextafterf.html

Parameters
* x (float32)— Argument.
* y (float32)— Argument.
Return type float32

254

Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mul24.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mul64hi.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_mulhi.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nearbyint.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nearbyintf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nextafter.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_nextafterf.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

numba.cuda.libdevice.normedf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdf.html

Parameters x (float 64)— Argument.
Return type float64

numba.cuda.libdevice.normecdff (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdff.html

Parameters x (float32) - Argument.
Return type float32

numba.cuda.libdevice.normedfinv (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdfinv.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.normedfinvf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdfinvf.html

Parameters x (float32) - Argument.
Return type float32

numba.cuda.libdevice.popc (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_popc.html

Parameters x (int32) — Argument.
Return type int32

numba.cuda.libdevice.popcll (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_popcll.html

Parameters x (int64)— Argument.
Return type int32

numba.cuda.libdevice.pow (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_pow.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.powf (x, y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powf.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice.powi (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powi.html

Parameters

4.4. Libdevice functions

255

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdff.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdfinv.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_normcdfinvf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_popc.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_popcll.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_pow.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powi.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

* x (float64)— Argument.
* y (int32)— Argument.
Return type float64

numba.cuda.libdevice.powif (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powif.html

Parameters
* x (float32)— Argument.
* vy (int32)— Argument.
Return type float32

numba.cuda.libdevice.rcbrt (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rcbrt.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.rcbrtf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rcbrtf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.remainder (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remainder.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type float64

numba.cuda.libdevice.remainderf (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remainderf.html

Parameters
* x (float32)— Argument.
* y(float32) - Argument.
Return type float32

numba.cuda.libdevice.remquo (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remquo.html

Parameters
* x (float64)— Argument.
* y(float64)— Argument.
Return type Tuple(float64, int32)

numba.cuda.libdevice.remquof (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remquof.html

Parameters

256 Chapter 4. CUDA Python Reference

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_powif.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rcbrt.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rcbrtf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remainder.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remainderf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remquo.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_remquof.html

Numba Documentation, Release 0.53.0-py3.7-linux-x8644.cgg

* x (float32)— Argument.
* y(float32) - Argument.
Return type Tuple(float32, int32)

numba.cuda.libdevice.rhadd (x,y)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rhadd.html

Parameters
* x (int32) — Argument.
* vy (int32)— Argument.
Return type int32

numba.cuda.libdevice.rint (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rint.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.rintf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rintf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.round (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_round.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.roundf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_roundf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.rsqrt (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rsqrt.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.rsqrtf (x)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rsqrtf.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.sad (x,Yy, 2)

See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sad.html

Parameters
* x (int32)— Argument.
* vy (int32)— Argument.

* z (int32)— Argument.

4.4. Libdevice functions

257

https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rhadd.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rint.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rintf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_round.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_roundf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rsqrt.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_rsqrtf.html
https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sad.html

Numba Documentation, Release 0.53.0-py3.7-linux-x86s4.cgg

Return type int32

numba.cuda.libdevice.saturatef (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_saturatef.html

Parameters x (float32)— Argument.
Return type float32

numba.cuda.libdevice.scalbn (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_scalbn.html

Parameters
* x (float64)— Argument.
* y (int32)— Argument.
Return type float64

numba.cuda.libdevice.scalbnf (x,y)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_scalbnf.html

Parameters
* x (float32)— Argument.
* vy (int32)— Argument.
Return type float32

numba.cuda.libdevice.signbitd (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_signbitd.html

Parameters x (float64)— Argument.
Return type int32

numba.cuda.libdevice.signbitf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_signbitf.html

Parameters x (float32)— Argument.
Return type int32

numba.cuda.libdevice.sin (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sin.html

Parameters x (float64)— Argument.
Return type float64

numba.cuda.libdevice.sincos (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sincos.html

Parameters x (float64)— Argument.
Return type UniTuple(float64 x 2)

numba.cuda.libdevice.sincosf (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sincosf.html

Parameters x (float32)— Argument.
Return type UniTuple(float32 x 2)

numba.cuda.libdevice.sincospi (x)
See https://docs.nvidia.com/cuda/libdevice-users-guide/__nv_sincospi.html

258 Chapter 4. CUDA Python Refe